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The integration of Information Tech-
nology (IT) systems (computations and
communications–the cyber world) with sensor
and actuation data (the physical world), can
introduce new, and fundamentally different
approaches to security research in the growing
field of Cyber-Physical Systems (CPS), when
compared to other purely-cyber systems. In
our earlier work [3, 1, 2, 5], we have shown
that because of the automation and real-time
requirements of many control actions, tradi-
tional security mechanisms are not enough
for protecting CPS, and we require resilient
control and estimation algorithms for true CPS
defense-in-depth.

This has led to a lot of interest in exploring
anomaly detection schemes for cyber-physical
systems by using data collected from sensors. In
the general setting, data obtained from normal
behavior of the system is used to create a model
and then any outlier is considered an anomaly
and a potential failure or attack.

This line of research is actually very similar to
the safety mechanisms that have been deployed
in control systems for decades. In particular,
the protection of control systems has tradition-
ally been enforced by several safety mechanisms,
which include bad data detection, protective re-
lays, safety shutdowns, interlock systems, etc.

These reliability algorithms R receive inputs
from various sensors y ∈ Rm and take a pro-
tective control action if an internal threshold τ
is met. Most cases can be modeled by assum-
ing that the protective control action is enabled
whenever R(y) > τ .

Most of these algorithms were designed un-
der the assumption of random faults, or typi-
cally well-known failure conditions (e.g., a frozen

sensor). Under normal conditions we can model
that measurement y comes from null Hypothe-
sis H0: a model of the system working prop-
erly, and under a random failure we can assume
that y is a random variable following a distribu-
tion under the alternate hypothesis H1. Under
these assumptions we can measure the surviv-
ability of the system to these random failures
by Pr[R(y) > τ |H1]; in other words, if we have
a high probability that R is greater than the
threshold τ , then we know the failure will be de-
tected with high probability and corrective ac-
tions will be taken.

In practical terms, typical anomaly detection
schemes are evaluated by the method described
in Figure 1.
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Figure 1: Vanilla testing is good to detect fail-
ures, but it is not a good way to evaluate systems
when they face attacks.

As illustrated recently [4, 6], these traditional
reliability mechanisms do not work against so-
phisticated attackers, because the attack will not
be random, but rather a sophisticated control or
sensor signal that will prevent R(y) from ever
reaching the threshold τ .
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Figure 2: Difference between failures and at-
tacks: sophisticated attackers will avoid crossing
the anomaly detection threshold τ .

Our main argument is that instead of mea-
suring the reliability of a control system under
heuristically-created attacks (which will result in
the blue curve of Figure 2) we need to find what
is the worst-possible undetected attack (an
undetected attack will generate something sim-
ilar to the black curve in Figure 2). This has
been the line of research we have pursued in re-
cent work [2, 5].

In particular, instead of evaluating algorithms
based on the trade-off between false positives
(probability of false alarm) and true positives
(probability of detection), our new proposed
trade-off is between the false positives (probabil-
ity of false alarm) and the cost of undetected
attacks, as illustrated in Figure 3.

Figure 4 shows a simulation of attacks against
a chemical reactor [2]; in particular, it shows
how the statistic of the anomaly detector under
under attack (red) can be controlled by the at-
tacker to prevent being detected for a long time
(red statistic can be maintained below the blue
threshold).

With this new approach, we can build trade-

N = {x1, . . . , xm}

Negative Examples

f(x)
Count 

Number of 
False Positives

Positive Examples

Add the cost of 
these undetected 

attacks

x

Binary Classifier

Binary Classifier

�xi � N find the
worst possible undetected
attack yi = h(xi)

y
f(y)

Figure 3: Our proposed attack evaluation met-
rics consider an attacker that creates a function
h(x) to find the worst-possible undetected at-
tack. This is different from the “Vanilla testing”
shown in Figure 1.
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Figure 4: The attack statistics will remain below
the threshold.
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Figure 5: Trade-off curve between usability and
security.
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off curves different from Receiver Operator Char-
acteristic (ROC) curves, and focus on new at-
tack curves, where the y-axis is the cost of an
attack. For example, in recent work [5] we eval-
uated the performance of electricity-theft detec-
tors subject to attacks that will steal the most
electricity without being detected (See Figure 5).

Figure 6: We can change the threshold of the
anomaly detector in such a way that stealthy at-
tacks are not detected by the anomaly detector.

We can also identify the anomaly detection
classifier threshold in order to guarantee that
stealth attacks will not cause catastrophic dam-
ages (Figure 6). By implementing a threshold
below 1.8 we were able prevent undetected at-
tacks from elevating the pressure of a chemical
reactor beyond safety levels [2] (see Figure 7).
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