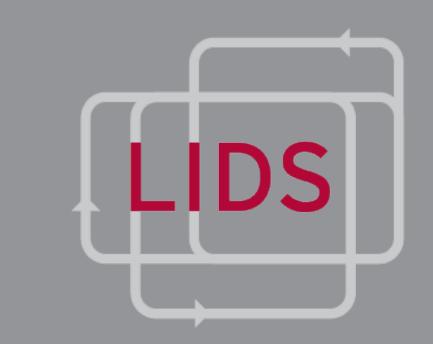


CPS Medium Collaborative Research Smart Power Systems of the Future: Foundations for Understanding Volatility and Improving Operational Reliability Pls: Munther Dahleh and Mardavij Roozbehani

Emulating Batteries with Flexible Electricity Loads

Daria Madjidian, Mardavij Roozbehani and Munther A. Dahleh Laboratory for Information and Decision Systems, MIT



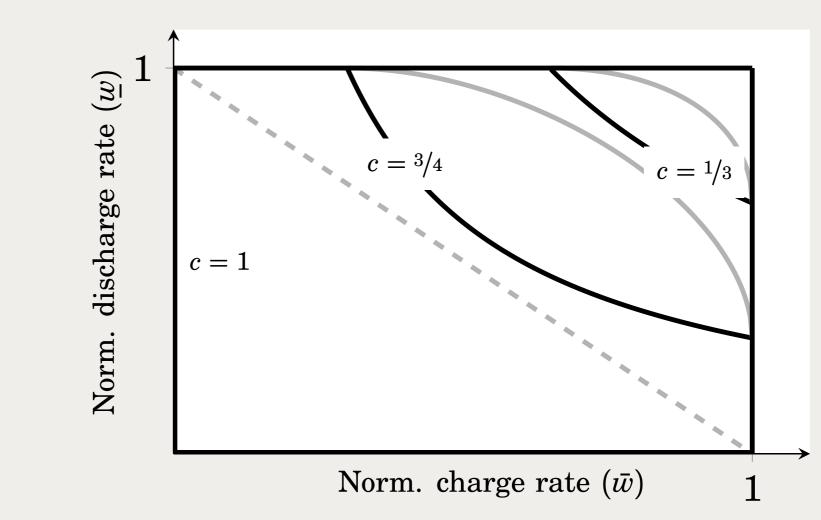
Introduction

Standard storage technologies, such as batteries and flywheels, are *reliable* and *controllable*, but too *expensive* for large scale deployment. Meanwhile, a substantial part of electricity consumption is flexible.

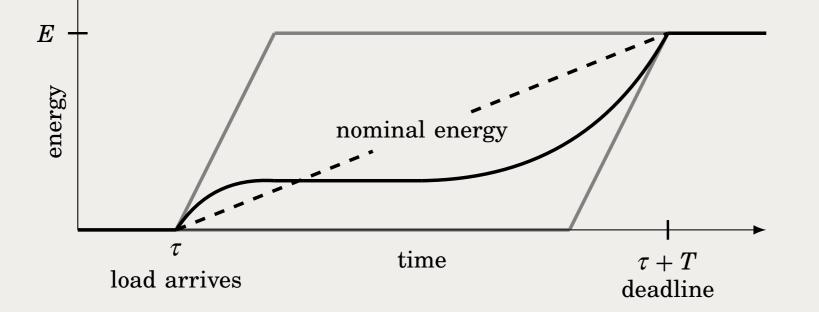
Can we coordinate flexible loads in order to *emulate* conventional energy storage?

Single deferrable load

Battery capacity trade-offs



General upper bounds (gray) on normalized charge/discharge rates that can be attained for different normalized energy storage capacities $c = C/C_{max}$. The black lines show the rates that can be attained with mixed-slack policies.



