
Event-Triggered Interactive Gradient Descent for Real-Time
Multi-Objective Optimization

Pio Ong and Jorge Cortés

Abstract— This paper proposes an event-triggered interactive
gradient descent method for solving multi-objective optimiza-
tion problems. We consider scenarios where a human decision
maker works with a robot in a supervisory manner in order to
find the best Pareto solution to an optimization problem. The
human has a time-invariant function that represents the value
she gives to the different outcomes. However, this function is
implicit, meaning that the human does not know it in closed
form, but can respond to queries about it. We provide event-
triggered designs that allow the robot to efficiently query the
human about her preferences at discrete instants of time. For
both the cases when the human can answer instantaneously
and with some bounded delay, we establish the existence of
a minimum interexecution time and the global asymptotic
convergence of the resulting executions to the solution of the
multi-objective optimization problem.

I. INTRODUCTION

Increasing numbers of robots and machines are constantly
being developed to become extensions to human capabilities,
to accomplish tasks that humans cannot and to help with
menial tasks. With the possibilities of the human having
to handle multiple robots, autonomy is receiving a lot of
attention lately. In many cases, the final goal of auton-
omy is an absolute one where human involvement with
its operation is no longer necessary. However, in some
cases, this may not be possible either because of ethical
issues or technological ones. For example, surgical robots
are not yet advanced enough nor are trusted to operate on
humans without supervision. As a result, much research has
been devoted to improving the level of autonomy through
studying human-robot interactions where humans interact
with autonomous agents only in a supervisory manner rather
than in a constantly attentive one.

We are particularly interested in robots or groups of
robots that are able to accomplish more than one objective
for humans. For these robots, it is often possible for one
objective to compromise another. Then, the robots face the
multi-objective optimization task of having to decide which
objective to prioritize in optimizing its action. For instance,
a search-and-rescue group of robots will have to address
the question of whether to spend resources searching for
more victims or to provide help to the located ones. With
current technologies, robots do not yet have the capability to
come up with a decision on their own. Most autonomous
agents are equipped with predefined metrics and criteria

Pio Ong and Jorge Cortés are with Department of Mechanical and
Aerospace Engineering, University of California, San Diego, CA 92093,
USA, {piong,cortes}@eng.ucsd.edu

set by humans. The disadvantage with using predefined
criteria is that it is less adaptive to the situation presented
and the resulting action may not be the most preferred.
On the other hand, interactive multi-objective optimization
methods will be more robust in finding a preferred result.
However, if interactive method were used for multi-objective
optimization, the level of full autonomy will be lost because
it would require a decision maker (DM) to provide preference
information. To the best of our knowledge, there is no
interactive multi-objective optimization method that address
the level of human involvement with the optimization and
consider time to be a critical factor. Motivated by these
observations, our main goal is to design an interactive
multi-objective optimization method using an event-triggered
strategy that prescribes when a DM should interact with an
autonomous agent so that the operation converge to what she
truly desires.

Literature review. We rely on two bodies of work: multi-
objective optimization and event-triggered control. Regard-
ing the first, we are specifically interested in interactive tech-
niques [1], which can be grouped into three main categories:
the trade-off approach, the reference points approach and the
classification method. Algorithmic solutions often combine
elements of several of these categories. In the scenarios
considered here, the act of optimization itself is tied in with
the physical state of the robot and hence global information
is not available a priori. As a result, the reference points
method and the classification approaches are not directly
applicable. In the trade-off approach, most works focus on
finding information related to the gradient of an implicit
preference function at each iteration. Examples include the
GRIST method developed in [2], which works on finding
a subjective gradient to project onto the Pareto front as a
search direction, and the SPOT method developed in [3],
which suggests finding the gradient of proxy functions.
However, as mentioned earlier, overlapping between different
approaches is common, and most methods require some
global information such as the knowledge of the optimizer
of each objective function or the knowledge of the Pareto
front. In general, few works in the multi-objective literature
examine optimal levels of human involvement or design
methods where human take a supervisory role in executing
the optimization. The closest work along this line is [4],
where the DM waits to choose options generated by a
machine, and the convergence to the final solutions can be
expected in a number of iterations. However, the method can
only be applied to linear programming. In the later version



