
Experiential Learning for Robots: From 
Physics to Actions to Tasks

Dieter Fox, Ali Farhadi, University of Washington
Greg Hager, Marin Kobilarov, Johns Hopkins University

NSF NRI 1637949



The High Level View

Experiential learning for robots: from physics to actions to tasks

1 Introduction

Developing robots that are able to reliably act and interact with humans in an unstructured world will require
substantial advances in perception-based control, and in the ability to learn new tasks from a small number
of examples. Although the past years have seen explosive advances in perception and perception-based
control, driven by the application of new, powerful machine learning methods and unprecedented archives
of labeled data, successes in both domains have mostly been in relatively narrow settings – producing labels
for photos or videos, solving simulated computer games such as Nintendo games, or performing narrow,
isolated tasks, such as learning to push a specific object. Coupling these advances to the needs of real-world
robotics to create robust learning-enabled control, planning, or task execution – remains an open problem.
One challenge is the complexity of the problem – for example pouring a cup of co↵ee requires perception,
planning, and closed-loop motor control, all informed by a model of physics that includes the appearance
and behavior of liquids. Another challenge is the transfer of learned knowledge from past problem instances
to new, but similar ones. For example pouring water from a pitcher into a vase has the same structure as
pouring a cup of co↵ee; but the objects involved and task context change in non-trivial ways, and a naive
approach would not be able to make that transfer.

We propose to develop an experiential learning framework that enables robots to perform complex tasks
in the physical world in a way that is fully grounded in the robot’s perceptual and control experience. By
learning from raw experience, our framework will ensure that there is no gap between the robot’s perceptual
input and its internal models used for generating predictions and controls. To achieve this goal, we will
address the following research questions:
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Figure 1: Task execution with e-physics controllers.

How can robots learn models that are fully
grounded in their perceptual experience but
still support robust control across a large set
of situations? Rather than having to learn to solve
each specific task from scratch, a robot must be able
to acquire and build upon basic knowledge that can
be used in virtually any situation. For instance, a
robot should know that liquids tend to settle in con-
cave containers, and larger objects tend to be harder
to slide. While an exact, physics-based description
of a scene might support such reasoning, it is ex-
tremely hard, if not even impossible, to infer all the
quantities necessary for such exact models from per-
ception. On the other hand, human naive physics
models are not exact, but they support very robust
actions in the real world. Guided by this notion
of naive physics, we will pursue mechanisms that
can learn, from raw data, experiential physics (e-
physics) models. The goal of these e-physics models
is not to make perfectly accurate physics-based predictions, but to make predictions that are fully grounded
in a robot’s experience for a circumscribed class of situations, and that support robust closed-loop control
schemes, i.e. e-physics controllers or e-control.

How can complex tasks be decomposed into learnable units of interaction with the physical
world, and how can these be assembled and adapted in the context of a particular task? Complex
tasks must be decomposed into smaller units that can be achieved with local, learned control policies. For
instance, pouring a cup of co↵ee involves grasping and picking up the co↵ee pot, moving it above the mug,
and then pouring co↵ee until the mug is filled to a desired level. While each of these individual steps can be
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al. [27] which add an obstacle avoidance term [101]. Kormushev et al. used reinforcement learning with
modified DMPs to adapt to new environments with a known goal and reward function [60]. Guenter et
al. used Gaussian Mixture Models to represent a reaching motion, changing the parameters to adapt to a
new environment with obstacles [34]. DMPs are often adapted to new environments through reinforcement
learning approaches such as Path Integral Policy Improvement, first proposed in [135] and integrated with
Associative Skill Memories [102]. Work by Kober et al. uses reinforcement to adapt to new situations by
adapting latent variables [54]. These methods for reinforcement learning were further expanded upon by
Stulp et al., who proposed Path Integral Policy Improvement with Covariance Matrix Adaptation [128].
None of these approaches however consider complex sequences of actions driven by perceptual inputs.

Object-Action Complexes (OACs) have been proposed as a formal framework unifying perception and
learning [63]; extensions examine integrate predicate-based sequencing and planning can be integrated [145].
Other related work includes [149], which grounds PDDL position predicates with Gaussian Mixture Models,
and [2], which associated Dynamic Movement Primitives (DMPs) for particular actions with expected visual
features as per Visuospatial Skill Learning [1]. The probabilistic models representing each skill accomplish a
similar goal: providing a representation of the preconditions, constraints, and e↵ects on an object interaction.

