
Four Levels of Autonomy

Network Structure of Waypoints Planning 

Challenges and Solutions (2)

Progressive Learning in Controlled Environment 

 Progressive learning:

 Start learning with very low UAV mobility (i.e. the maximum number of steps that the UAV 

can take) and gradually increase it as the learning processes

Comparison with Existing Methods

Challenges in Trajectory Generation & Control

Proposed Two-level Trajectory Optimization

Results of Trajectory Tracking

Trajecotry Generation: Problem FormulationsTrajectory Control: Problem Formulation
 Target UAV system: Quadrotor fixed-wing UAVs

 Input: Desired trajectory 𝐶_𝑑2 generated through a set of predefined waypoints 

 Environment state (s):

 Current UAV status (18 variables) (𝑷𝒐𝒔𝒆)

 [position (p), velocity (v), acceleration (a), attitude (R)]

 Desired UAV status (18 variables) from 𝐶_𝑑2 (𝑷𝒐𝒔𝒆)

 Desired [position (pd), velocity (vd), acceleration (ad), attitude (Rd)]

 Action (a): 

 One degree of translation motion

 Three degrees of rotation motion (roll, pitch, yaw)

 We can achieve significant reductions in model size with 
1%-2% accuracy degradation compared with the original 
network without compression
 Model size reduction: A combination of parameter reduction 

and weight quantization

Network Structure
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Challenges and Solutions (1)

 Challenges in solving the control problem
 Extremely large state and solution space
 Uncertainty in the environment
 Delayed reward/penalty
 Solutions: deep reinforcment learning (DRL)

 Challenges in sensing and detection
 Multiple sensors with quasi-synchronous reading
 Requires synchronization and data fusion capabilities

 Lack of training data
 Most existing CNN are trained using front view of objects

 Solutions: transfer learning and multi-modal data association
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 Diversified computing model for sensing, detection and control requires general 
purpose processor

 Low performance and energy efficiency
 Solutions: Unified computing model and custom designed embedded system 

based on FPGA, 
 Circulant weight matrix for lower computation and storage complexity
 FFT based operation for efficient hardware implementation

 Challenges in onboard computing
 Limited computing power
Most of the on-board flight controllers use 
ARM processors 
 Limited battery power
Typical drone battery ranges from 2000mAh 
to 5000mAh
 High complexity of DCNN
E.g. one forward pass of AlexNet requires 
~1.4GFOPS

Proposed Framework
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Enabling Multimodal Sensing, Real-time Onboard Detection and Adaptive 
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Higher-level(waypoints 
planning)

• A sequence of 
waypoints is 
selected that lead 
the UAV from its 
current position to 
the destination 

Lower-level 
(trajectory 

generation)
• An optimal 

trajectory is 
generated 
between each 
pair of 
adjacent 
waypoints 
analytically

 Discretized Environment

 𝑁×𝑁×𝑁 "grids"

 Find the set of waypoints wi, 0  i  N - 1 that minimizes 𝑭 =  ∑ 𝑓(𝑤 , 𝑤 ), 

(𝑓(𝑤𝑖, 𝑤𝑗)→ UAV control thrust cost to follow trajectory between waypoints 𝑤𝑖 and 

𝑤𝑗) subject to:

 𝑤0 is the starting location 𝑤N-1  is the destination

 𝑤i is not an obstacle, 0  i  N - 1

 The minimum energy trajectory between 𝑤 , 𝑤 , 0 ≤ 𝑖 ≤ 𝑁 − 2, does not 

overlap with obstacles

 Trajectory generation and control for safe and effective UAV operations requires:

 Obstacle avoidance

 Stability 

 Energy efficiency

 Multi-rotor unmanned aerial vehicles have high maneuverability in three-

dimensional motion

 Rigid body model imposes challenge in stability

 Need to consider long distance flight in a complex environment

 Complex relation between force, torques and UAV aerodynamic status

b: current position

v: current velocity a: current acceleration

 State:

 𝑁×N×𝑁 grids

 [b, v, a] of the UAV

 Action: 

 A UAV can choose any of the 

3×3×3 grids around its 

current location as waypoint

 Reward:

 Position reward + Normalized 

control thrust cost
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Learning episodes (1e3)

Goals:
1. The agent can get quick 

feedback by traveling short 
distance with limited mobility

2. The agent can gain 
knowledge about the position 
reward faster

For every 5,000 
learning episodes, 

the maximum number 
of steps 𝑊 is 

increased by 50%. 

 Controlled environment

 To start the learning with a free space and gradually increase the number of obstacles in the 

environment
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Learning episodes (1e3)

For every 5,000 
learning episodes, the 
number of grids that 

obstacles are 
occupied is increased 

by 5. 

Goals:
1. The agent can discover basic 

environment first
2. The agent can learn the 

interaction between the upper 
and lower layer optimizer faster

3. The agent can learn how to 
avoid obstacles more quickly 
with the knowledge of its 
capability
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 On average 16.67% less number of waypoints, 21.28% control thrust reduction

critic model actor model

V(St)

 Objective function: To find the policy 𝜋 that minimizes 
∑ (𝑷𝒐𝒔𝒆  − 𝑷𝒐𝒔𝒆 )

 Use actor model to predict At

 Update V(st+1) using received reward, calculate 𝜟 V(st+1)

 Back propagate and update the critic model; predict V(st) and V(st+1)

 Calculate the advantage function  𝜟 At using received reward, V(st) and V(st+1) 

 Back propagate 𝜟 At and update the actor model

Position Error Control Thrust

Limitations of Existing DNN Compression

 The non-structured weight pruning – arbitrary weight can be pruned
 Limited actual deployment
 Limited weight pruning rate in CONV layers (2.7X for AlexNet)
 Indices are required for sparse format – speed degradation in GPU/CPU 

Sparse
Matrix CSR

Format

Data

Indices

Partition Workload

ADMM Based Structured Pruning

 Incorporating “structures” in 
DNN weight pruning to facilitate 
hardware implementations

 Filter-wise, channel-wise, and 
shape-wide structured sparsity

Structured pruning, with no accuracy loss

Structured pruning, with 2% accuracy loss