of the work in [5] covering convex cases, the convergence
guarantees are lost. The other body of work on which we rely
on is the literature on opportunistic and event-triggered con-
trol, see e.g. [6]–[9] and references therein. The basic idea is
to trade computation and decision-making at the agent level
for other processes, be it communication, sensing, motion,
or actuation, with the goal of more efficiently employ the
available resources. These ideas have also found application
in solving distributed optimization problems in an efficient
ways in the context of networked systems, cf. [10], [11].

Statement of Contributions. This paper formulates a
human-robot interactive multi-objective optimization prob-
lem. We consider a scenario where a human works alongside
a robot to find the optimizer by responding to its queries
about the quality of the outcomes. The human cannot express
in closed form its value function, but can provide its gradient
(this is a convenient abstraction of the ability of the human
to express preferences about an outcome being better than
another). we consider two cases of increasing complexity:
the case when the human can respond instantaneously and
the case when there is a maximum delay in providing this
information. The contributions of the paper are threefold.
The first contribution is the design of event-triggered laws
that allow the robot to query the human efficiently given
the overarching multi-objective optimization problem. Our
design does not require the DM to be constantly attentive
to the multi-objective optimization problem and is based
on examining the evolution of the cost function along the
various objectives. Our second contribution is the estab-
lishment of a uniform lower bound on the interexecution
time between any consecutive updates, thus ruling out the
possibility of an infinite number of updates in a finite amount
of time (i.e., Zeno behavior). The explicit dependence of
this bound on the various problem parameters informs the
applicability of our design in specific real scenarios. Finally,
our third contribution is the analytic characterization of the
global asymptotic convergence of the human-robot dynamics
to the solution of the multi-objective optimization problem.
Under strong convexity, we also show that convergence is
exponential. We establish the lack of Zeno behavior and
the global convergence for both the cases when the human
responds instantaneously and with some maximum delay.
Simulations illustrate our results. For reasons of space, all
proofs are omitted and will appear elsewhere.

Notation. We denote by N and R the set of natural and
real numbers, respectively. For n ∈ N, we use the notation
[n] to denote the set {1, . . . , n}. Given x ∈ Rn, ‖x‖ denotes
its Euclidean norm. We denote by In ∈ Rn×n the identity
matrix and by ‖A‖ the spectral norm of A ∈ Rm×n. For a
vector-valued function f : Rn → Rm, we let fi : Rn → R
denote its ith-component. The function f is locally Lipschitz
if, for every compact set S0 ⊂ Rn, there exists a positive
constant L, termed Lipschitz constant, such that ‖f(x) −
f(y)‖ ≤ L‖x − y‖, for all x, y ∈ S0. For f : Rn → Rm
continuously differentiable, we denote by Jf : Rn → Rm×n
its Jacobian matrix. For a twice continuously differentiable,

scalar-valued function g : Rn → R, we let ∇g : Rn → Rn
and ∇2g : Rn → Rn×n denote its gradient and Hessian
functions. The function g is convex if ∇2g � 0, strictly
convex if ∇2g � 0, and strongly convex if there exists γ > 0
such that ∇2g � γIn. Lastly, we denote the composition of
functions f : Rn → Rm and g : Rm → R by g◦f : Rn → R,
i.e., (g ◦ f)(x) = g(f(x)) for x ∈ Rn.

II. PROBLEM STATEMENT

This section describes the problem we set out to solve.
We consider a human-robot system that seeks to solve a
multi-objective optimization problem formulated as follows.
For a vector-valued, continuously differentiable function, f :
Rn → Rm, consider the unconstrained optimization

minimize
x∈Rn

f(x). (1)

A point x∗ ∈ Rn is a solution of (1) if there does not exist
x ∈ Rn with fi(x) ≤ fi(x

∗) for all i ∈ [m] with at least
one inequality being strict. These solutions, called Pareto
points, capture the fact that improving the minimization of
one component of f cannot be done without increasing the
value of another. In principle, there exist multiple Pareto
points corresponding to the different trade-offs in optimizing
the various components of f .