Other prior work has looked at learning actions and task models from unstructured data, including [95,
12, 33], which use nonparametric models to identify a number of sub-actions from data. Grollman et al. [33]
learn a finite state machine task model as an infinite mixture of Gaussian experts, while in [12] the authors
used an HDP-HMM to prevent perceptual aliasing by modeling time dependencies between actions. Niekum
et al. [96, 97] used Beta Process Autoregressor Hidden Markov Models (BP-AR-HMMs) to learn tasks given
unstructured expert demonstrations of manipulation tasks. After segmenting using the BP-AR-HMM, they
learned DMPs representing di↵erent action primitives. Manschitz et al. [85] learned classifiers to determine
the next action when sequencing motion primitives. Konidaris et al. [59] demonstrated the construction of
skill trees of actions using change-point detection. Padoy and Hager [100] describe a turn-taking system
that implements both action recognition and performance learned from demonstration data. In [104], we
describe preliminary work on motion planning multi-step tasks using demonstrations as hints by representing
a trajectory using context-invariant features and planning by sampling similar collision-free trajectories.

3 Approach

3.1 Experiential physics

Figure 2: The e-physics learning architecture.

Estimating a reliable signal that can encode rich
enough physical understanding of a scene that is
amenable to robust robot control is very challeng-
ing. Direct estimation of physically relevant quan-
tities such as object shape, weight, liquid volume,
and friction would support traditional control ap-
proaches, however, accurately modeling and esti-
mating all necessary quantities has been shown to
be extremely di�cult, and might be beyond reach
for items such as non-rigid objects and liquids. The
key idea behind e-physics is to learn intermediate
representations that enable physical reasoning of a
scene but do not require accurate, explicit estimates
of physical quantities. Such an implicit physics space should (a) encode rich physical interactions within
scene elements, (b) enable physically valid predictions of how a scene progresses over time, (c) facilitate
e�cient inference for estimation and control, and (d) allow reliable mapping to and from raw perception and
control data.

Fig. 2 shows the main components of our experiential physics learning framework. At any time k, the
raw perceptual input zk is mapped via a deep encoding mechanism to a state ◆k in the implicit physics
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Can we learn transferrable model from robot 
experience, and use those models for 
planning and control in new contexts?



Structured Deep Visual Models For Robot 
Manipulation

§ Class of deep networks with rigid body physics priors
§ SE3-Pose-Nets: learn object masks, their SE(3) motion, and a latent pose 

embedding for long range control

Visuomotor
controlModeling 

visual 
dynamics



SPNets: Differentiable Fluid Dynamics for Deep 
Nets

SPNets: Differentiable Fluid Dynamics for Deep Neural Networks
Schenck-Fox: CoRL-18

Enable robots to reason 
about liquids in a variety 
of settings:

§ policy learning
§ optimal control
§ parameter estimation
§ liquid tracking



Using Data-Driven Domain Randomization to Transfer 
Robust Control Policies to Mobile Robots (Kobilarov, JHU)
● Learn stochastic model of vehicle using deep MLE
● Train policy in simulation and compute performance guarantees
● Transfer policy to real vehicle and show guarantees are valid

Sample Trajectory on Real Vehicle

Simple Stochastic
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Visual Task Planning (Hager, Paxton)

● Learn to understand what 
effects our actions will have 
on the world

● Build models from data, 
rather than hand-coded rules

● Perform more challenging, 
complex tasks based on 
perception



Model Architecture: Predictor Network



Model Architecture: Transform Network



Input Predicted Goals



Input Predicted Goals Observed Goals

Real-World Results: Suturing



Simulating 
Many Possible 
Futures

• Key advantage: Now we can 
simulate many different futures, 
and have the robot “imagine” 
what it thinks will happen.

• What this means: robots that 
can learn how to solve 
problems in new environments, 
and justify their solutions to 
humans.



Our Poster: New Data and Architecture Search

Current Version: v0.4 Last updated: 09/25/2018
Overview

Calibrated Images Color, depth (resolution 640x480)
Joint Data Angle (radian), velocity (radians/s)
Typical Duration 20 seconds, 200 frames, 100ms per frame (10 Hz)
Labels stack success/failure/error, action name

3D Coordinate Poses Recorded

Gripper RGB camera Depth camera
Robot joints AR tags and ID# Colored blocks

Statistics
Blocks Blocks and Toys

Attempts 5884 6106
Success 2451 748
Failures, all kinds 3433 5358
Failures without errors 1233 3628
Failures with errors 2200 1703
Success only subset

Training 2195 620
Validation 128 64
Test 128 64

Training Frankenstein’s Creature to Stack: 
HyperTree Architecture Search 

Dataset Videos and Details:
sites.google.com/site/costardataset

Abstract, Videos, and Paper:
sites.google.com/site/hypertree-renas

The CoSTAR Block Stacking Dataset includes a real robot trying to 
stack colored children's blocks more than 10,000 times. It is designed 
to benchmark neural network based algorithms.
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HyperTree Meta-Model

