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The High Level View
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Structured Deep Visual Models For Robot
Manipulation

= Class of deep networks with rigid body physics priors

=  SE3-Pose-Nets: learn object masks, their SE(3) motion, and a latent pose
embedding for long range control
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SPNets: Differentiable Fluid Dyn
Nets

Enable robots to reason
about liquids in a variety
of settings:

SPNets: Differentiable Fluid Dynamics

= policy learning

= optimal control

= parameter estimation
= |iquid tracking

for Deep Neural Networks
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Using Data-Driven Domain Randomization to Transfer
Robust Control Policies to Mobile Robots (Kobilarov, JHU)
e |earn stochastic model of vehicle using deep MLE

e Train policy in simulation and compute performance guarantees
e Transfer policy to real vehicle and show guarantees are valid
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Using Data-Driven Domain Randomization to Transfer
Robust Control Policies to Mobile Robots

Matthew Sheckells, Gowtham Garimella, Subhransu Mishra, Marin Kobilarov
Autonomous Systems, Control, and Optimization Lab
Johns Hopkins University




Visual Task Planning (Hager, Paxton)

e |earn to understand what
effects our actions will have
on the world

e Build models from data,
rather than hand-coded rules

e Perform more challenging,
complex tasks based on
perception
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Model Architecture: Predictor Network
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Model Architecture: Transform Network
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Real-World Results: Suturing
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Our Poster: New Data and Architecture Search

CoSTAR Block Stacking Dataset

The CoSTAR Block Stacking Dataset includes a real robot trying to
stack colored children's blocks more than 10,000 times. It is designed
to benchmark neural network based algorithms.
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rENAS is an extension of ENAS,
see paper for details
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