In our model here, a human operator assists the robot in
selecting the most appropriate Pareto point. As is commonly
done in tradeoff approaches to multi-objective optimization
problems, see e.g., [1], [12], [13], we assume that the human
has a scalar-valued, continuously differentiable function v :
Rm → R that ranks the different outcomes, i.e., v(f(x))
represents the ‘value’ that the human gives to the outcome
f(x) achieved at x ∈ Rn. This function can then be used
to establish a preference among all Pareto points. However,
the function v is implicit, meaning that the decision maker
(DM) does not know it in closed form, but can respond
to queries about it. Specifically, we model the human as
being able to express preferences about an outcome being
better than another one, and we abstract this with gradient
information of v: if the robot queries the human about
its current value f(x), the human can provide the value
∇v(f(x)). In our technical treatment below, we consider two
cases of increasing complexity: the case when the human
can respond instantaneously and the case when there is a
maximum delay D > 0 in providing this information.

With the above model in place, the optimization problem
consists of maximizing v ◦ f . For convenience, we instead
formulate this as a minimization problem by considering the
cost function c : Rm → R, with c = −v. The problem to
solve is then

minimize
x∈Rn

(c ◦ f)(x). (2)

We assume the objective function f and the cost function c
are strictly convex and bounded below, and that their compo-
sition is radially unbounded. Under these assumptions, there



is a unique minimizer x∗ to the optimization problem (2).
A natural way to find the solution is then to implement the
gradient descent algorithm

ẋ = −∇(c ◦ f)(x)T = −(∇c(f(x))Jf (x))T ,

which is globally convergent to the minimizer. The robot
knows the objective function f and can therefore compute
its Jacobian, Jf . However, ∇c ◦ f can only be provided
by the DM because only she knows the nature of the cost
function. Therefore, the implementation of the dynamics
requires the human to continuously relay preference infor-
mation to the robot, which is not feasible. The discretization
of the dynamics with a constant stepsize would make its
implementation plausible, albeit it will still require periodic
human involvement. Given that the stepsize needs to be
sufficiently small to guarantee convergence for arbitrary
initial conditions, this may still impose an unnecessary load
on the human. To tackle this problem, the basic premise of
this paper is to endow the robot with criteria that allow it
to determine, in an opportunistic fashion, when to query the
human to avoid the unnecessary involvement of the DM.

III. DELAY-FREE GRADIENT UPDATE TRIGGER DESIGN

In this section we synthesize a triggering condition for the
robot that allows it to efficiently query the human about her
preferences regarding the optimization of the vector-valued
objective function. We assume that the human can respond
to queries immediately, i.e., there is no delay in obtaining the
value of ∇c ◦ f . Our starting point is the following gradient
dynamics discretizing the human component but maintaining
the continuous evolution of the robot component, i.e.,

ẋ = −(∇c(f(xk))Jf (x))T , tk ≤ t ≤ tk+1, (3)

where xk is a shorthand notation to represent x(tk). Under
this dynamics, the human operator only needs to evaluate the
robot performance at the discrete time instants {tk}∞k=0. Our
goal is then to design a trigger that the robot can evaluate on
its own and use to determine this sequence efficiently while
still guaranteeing the asymptotic convergence to the desired
solution and the feasibility of the resulting implementation.

Our trigger design is based on analyzing the evolution
of the cost function evaluated on the objectives towards its
optimal value. We consider then

V (x) = c(f(x))− p∗, (4)

where p∗ = c(f(x∗)) denotes the optimal value. Note that,
because of our strict convexity assumption, V is positive def-
inite. The next result identifies a gradient update triggering
condition that ensures that V is monotonically decreasing at
any point other than the optimizer.

