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Overview

•Overarching project goal: opportunistic state-triggered aperiodic control for
networked cyber-physical systems
• Time delay and bandwidth limitation widespread in real-world

implementations of sensor-actuator networks
• For cyberphysical systems with nonlinear dynamics under time-varying input

delays, we address these limitations using predictor feedback (to compensate
for time delay) and event-triggered control (to comply with limited bandwidth)
• Challenging due to opportunistic nature of event-triggering: controller “waits”

until the system tends to become unstable and then updates the control
accordingly, but if the control takes some time to reach the system, it may no
longer be able to prevent the system from instability

Contributions

• Design of event-triggering controllers for wide class of nonlinear systems with
arbitrarily large time delays using the method of predictor feedback
• Analysis of the proposed event-triggered control policy:
• global asymptotic stability of the closed-loop system
• uniform lower bound on the inter-event times (no Zeno behavior)
• exponential stability as well as, for linear systems, explicit expressions for

design variables, convergence rate, and inter-event times
• Characterization of the trade-off between communication cost and

convergence speed in event-triggering control for linear systems
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Problem Statement

PlantZOH

Controller

Consider general nonlinear dynamics

ẋ(t) = f (x(t), u(φ(t))),

φ(t) = t − D(t) encodes known time-varying delay. Assumptions:
• {u(t) | φ(0) ≤ t ≤ 0} is given and bounded
• system does not have finite escape time for any initial condition&bounded input
• φ is continuously differentiable and φ̇(t) > 0 for all t ≥ 0

• there exist M0,M1,m2 > 0 such that,

∀t ≥ 0 0 < t − φ(t) ≤ M0 and m2 ≤ φ̇(t) ≤ M1

• there exists globally Lipschitz K : Rn → R, K(0) = 0, such that

ẋ(t) = f (x(t),K(x(t)) + w(t)) is ISS with respect to w

Design Objective

Design {(tk, u(tk)}∞k=1 such that
1. Event-triggered stabilization: the closed-loop system is globally

asymptotically stable using

u(t) = u(tk) t ∈ [tk, tk+1), k ∈ Z≥0,

2. No Zeno behavior: limk→∞ tk =∞.
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Event-Triggered Design

We propose the following structure for the controller:

Controller

PredictorK(·)

For a complete design, we need to specify the predictor and triggering times:

Design of Predictor [Bekiaris-Liberis and Krstic, 2013]

To compensate for the delay, the controller makes the following prediction of
the future state of the plant,

p(t) = x(φ−1(t)) = x(t+) +
∫ σ(t)

t+
f
(
p(φ(τ )), u(φ(τ ))

)
dτ

= x(t+) +
∫ t

φ(t+)
f (p(s), u(s))

dφ−1(s)
ds

ds, t ≥ φ(0),

where t+ = max{t, 0}.
• Integral only requires knowledge of the initial/current state of the plant and

history of u(t) and p(t), which are both available to the controller
• For general nonlinear vector fields f , prediction computed using numerical

integration methods

Design of Triggering Times

Let S(x(t)) be the storage/Lyapunov function for the delay-free system. The
Lyapunov function of the delayed system is

V(t) = S(x(t)) +
2
b

∫ 2L(t)

0

ρ(r)
r

dr, L(t) = sup
t≤τ≤σ(t)

|eb(τ−t)w(φ(τ ))|,

and b > 0 is a design parameter. Then

V̇(t) ≤ −γ(|x(t)|)− ρ(2L(t)) + ρ(2LK|e(φ(t))|),
(LK is Lipschitz constant of K) so we design the triggering condition as

ρ(2LK|e(φ(t))|) ≤ θγ(|x(t)|)⇔ |e(t)| ≤
ρ−1(θγ(|p(t)|))

2LK
, θ ∈ (0, 1).
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Control Analysis: Satisfaction of Design Goals

1. Event-triggered stabilization:

Global Asymptotic Stability

There exists β ∈ KL such that for any x(0) ∈ Rn and bounded {u(t)}0
t=φ(0),

|x(t)| + sup
φ(t)≤τ≤t

|u(τ )| ≤ β
(
|x(0)| + sup

φ(0)≤τ≤0
|u(τ )|, t

)
, t ≥ 0.

2. No Zeno behavior:

Uniform Lower Bound for the Inter-Event Times

tk+1 − tk ≥ δ for all k ≥ 1 where δ is the time that it takes for the solution of

ṙ = M2(1 + r)(Lf (1 + LK) + Lf LKr),

to go from 0 to 1
2Lγ−1ρ/θLK

.
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The Linear Case

If f(x, u) = Ax + Bu, then the triggering condition simplifies to

|e(t)| ≤ λmin(Q)
√
θ

4|PB||K|
|p(t)|,

and we get exponential stability with rate µ = (2−θ)λmin(Q)
4λmax(P)

.

Inter-Event Time vs Convergence Rate Trade-off

Let θ = ν2, Q = qIn. Then,

δ(ν) =
1

a− c
ln

c + ν
|P1B||K|a

c + ν
|P1B||K|c

µ(ν) =
2− ν2

4λmax(P1)

ν
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Simulations

Compliant System:
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Non-compliant System:
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