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Introduction

Standard storage technologies, such as batteries and flywheels, are
reliable and controllable, but too expensive for large scale deployment.

Meanwhile, a substantial part of electricity consumption is flexible.

Can we coordinate flexible loads in order to emulate conventional
energy storage?
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Gray lines delimit the set of feasible energy trajectories. Dashed line shows nominal energy consumption

- E Energy demand

- T Service period

- P Maximum consumption rate (0 ≤ p ≤ P)

- P0 Nominal consumption rate (P0 = E/T )

Flexibility: ability to deviate from nominal consumption.

Aggregate flexibility

A1: loads are identical in terms of E , T and P.
A2: one arrival at each point in time.

- xσ (t) Energy level of load that arrived σ sec ago

- uσ (t) Power consumption of load that arrived σ sec ago
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uσ (t)dσ = P0 + w(t) (tracking) (1)
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= uσ (t) (dynamics) (2)

x0(t) = 0, xT (t) = E , 0 ≤ uσ (t) ≤ P (load constarints) (3)

The (average) aggregate flexibility under a causal policy µ : w → u is

W(µ) = {w : u = µ(w) satisfies (1)–(3)}

Battery emulation

An ideal battery with parameters φ =
[
C W W

]
is characterized by

B(φ ) =
{

w : −
C
2
≤

∫ t

−∞

w(θ )dθ ≤
C
2
,−W ≤ w(t) ≤ W , t ∈ R

}
- C Energy storage capacity

- W Maximum charge rate

- W Maximum discharge rate

Given load parameters E , T , and P, what is the set of (φ ,µ) such that

B(φ ) ⊂W(µ)

Individual battery parameter bounds

Let φmax =
[
Cmax W W

]
, where

Cmax = (1−
P0

P
)E W max = (P − P0) W max = P0.

Theorem
- B(φmax) is the smallest battery that contains all realizable B(φ ).
- There is µ, such that B(φmax) ⊂W(µ), if and only if P =∞.

There is a trade-off between the batteries that can be emulated.

Battery capacity trade-offs
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General upper bounds (gray) on normalized charge/discharge rates that can be attained for different normalized energy
storage capacities c = C/Cmax. The black lines show the rates that can be attained with mixed-slack policies.

Substantial trade-off between battery parameters.

Reason for trade-off
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The solid/dashed energy allocation allows the loads to absorb/release the largest volume of energy possible at the
highest attainable rate.

- sσ Time that load can maintain maximum consumption rate, P.

- sτ Time that load can maintain minimum consumption rate, i.e. 0.

The initial energy allocations (states) that allow load to absorb/release
energy at high rates are conflicting.

Mixed-slack policies
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Equilibrium energy allocation, x(t), under µη. Lower η (darker) gives a better ability to absorb energy at a high rate.

Mixed slack:

sη
σ (t) = ηsσ (t) + (1−η)

(
E
P
− sσ (t)

)
, η ∈ [0,1].

A mixed-slack policy, µη, prioritizes power allocation to small sη
σ .

Theorem Suppose φ ≤ φmax, P < ∞ and(
W

W max

)(
W

W max

)
+

C
Cmax

≤ 1. (4)

Then B(φ ) ⊂W(µη), where η = 1
1+W/W

. Moreover, if either C = Cmax,

W = W max, or W = W max, then (4) is also necessary for B(φ ) ⊂W(µ).

- Mixed-slack policies balance ability to absorb/release energy
- µ1 is the standard and well-known least-laxity-first policy.
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