Proposition 3.1: (Gradient Update Triggering Condi-
tion): Consider the event-triggered human-robot system (3).
For each k ∈ {0}∪N and t ≥ tk, let ∆xk = x(t)−xk denote
the error between the state at time t and the state when the
gradient was last updated at time tk. Given the initial state

x0, let Lc be the Lipschitz constant of ∇c◦f on the compact
set x ∈ S0 = {x | V (x) ≤ V (x0)}. For σ ∈ (0, 1), let tk+1

be determined according to

tk+1 = min
{
t ≥ tk | ‖∆xk‖ = σ

‖∇c(f(xk))Jf (x)‖
Lc‖Jf (x)‖

}
.

(5)
Then, for all t ∈ (tk, tk+1), we have

d

dt
V (x(t)) ≤ − 1− σ

(1 + σ)2
‖∇c(f(x(t)))Jf (x(t))‖2. (6)

Although Proposition 3.1 shows that the function V is
strictly monotonically decreasing, one cannot yet conclude
from it that the optimizer is globally asymptotically stable.
The reason for this is that we have not discarded Zeno
behavior, i.e., an infinite number of trigger updates in a finite
amount of time. Our next result rules out such possibility
by establishing a positive lower bound on the interexecution
time.

Proposition 3.2: (Lower Bound on Interexecution Time):
For the event-triggered human-robot system (3) with updates
determined according to (5) and initial condition x0, the
interexecution time is lower bounded as

tk+1 − tk ≥ τσ =
1

β
ln

(
1 +

βσ

LcJmax

)
(7)

for all k ∈ {0} ∪ N, where Jmax = maxx∈S0{‖Jf (x)‖},
αmax = maxx∈S0,i∈[m]{‖∇2fi‖}, wmax = maxx∈S0{‖∇c ◦
f(x)‖}, and β = mαmaxwmax > 0.

The lower bound on the interexecution time in Proposi-
tion 3.2 rules out the possibility of Zeno behavior. From (6)
and (7), one can see that larger values of σ ∈ (0, 1)
correspond to longer interexecution times (and hence, more
sparing involvement of the decision maker) at the cost of
smaller decrease of the Lyapunov function V (and hence
affect the speed of convergence). We would like to note
here that the statement we just made is based entirely on its
given bounds. Because different values of σ produce different
trajectories, it is difficult to give a definitive comparison
and prediction on their convergence quality. In any case,
combining Propositions 3.1 and 3.2, we deduce asymptotic
convergence towards the desired optimizer.

Corollary 3.3: (Global Asymptotic Stability): For the
event-triggered human-robot system (3) with updates deter-
mined according to (5), the optimizer x∗ of (2) is globally
asymptotically stable. Moreover, if c ◦ f is strongly convex
with constant γ > 0, then

V (x(t)) ≤ V (x0)e
− 2γ(1−σ)

(1+σ)2
t
, (8)

for all t ≥ 0.

The implication of Proposition 3.1 is that the design choice
of σ affects the magnitude of time derivative of V and
therefore, the speed of convergence to the optimizer. At the
same time, since we could use the interevent time to schedule
the DM’s presence, the choice of σ may affect the DM’s



workload. σ must be carefully picked while considering these
two aspects.

IV. GRADIENT UPDATE TRIGGER DESIGN WHEN
SUBJECTED TO UPDATE DELAY

In this section, we build on the developments above
to deal with the case when the human does not respond
instantaneously to queries from the robot, and instead takes
some time in providing this information.

We begin our exposition by formally describing the form
that the dynamics takes in this scenario. For each k ∈
{0}∪N, when the robot asks the human at time tk+1 for the
evaluation of the gradient ∇c at f(xk+1), it takes the human
some time, Dk+1 ≥ 0 to relay the information ∇c◦f(xk+1).
This means that, up until tk+1 + Dk+1, the robot still uses
the information provided in the previous communication with
the human, i.e., ∇c ◦ f(xk). The dynamics with delay are
then given by

ẋ = −(∇c(f(xk))Jf (x))T , tk+Dk ≤ t ≤ tk+1+Dk+1 (9)

The human delays are not necessarily the same across
different time instants, but we assume them to be uniformly
upper bounded by a known constant D > 0, representing
the maximum time it takes the DM to relay her gradient
information.