Initial Clear View I0 Current Arm Visible It

Average Speed vs. Miles Per Gallon

epoch angle_error cart_error grasp_acc loss lr mean_absolute_error mean_squared_error test_angle_error test_cart_error test_grasp_acc test_loss test_mean_absolute_error test_mean_squared_error val_angle_error val_cart_error

0 0 1.001785577 0.1910121626 0 0.007319764487 1 0.04008407402 0.007319764487 1.074280645 0.1160775643 0 0.03039339661 0.06666036806 0.03039339661 1.080275969 0.1135011642

0 0 0.9917232166 0.1863484593 0 0.004785118399 1 0.03379499651 0.004785118399 1.001538859 0.1224083203 0 0.03111015273 0.06659732107 0.03111015273 1.015466851 0.1142433026

0 0 0.9964903099 0.1606674347 0 0.005907311887 1 0.0353363745 0.005907311887 0.9557735566 0.1160375392 0 0.03132644114 0.06502372341 0.03132644114 0.9580046423 0.1146420437

0 0 0.9771265991 0.1827412831 0 0.0069347202 1 0.03448853393 0.0069347202 1.073312094 0.118306677 0 0.03146042227 0.06734634907 0.03146042227 1.084529732 0.1150632543
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Current Pose
Input (vt , rt)

Ground Truth 
Goal Gt

Predicted 
Goal Pt

Automate the design of deep neural network 
architectures for robotics.

Low cost automatic design of multiple-input neural  network models 
with Baysesian Optimization.

HyperTree Architecture SearchCoSTAR Block Stacking Dataset rENAS: regression Efficient 
Neural Architecture Search

Includes:
▪ vastly different 

lighting conditions
▪ plush toy 

distractors
▪ stacks of 3 or 4 

blocks
▪ object wear
▪ movable bin 

obstacle which 
must be avoided
▪ successes and 

failures

Comparison of Units Sold by Year

name
train_val_te
st 0-7.5 ° 7.5-15 ° 15-30 ° 30-60 ° 60-120 °

train train HyperTree train 26% 36% 23% 8% 6%
HyperTree      val val HyperTree val 37% 28% 22% 8% 5%
test test HyperTree test 40% 23% 18% 7% 12%
train train ENAS-HT train 40.6% 25.0% 25.0% 3.1% 6.3%
rENAS       val val ENAS-HT val 50.2% 24.0% 16.9% 3.4% 5.6%
test test ENAS-HT test 56.2% 21.0% 13.0% 3.0% 6.8%

3D Gripper Rotations - Distribution of Angular Error
train

HyperTree      val
test

train
rENAS       val

test

0-7.5 ° 7.5-15 ° 15-30 ° 30-60 ° 60-120 °

Comparison of Units Sold by Year-1

name name train_val_test 0-5 mm 5-10 mm 10-20 mm 20-40 mm 40-80 mm 80-160 mm
160-320 
mm

320-2560 
mm

train train HyperTree train 15% 14% 22% 33% 13% 2% 1% 1%
HyperTree      val val HyperTree val 16% 11% 17% 32% 19% 4% 1% 0%
test test HyperTree test 13% 12% 15% 31% 23% 5% 1% 0%
train train rENAS train 0 3.13% 0.00% 3.13% 21.88% 45.37% 36.79%
rENAS       val val rENAS val 0.04% 0.24% 1.26% 5.05% 17.51% 55.62% 25.47%
test test rENAS test 0 1.54% 6.91% 15.26% 16.16% 39.85% 19.24%
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Results

A high percentage of samples with low error is better. Results compare the predicted gripper positions and orientations against the real robot data in the 
CoSTAR Block Stacking Dataset. This is done by showing the neural network random time steps in the video and asking it to predict the position and 
orientation the robot will have at the next goal. (Left) The importance of hyperparameter choice is visible in models 1-9 which were selected from the 
best of 1100 HyperTree candidates and then trained for 200 epochs.

Much like how Dr.  Frankenstein’s  creature was assembled from 
pieces before he came to life in the eponymous book, HyperTrees 
substitute in and combine parts of other architectures to optimize 
for  a  new  problem  domain.   Particular  component  substitution 
details can be found in the paper.

Low cost automatic design of multiple-input neural network models 
with Reinforcement Learning.

Predicting translation and rotation of the gripper independently was 
more accurate than making those predictions simultaneously. Each 
mark is a separate HyperTree model with 1 epoch of training. 

Each  row  shows  key  goal  time  steps  from  separate  stacking 
attempts. Images sequences are ordered from left to right.

