
2019 NSF Cyber-Physical Systems Principal Investigators' Meeting
November 21-22, 2019  |  Crystal City, Virginia

CAREER: Enabling “White-Box” Autonomy in Medical Cyber-Physical Systems
Jin-Oh Hahn (PI, University of Maryland), Ali Tivay (PhD Student, University of Maryland)

Christopher G. Scully (Co-I, U.S. Food and Drug Administration) 

Interpretable Modeling of Cardiovascular Responses to Fluid Perturbation

Award ID#: CNS-1748762

Compressed Patient-Specific Calibration of Physiological Models
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1. Macroscopic View of the Circulatory System
- The circulatory nature of the cardio-vascular system is modeled as a loop.
- Through this loop, the heart pumps blood with rate Q (cardiac output).
- The resistance R (systemic vascular resistance) resists the flow of blood. 
- Compartment fluid volumes determine mean arterial and venous pressures.
- Hemorrhage causes volume loss, while resuscitation causes volume expansion.

2. Fluid Shift (Jf) Controller
- Perturbation in blood volume is counteracted by an exchange of fluid with the interstitium.
- The net rate of fluid shift is modeled as a control input to regulate total blood volume.

3. Systemic Vascular Resistance (R) Controller
- The body can change the resistance R through vasoconstriction and vasodilation.
- The resistance R is modeled as a control input that has the goal of regulating arterial pressure. 
- This control input is also disturbed by changes in the fraction of red blood cells in the blood.

4. Cardiac Output (Q) Controller
- The cardiac output Q is modeled as a controlled variable through heart rate and contractility.
- This controller is disturbed by changes in cardiac preload and loss of red blood cells.

1. Population-Average Model Calibration
- Diverse data from a population of subjects are used to calibrate the physiological model.
- The resulting model represents typical behavior in the population. 

2. Compressed Patient-Specific Model Calibration
- Local parameter-output covariances (C) are computed around the population-average model.
- A singular value decomposition of C gives the directions of maximum parameter-output covariance.
- The model can be calibrated to each subject in a compressed way as follows:

The results suggest that:
- The model can be calibrated in a compressed way, to match the data from different patients. 
- The variability across different subjects can be represented in the compressed latent space φ. 
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A. Variational Approach to Virtual Patient Generation

1. Family of Distributions Over Latent Parameters φ
- A distribution from the mean-field family is selected in the compressed latent space.
- Each dimension pj(φj) is characterized by a normal distribution.
- Parameters for pj(φj) are estimated from compressed calibration results in each latent dimension.

2. Sample from P(φ) to Generate Virtual Patients
- Each sample φ(i) can be converted to model parameter θ(i) to simulate the virtual patient.

The results suggest that:
- Estimating P(φ) without compression results in generation of many un-realistic virtual patients.
- Estimating P(φ) with compression omits the un-realistic virtual patients.
- With compression, the range of observed variations in virtual patient behavior are more realistic.

B. Markov-Chain Monte-Carlo (MCMC) Approach to Virtual Patient Generation

1. The Virtual Patient Generation Problem
- To successfully use MCMC methods for virtual patient generation, two important elements must be designed:
- A likelihood function, that represents how likely it is for a proposed virtual patient to behave like a real subject from the dataset.
- A prior distribution, that encodes prior knowledge about “reasonable” parameter samples.

2. The Likelihood Function
- S is the set of real subjects in data, and Si (i=1,…,m) random subsets of S with size K (m is large).
- We accept a proposed virtual patient as likely if its behavior resembles any K patients in the dataset.

3. The Prior Distribution
- The regularizer used in compressed model calibration can be thought of as a Laplace prior.
- Thus, a Laplace prior (in latent space) is used, which is centered at the population average model.

The results suggest that:
- MCMC generates virtual patients that behave realistically and cover the range of observed behavior.
- The MCMC-sampled parameter values lie within their reasonable physiological ranges. 
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Observed Range of Behavior in Generated Patients (red) VS Identified Patients (blue)

Histograms of Marginal Distributions for MCMC-Sampled Model Parameters
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