Given the model above, it is clear that the robot should
not wait until it is absolutely necessary to have the new
gradient information available to request it from the human
(as it did in the delay-free case), unless it is willing to stop
its motion until the human replies back. Instead, the robot
should take into account the human delay in responding, and
ask in advance. Our way of expressing this mathematically
is to introduce a new design parameter, σ′ to be used in a
trigger such that, when enforced for the above dynamics (9),
will achieve the same convergence condition obtained in the
trigger design for the non-delay case.

Proposition 4.1 (Gradient Update Trigger): Let D∗ be
the unique solution to(

1 + σ

1− σ

)2

=
eβ(τσ−D

∗) − 1

eβD∗ − 1
.

Consider the event-triggered human-robot system (9) with
maximum delay D satisfying D < D∗. For σ ∈ (0, 1), let
σ′ ∈ (0, 1) be such that

LcJmax

β

(
1 + σ

1− σ

)2

(eβD−1) < σ′ ≤ LcJmax

β
(eβ(τσ−D)−1),

(10)
and define tk+1 according to

tk+1 = min
{
t ≥ tk | ‖∆xk‖ = σ′

‖∇c(f(xk))Jf (x)‖
LcJmax

}
.

(11)
Then, ‖∆xk‖ < σ

(
‖∇(c(f(xk)))Jf (x)‖

Lc‖Jf (x)‖

)
when the new gra-

dient information can be implemented, t ∈ (tk+1, tk+1 +

D). In addition, tk+1 defined above will occur after the
latest possible time of the last implementation of gradient
information, i.e., tk+1 > tk + D. As a consequence, the
bound (6) on the evolution of the Lyapunov function holds
for all time, t ∈ (tk +Dk, tk+1 +Dk+1).

Similarly to the case without delay, we need to prove this
new update trigger given by (11) will not exhibit a Zeno
behavior in order to show convergence. We shall once again
prove lack of a Zeno behavior by providing a lower bound
to the interexecution time.

Proposition 4.2 (Interexecution Time with Update Delay):
For the choice of σ′ chosen to satisfy Proposition 4.1 with
the gradient implementation delay of D, the interexecution
time lower bound is given by.

tk+1 − tk ≥ τσ′ =
1

β
ln

 1 + β σ′

LcJmax

1 +
(

1+σ
1−σ

)2
(eβD − 1)

+D

(12)

Having established the absence of Zeno behavior and the
fact that the time derivative of the Lyapunov function is the
same as the delay-free case, a similar convergence result as
Corollary 3.3 follows. The human model with delay improves
the practicality of our event-triggered gradient design in
realistic scenarios and does not require the robot to have
to stop its operation to wait for human to relay information.

V. SIMULATION EXAMPLE

Consider a simple robot coverage problem where a robot is
required to find an optimal location to observe two different
objects at the same time. The objects are located at p1 =
[0.25; 0.25] and p2 = [0.21; 0.35]. Suppose the robot will
observe better when it is closer to the objects, the objective
functions can be the square of the distances to each object’s
location.

f1(x) = ‖x− p1‖2, f2(x) = ‖x− p2‖2

In any case, the robot does not know which object is more
important to observe and would require a decision maker for
assistance. Suppose the DM prefers the robot to be closer
to p1 while still remain in some distance to p2, and has an
implicit cost function of

c(f(x)) = 0.8f1(x)e0.8f1(x) + 0.2f2(x)e0.2f2(x)

Although, she cannot state this function explicitly, if given
the distance to each object (the value of the objective
functions), she can tell how she would like to decrease one
while increase another. This information can be related to
the gradient of the cost function with respect to the each
objective. We assume there is a method to manipulate the
information the DM can give into a perfect information of
the human-related gradient, which is given by

w(xk)T =

[
0.82f1(xk)e0.8f1(xk) + 0.8e0.8f1(xk)