Gray lines delimit the set of feasible energy trajectories. Dashed line shows nominal energy consumption

- E Energy demand
- T Service period
- \overline{P} Maximum consumption rate ($0 \le p \le \overline{P}$)
- P_0 Nominal consumption rate ($P_0 = E/T$)

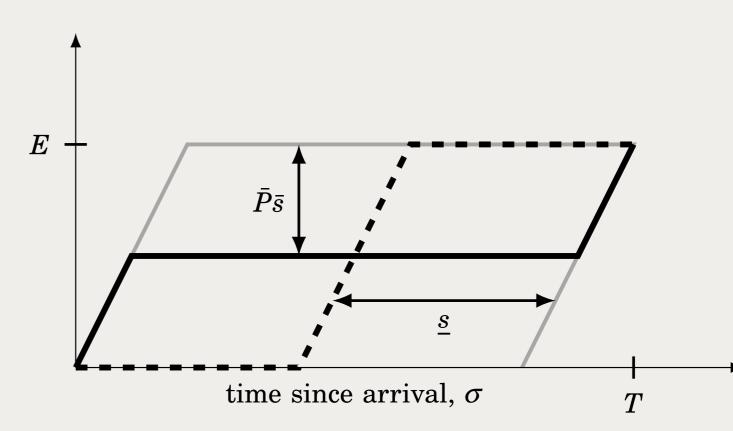
Flexibility: ability to deviate from nominal consumption.

Aggregate flexibility

- A_1 : loads are identical in terms of E, T and \overline{P} .
- \mathcal{A}_2 : one arrival at each point in time.
- $x_{\sigma}(t)$ Energy level of load that arrived σ sec ago
- $u_{\sigma}(t)$ Power consumption of load that arrived σ sec ago

Substantial trade-off between battery parameters.

Reason for trade-off



The solid/dashed energy allocation allows the loads to absorb/release the largest volume of energy possible at the highest attainable rate.

- \overline{s}_{σ} Time that load can maintain maximum consumption rate, \overline{P} .
- \underline{s}_{τ} Time that load can maintain minimum consumption rate, i.e. 0.

The initial energy allocations (states) that allow load to absorb/release energy at high rates are conflicting.

Mixed-slack policies

$$\frac{1}{T} \int_{0}^{T} u_{\sigma}(t) d\sigma = P_{0} + w(t) \qquad (\text{tracking}) \qquad (1)$$
$$\frac{\partial x_{\sigma}(t)}{\partial t} + \frac{\partial x_{\sigma}(t)}{\partial \sigma} = u_{\sigma}(t) \qquad (\text{dynamics}) \qquad (2)$$
$$(t) = 0, \quad x_{T}(t) = E, \quad 0 \le u_{\sigma}(t) \le \overline{P} \qquad (\text{load constarints}) \qquad (3)$$

The (average) aggregate flexibility under a causal policy $\mu : w \rightarrow u$ is

 $W(\mu) = \{ w : u = \mu(w) \text{ satisfies (1)-(3)} \}$

Battery emulation

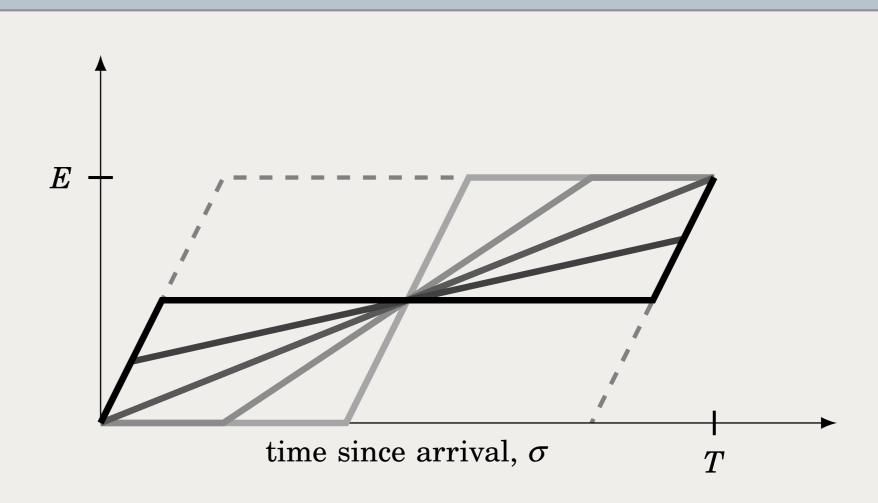
 $X_0($

An ideal battery with parameters $\phi = \begin{bmatrix} C & W & M \end{bmatrix}$ is characterized by

