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from Sustainable IT to IT Sustainability
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Joint Capacity Planning and Operational
Management for Sustainable Data Centers and

Demand Response

Tan N. Le, Zhenhua Liu, Yuan Chen, Cullen Bash
ACM e-Energy 2016

Traditionally, data center capacity planning and operational management are
done separately.

Problem: Data Centers have a large potential to participate in DR but don’t.

Our Solution: Propose a framework that jointly optimizes both capacity planning
and operational management for data centers participating in demand response
programs.

50% cost savings: 75% emission reduction:
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Optimal Energy Procurement for Geo-distributed
Data Centers in Multi-timescale Electricity
Markets

Tan N. Le, Jie Liang, Zhenhua Liu,

Ramesh K. Sitaraman, Jayakrishnan Niar, Bong J. Choi
IFIP Performance 2017

Cloud providers can significantly benefit from multi-timescale electricity
markets by purchasing some of the needed electricity ahead of time at
cheaper rates.

Problem: Real world dynamics make energy procurement strategy a
challenge.

Our Solution: Propose two algorithms for geo-distributed data centers that
utilize multi-timescale markets to minimize the electricity procurement cost.
44% cost savings:

<10*

Workload sources

Geographically Coordinated Frequency Control

Joshua Comden, Tan N. Le, Yue Zhao, Bong Jun Choi, Zhenhua Liu
IEEE CDC 2017

Current distributed Frequency Control laws assume that the costs between
locations are independent.

Problem: Networks of Data Centers have additional costs that are
interdependent between locations.

Our Solution: Proposed set of distributed control laws that take into account

interdependent costs.

Proposed control laws lower cost
closer to the optimal:
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Incentivizing Reliable Demand Response with Customers’ Uncertainties and Capacity Planning

Solar + Wind outpaces DR

Demand Response (DR) is one of the approaches considered to help integrate
renewable energy into the grid.

California However, DR has not kept up with

I renewables.
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Customer uncertainties
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Goal: Increase reliable DR adoption
Approach: Incorporate Customer Uncertainties
Challenges: - LSE does not know each of the customer’s
uncertainties.
- Only fully mandatory DR has customers
take some responsibility.

DR and Capacity Planning
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Custonter Costs:
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Long-term Social Cost Problem

Distributed Algorithm

Minimize expected social cost with capacity constraints:
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DR Contract Design
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Theorem 2: The trajectory of prices converges to the optimal Linear Contract
prices for Long-term Social Cost.
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Linear contract:

Adding Flexible Commitment
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To avoid high customer cost periods:
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