0.22f2(xk)e0.2f2(xk) + 0.2e0.2f2(xk)

]



The robot can operate by following the trajectory of ẋ =
−(w(xk)Jf (x))T where

Jf (x) =

[
2(x− p1)T

2(x− p2)T

]
Now, suppose that the robot begins at x0 = [0.9; 0.6], then

we know that it is limited to be within the box [0.21, 0.9]×
[0.25, 0.6], and Lc = 1.1571 and Jmax = 2.0765. We use the
exact values for the purpose of this simulation, but in reality,
one would have to estimate such values, which can be from
maximum value achieved in known operating region. Let us
assume the parameter σ = 0.3 was picked to satisfy some
convergence rate criteria. Then, from Proposition 3.2, we can
calculate the interexecution time of a non-delay dynamics to
be τσ = 0.0892 units. From this value, we can find from
Proposition 4.1 that the gradient implementation delay, D,
must be less than D∗ = 0.0227 units. We assume that the
DM will take at most D = 0.0225 units to implement,
and that her performance varies between [0.5D,D]. Using
criteria (10), we can pick any σ′ such that

0.2023 < σ′ ≤ 0.2054

We picked σ′ = 0.2053. The resulting trajectory is plotted
in Figure 1. Figure 2 shows that while enforcing update
trigger rules, the human’s implicit cost function decreases
over time. The mostly linear relationship implies that the
implicit cost decreases at an exponential rate. Towards the
end of the plot, it may seem that the convergence gets faster
as it drops significantly; however, this is a numerical error
introduced when last entry of the simulation is taken to be
the optimal value. Also, it should be noted here that the
function in the figure is not to be compared to the function
in the inequality (8) because that was a very conservative
result. Next, Figure 3 shows the interexecution time between
each requests for humans to update the gradient. This is also
plotted in comparison to the lower bound to illustrate that
each interevent time lies above the bound.

Finally, we solve the problem with different values of σ.
Figure 4 shows the number of human iterations required to
reach the one percent of the original cost, for different values
of σ. As predicted by the bounds, a bigger σ results in a
lower number of triggers. On the contrary, Figure 5 shows
an unexpected result. The plot shows the convergence time
to one percent of the original cost. Despite the fact that,
according to (8), higher σ has a bound that corresponds
to slower convergence, in this simulation, higher σ results
in faster convergence. This fact points out to the difference
between comparing the system execution from the same state
and different values of σ for the next triggered time, and
comparing the whole trajectories that arise from different
values of σ.

VI. CONCLUSIONS

In this paper, we have found an update trigger to ensure
convergence towards the optimal cost in the human’s implicit

0 0.2 0.4 0.6 0.8 1

x
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x 2

Trajectory

Fig. 1. The robot trajectory with dotted points being where the DM is
requested to update the gradient and asterisk points being the two observed
objects.

0 0.5 1 1.5 2 2.5 3

time (units)

0

0.2

0.4

0.6

0.8

C
os

t v
al

ue

Implicit cost function value

0 0.5 1 1.5 2 2.5 3

time (units)

10-20

10-10

100

c(
f(

x)
)-

p
*

Implicit cost function convergence in logarithmic scale

Fig. 2. The plots show the exponential-rate convergence in the human’s
implicit cost. The markers shows when human update is requested. Also
we also show (below) the convergence to the optimal value (taken from
last entry in the simulation) in the logarithmic scale. We can see the linear
relationship in general between time and the cost.

cost function that weighs each objective in the optimization.
We have demonstrated the use of this finding with an
example of robot coverage problem. In future works, we plan
on refining the model of our human decision maker. First, we
would like to introduce errors into the information relayed by
the DM, and examine how this may affect the update trigger
and the convergence. Next, we may work on introducing time
dependency on the cost function such that the DM may be
uncertain in the early stage of optimization but becomes more
experienced as she interacts with the information relayed
by the robot. Lastly, we are also interested in laying out
a guideline of how to choose properly the parameter σ, with
a consideration of convergence speed and a desire level of



0 5 10 15 20 25 30 35 40

Human update iteration

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08
In

te
re

xe
cu

tio
n 

tim
e 

(u
ni

ts
)

Interexecution time and its lower bound

Fig. 3. The interevent time between each request for human to update the
gradient value. The lower bound is also plotted in dashed lines.