$$\mathbb{B}(\phi) = \left\{ w : -\frac{C}{2} \leq \int_{-\infty}^{t} w(\theta) d\theta \leq \frac{C}{2}, -\underline{W} \leq w(t) \leq \overline{W}, \ t \in \mathbb{R} \right\}$$

- C Energy storage capacity
- \overline{W} Maximum charge rate
- <u>W</u> Maximum discharge rate

Given load parameters E, T, and \overline{P} , what is the set of (ϕ, μ) such that



Equilibrium energy allocation, x(t), under μ^{η} . Lower η (darker) gives a better ability to absorb energy at a high rate.

Mixed slack:

$$s_{\sigma}^{\eta}(t) = \eta \underline{s}_{\sigma}(t) + (1 - \eta) \left(\frac{E}{\overline{P}} - \overline{s}_{\sigma}(t) \right), \qquad \eta \in [0, 1].$$

A mixed-slack policy, μ^{η} , prioritizes power allocation to small s_{σ}^{η} .

Theorem Suppose $\phi \leq \phi_{max}$, $\overline{P} < \infty$ and

W

$$\left(\frac{W}{W_{max}}\right)\left(\frac{W}{W_{max}}\right) + \frac{C}{C_{max}} \leq 1.$$
(4)
Then $\mathbb{B}(\phi) \subset \mathbb{W}(\mu^{\eta})$, where $\eta = \frac{1}{1+W/W}$. Moreover, if either $C = C_{max}$,
 $\overline{W} = \overline{W}_{max}$, or $W = W_{max}$, then (4) is also necessary for $\mathbb{B}(\phi) \subset \mathbb{W}(\mu)$.

 $\left(\underline{W} \right) = C$

$\mathbb{B}(\phi)\subset \mathbb{W}(\mu)$

Individual battery parameter bounds

et
$$\phi_{\max} = \begin{bmatrix} C_{\max} \ \overline{W} \ \underline{W} \end{bmatrix}$$
, where
 $C_{max} = (1 - \frac{P_0}{\overline{P}})E \qquad \overline{W}_{\max} = (\overline{P} - P_0) \qquad \underline{W}_{\max} = P_0.$

Theorem

- $-B(\phi_{\max})$ is the smallest battery that contains all realizable $\mathbb{B}(\phi)$.
- There is μ , such that $\mathbb{B}(\phi_{\max}) \subset \mathbb{W}(\mu)$, if and only if $\overline{P} = \infty$.

There is a trade-off between the batteries that can be emulated.

- Mixed-slack policies balance ability to absorb/release energy - μ^1 is the standard and well-known *least-laxity-first* policy.

Related work

H. Hao, B. Sanandaji, K. Poolla, and T. L. Vincent, "Aggregate flexibility of thermostatically controlled loads", *IEEE Trans. on Power Systems*, 2015

A. Nayyar, J. Taylor, A. Subramanian, K. K. Poolla, and P. Varaiya, "Aggregate flexibility of a collection of loads", In *Proc. of the 52nd IEEE CDC*, 2013

A. Subramanian, M. Garcia, A. Dominguez-Garcia, D. Callaway, K. Poolla, and P. Varaiya, "Real-time scheduling of deferrable electric loads", In *Proc. of ACC*, 2012

D. Materassi, S. Bolognani, M. Roozbehani, and M. A. Dahleh, "Deferrable loads in an energy market: Coordination under congestion constraints", in *Proc. of MED 14*