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Experiential Learning for Robots 

Challenge
Can we learn transferrable model 
from robot experience, and use 
those models for planning and 
control in new contexts?

Scientific Impact
• We are creating compositional

approaches that combine data-driven 
learning of complex models with 
context-driven assembly of solutions

Experiential Learning for Robots: From Physics to Actions to Tasks, NSF NRI 1637949
Dieter Fox, Ali Farhadi, University of Washington, Greg Hager, Marin Kobilarov, Johns Hopkins University

Solution
• Develop machine learning 

methods that training simulation 
but which can be deployed in 
real-world situations

• Creates compositionality, sim-to-
real transfer, and models for 
complex phenomena

Broader Impact
• Solutions in manufacturing, mobility, 

and service robotics

• Results from this project are being 
incorporated into courses at our 
institutions.

Experiential learning for robots: from physics to actions to tasks

1 Introduction

Developing robots that are able to reliably act and interact with humans in an unstructured world will require
substantial advances in perception-based control, and in the ability to learn new tasks from a small number
of examples. Although the past years have seen explosive advances in perception and perception-based
control, driven by the application of new, powerful machine learning methods and unprecedented archives
of labeled data, successes in both domains have mostly been in relatively narrow settings – producing labels
for photos or videos, solving simulated computer games such as Nintendo games, or performing narrow,
isolated tasks, such as learning to push a specific object. Coupling these advances to the needs of real-world
robotics to create robust learning-enabled control, planning, or task execution – remains an open problem.
One challenge is the complexity of the problem – for example pouring a cup of co↵ee requires perception,
planning, and closed-loop motor control, all informed by a model of physics that includes the appearance
and behavior of liquids. Another challenge is the transfer of learned knowledge from past problem instances
to new, but similar ones. For example pouring water from a pitcher into a vase has the same structure as
pouring a cup of co↵ee; but the objects involved and task context change in non-trivial ways, and a naive
approach would not be able to make that transfer.

We propose to develop an experiential learning framework that enables robots to perform complex tasks
in the physical world in a way that is fully grounded in the robot’s perceptual and control experience. By
learning from raw experience, our framework will ensure that there is no gap between the robot’s perceptual
input and its internal models used for generating predictions and controls. To achieve this goal, we will
address the following research questions:
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Figure 1: Task execution with e-physics controllers.

How can robots learn models that are fully
grounded in their perceptual experience but
still support robust control across a large set
of situations? Rather than having to learn to solve
each specific task from scratch, a robot must be able
to acquire and build upon basic knowledge that can
be used in virtually any situation. For instance, a
robot should know that liquids tend to settle in con-
cave containers, and larger objects tend to be harder
to slide. While an exact, physics-based description
of a scene might support such reasoning, it is ex-
tremely hard, if not even impossible, to infer all the
quantities necessary for such exact models from per-
ception. On the other hand, human naive physics
models are not exact, but they support very robust
actions in the real world. Guided by this notion
of naive physics, we will pursue mechanisms that
can learn, from raw data, experiential physics (e-
physics) models. The goal of these e-physics models
is not to make perfectly accurate physics-based predictions, but to make predictions that are fully grounded
in a robot’s experience for a circumscribed class of situations, and that support robust closed-loop control
schemes, i.e. e-physics controllers or e-control.

How can complex tasks be decomposed into learnable units of interaction with the physical
world, and how can these be assembled and adapted in the context of a particular task? Complex
tasks must be decomposed into smaller units that can be achieved with local, learned control policies. For
instance, pouring a cup of co↵ee involves grasping and picking up the co↵ee pot, moving it above the mug,
and then pouring co↵ee until the mug is filled to a desired level. While each of these individual steps can be

1



2020 National Robotics Initiative (NRI) Principal Investigators' Meeting
February 27-28, 2020  |  Arlington, Virginia

Experiential Learning for Robots 