0.3 0.4 0.5 0.6 0.7 0.8
4

5

6

7

8

9

10

11

N
u
m

b
e
r 

o
f 
tr

ig
g
e
rs

Number of triggers to 1% convergence for each 

Fig. 4. The number of iterations to reach one percent convergence of the
initial Lyapunov’s function value for different σ.

DM’s workload.

ACKNOWLEDGMENTS

This work was partially supported by NSF award CNS-
1329619.

REFERENCES

[1] K. Miettinen, F. Ruiz, and A. P. Wierzbicki, “Introduction to mul-
tiobjective optimization: Interactive approaches,” in Multiobjective
Optimization: Interactive and Evolutionary Approaches (J. Branke,
K. Deb, K. Miettinen, and R. Słowiński, eds.), pp. 27–57, Berlin,
Heidelberg: Springer, 2008.

[2] J. B. Yang, “Gradient projection and local region search for multi-
objective optimisation,” European Journal of Operational Research,
vol. 112, no. 2, pp. 432–459, 1999.

0.3 0.4 0.5 0.6 0.7 0.8
0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

C
o
n
v
e
rg

e
n
c
e
 t
im

e
 (

u
n
it
s
)

Time to 1% convergence for each 

Fig. 5. The amount of time to reach 1 percent convergence of the initial
Lyapunov’s function value for different σ.

[3] M. Sakawa, “Interactive multiobjective decision making by the se-
quential proxy optimization technique: Spot,” European Journal of
Operational Research, vol. 9, no. 4, pp. 386–396, 1982.

[4] S. Zionts and J. Wallenius, “An interactive programming method for
solving the multiple criteria problem,” Management Science, vol. 22,
no. 6, pp. 652–663, 1976.

[5] I. Kaliszewski and S. Zionts, “A generalization of the Zionts-Wallenius
multiple criteria decision making algorithm,” Control and Cybernetics,
vol. Vol. 33, no 3, pp. 477–500, 2004.

[6] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, “An intro-
duction to event-triggered and self-triggered control,” in IEEE Conf.
on Decision and Control, (Maui, HI), pp. 3270–3285, 2012.

[7] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Transactions on Automatic Control, vol. 52, no. 9,
pp. 1680–1685, 2007.

[8] X. Wang and M. D. Lemmon, “Event-triggering in distributed net-
worked control systems,” IEEE Transactions on Automatic Control,
vol. 56, no. 3, pp. 586–601, 2011.

[9] M. Miskowicz, Event-Based Control and Signal Processing. CRC
Press, 2015.

[10] S. S. Kia, J. Cortés, and S. Martı́nez, “Distributed convex optimiza-
tion via continuous-time coordination algorithms with discrete-time
communication,” Automatica, vol. 55, pp. 254–264, 2015.

[11] D. Richert and J. Cortés, “Distributed linear programming with event-
triggered communication,” SIAM Journal on Control and Optimiza-
tion, vol. 54, no. 3, pp. 1769–1797, 2016.

[12] A. M. Geoffrion, J. S. Dyer, and A. Feinberg, “An interactive approach
for multi-criterion optimization, with an application to the operation of
an academic department,” Management Science, vol. 19, no. 4-part-1,
pp. 357–368, 1972.

[13] M. Luque, J. B. Yang, and B. Y. H. Wong, “Project method for
multiobjective optimization based on gradient projection and reference
points,” IEEE Transactions on Systems, Man & Cybernetics. Part A:
Systems & Humans, vol. 39, no. 4, pp. 864–879, 2009.


