Empowered Consumers for Efficiency in Urban Mobility

Anuradha Annaswamy

Active-adaptive Control Laboratory Massachusetts Institute of Technology

Joint Work with Thao Phan, Yue Guan, Eric Tseng, Diana Yanakiev, and Hao Zhou

Sponsors: NSF, Ford

Outline

- Urban Mobility a paradigm shift
- Empowered Consumers & Transactive Control

 An Introduction
- Towards Efficiency
 - Examples: Dynamic Tolls; Dynamic Routing and Pricing for Shuttles
 - Socio-technical modeling & Model-based Design
- Summary

Urban Mobility

Urban challenges

- Pollution
- Traffic Congestion
- Urban Stresses
- Aging demographics

Digital Advances

- Edge intelligence
- Cloud Computing
- Multicore Computing

New paradigms

- Self-driving cars
- Connected cars
- Shared Mobility

Workshop on Societal Implications of CPS, November 14, 2017

Empowered Consumers + Transactive Control

Transactive Control

A mechanism through which system- and component-level decisions are made through economic **transactions** between the components of the system, in conjunction with or in lieu of traditional controls

Pacific Northwest Demonstration Project

What:

- \$178M, ARRA-funded, 5-year demonstration
- 60,000 metered customers in 5 states

Why:

- Quantify costs and benefits
- Develop communications protocol
- Develop standards
- Facilitate integration of wind and other renewables

Who:

Led by Battelle and partners including BPA, 11 utilities, 2 universities, and 5 vendors

Reference: Courtesy Jakob Stoustrup, Tutorial, American Control Conference, 2016

Workshop on Societal Implications of CPS, November 14, 2017

TOWARDS EFFICIENCY IN URBAN MOBILITY

- Examples
- Modeling
- Model-based Transactive Control

Motivation: Alleviate Traffic Congestion

Other Means:

- Use of real-time traffic information (on-road sensors or cellphone signals)
- Informed consumers: in-car (onboard displays or smartphones) or on-road (posted signs)
- Coordinated planning: optimized traffic re-routing

Congestion Reduction w/Toll Pricing

- Motivate drivers towards and away from certain roads with targeted congestion pricing
- Fixed but variable with time of day
 - Stockholm, NYC/NJ, CA, FL
- Dynamic (dependent on measured traffic conditions)
 - Minneapolis, Seattle, Virginia, Georgia, Los Angeles

Empowered Consumers and Urban Mobility

Workshop on Societal Implications of CPS, November 14, 2017

Complete Socio-Technical Model

Model validation MnPASS (Minneapolis) benchmark: in operation since 2005

dynamic toll lanes

zero toll lanes

- Sensor: Inductive loop ۲ detector
- Both the traffic volume and ۲ traffic speed are measured.
- **Empirically designed toll** ۲ prices so as to maintain 50mph

Workshop on Societal Implications of CPS, November 14, 2017

Toll-pricing controller

Response to High Input Flow

High input flow is introduced in the middle of the operating period to test the systems' ability to prevent congestion. Our model-based control (blue) is successful in keeping the HOT density low compared to MnPASS (red).

Workshop on Societal Implications of CPS, November 14, 2017

Dynamic Shuttles

Spectrum of the typical urban transportation methods

Goal: Accommodate a larger number of passengers per vehicle with flexible service experience

Transactive Control + Dynamic shuttles

- Supply characteristics: fixed, little elasticity under short time frame
- Demand characteristics: large elasticity, can be incentivized instantaneously
- "Balance":
 - **1.** Key Performance Indicators (KPIs): estimated waiting time (EWT), idle rate (IR), completion rate (CR), average revenue, ...
 - 2. When demand > supply, EWT \uparrow , IP \downarrow , CR \downarrow , revenue \downarrow and vice versa
- Given the route, price affects passenger's decision. The choice model maps price to probability of acceptance.

$$U_{a} = \alpha + \beta_{p} \cdot WalkT_{p} + \beta_{w} \cdot WaltT + \beta_{r} \cdot RideT + \beta_{d} \cdot WalkT_{d} + \gamma \cdot p$$

$$U_d = \sigma \cdot DirectT$$

Utility of acceptance

$$\mathbf{z} p_a = \frac{e^{U_a}}{e^{U_a} + e^{U_r}} = \frac{1}{1 + e^{U_r - U_a}} = \frac{1}{1 + e^{\Delta U}}$$

Probability of acceptance

Workshop on Societal Implications of CPS, November 14, 2017

A numerical illustration

Simulation setup:

- 16 requests of real operational data from Chariot SF
- Requested pickup and drop-off locations
- Timestamps are such that there are 4 initial requests at t=0, and the other 12 arrive 4 minutes apart over a interval of 44 minutes.

 $prob_{a} = \begin{cases} 0.9 \exp(-\lambda \Delta EWT), if \ EWT \ge EWT^{*} \\ and \ \Delta EWT > 0 \\ 0.9, & otherwise \end{cases}$

Workshop on Societal Implications of CPS, November 14, 2017

Empowered Consumers and Urban Mobility

Several Challenges

- Negative externalities
 Behavioral Economics

 Value of Decisions
 Complex technical models
- Effects of social networks

Summary

- Urban Mobility a paradigm shift
- Empowered Consumers & Transactive Control

 An Introduction
- Towards Efficiency
 - Examples: Dynamic Tolls; Dynamic Routing and Pricing for Shuttles
 - Socio-technical modeling & Model-based Transactive Control