Andrew Hundt 
<ahundt@jhu.edu>, 

Varun Jain, Chris Paxton, 
Gregory D. Hager

▪ An LSTM predicts architectures in a meta-model
▪ Weights are not discarded, increasing search efficiency
▪ rENAS extends  the  so-called  “micro  search  space”  of  ENAS 

with a new loss and reward function to minimize error.
▪ rENAS parameterizes placement and number of reduction cells, 

which rescale the data width and height by half.

Final rENAS Rotation Cells
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This  material  is  based  upon 
work supported by the National 
Science Foundation under NRI 
Grant Award No. 1637949. 
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Overview

Calibrated Images Color, depth (resolution 640x480)
Joint Data Angle (radian), velocity (radians/s)
Typical Duration 20 seconds, 200 frames, 100ms per frame (10 Hz)
Labels stack success/failure/error, action name

3D Coordinate Poses Recorded

Gripper RGB camera Depth camera
Robot joints AR tags and ID# Colored blocks

Statistics
Blocks Blocks and Toys

Attempts 5884 6106
Success 2451 748
Failures, all kinds 3433 5358
Failures without errors 1233 3628
Failures with errors 2200 1703
Success only subset

Training 2195 620
Validation 128 64
Test 128 64

Training Frankenstein’s Creature to Stack: 
HyperTree Architecture Search 

Dataset Videos and Details:
sites.google.com/site/costardataset

Abstract, Videos, and Paper:
sites.google.com/site/hypertree-renas

The CoSTAR Block Stacking Dataset includes a real robot trying to 
stack colored children's blocks more than 10,000 times. It is designed 
to benchmark neural network based algorithms.

rENAS Rotation Reduction CellrENAS Rotation Normal Cell

Sep
3x3

h[i]

h[i-1]

Sep
5x5

Avg

Max+

Max Max+ +

concat

Conv
1x1

h[i+1]

Sep
3x3

h[i]

h[i-1]

Sep
5x5

Max

Avg+

Max Sep
3x3+ +

concat

Conv
1x1

h[i+1]

Vector Branch Trunk

Vision Branch Vision Branch

Image Model

concat

Conv Trunk Blocks

sigmoid

3D Gripper Pose 
Prediction Pt

Image Model

Vector Model

Translation vt

Rotation rt

Action at

tile

Dense Block
concat

HyperTree Meta-Model

Initial Clear View I0 Current Arm Visible It

Average Speed vs. Miles Per Gallon

epoch angle_error cart_error grasp_acc loss lr mean_absolute_error mean_squared_error test_angle_error test_cart_error test_grasp_acc test_loss test_mean_absolute_error test_mean_squared_error val_angle_error val_cart_error

0 0 1.001785577 0.1910121626 0 0.007319764487 1 0.04008407402 0.007319764487 1.074280645 0.1160775643 0 0.03039339661 0.06666036806 0.03039339661 1.080275969 0.1135011642

0 0 0.9917232166 0.1863484593 0 0.004785118399 1 0.03379499651 0.004785118399 1.001538859 0.1224083203 0 0.03111015273 0.06659732107 0.03111015273 1.015466851 0.1142433026

0 0 0.9964903099 0.1606674347 0 0.005907311887 1 0.0353363745 0.005907311887 0.9557735566 0.1160375392 0 0.03132644114 0.06502372341 0.03132644114 0.9580046423 0.1146420437

0 0 0.9771265991 0.1827412831 0 0.0069347202 1 0.03448853393 0.0069347202 1.073312094 0.118306677 0 0.03146042227 0.06734634907 0.03146042227 1.084529732 0.1150632543

Cross-Model Error Comparison

Tr
an

sla
tio

n 
Er

ro
r 
 

m
et

er
s, 

 lo
g 

sc
al

e

0.1

1

10

Rotation Error, radians, linear scale

0.65 0.813 0.975 1.138 1.3

simultaneous test error
simultaneous val error

1 epoch of training, lower is better Table 1

independent test 
angle

separate test cart independent val 
angle

separate val cart relevant rotation timestamps translation timestamp

0.7078349739310.08913940843190.6695258347320.08333528018562018-08-09-09-19-12 2018-09-05-11-23-03

Tr
an

sla
tio

n 
Er

ro
r 
 

m
et

er
s, 

 lo
g 

sc
al

e

0.01

0.1

1

10

Rotation Error, radians, linear scale

0.65 0.813 0.975 1.138 1.3

simultaneous test error
simultaneous val error
independent val error
independent test error

lower is better, 1 epoch of training
Cross-Model Comparison of Average Error

�10

Current Pose
Input (vt , rt)

Ground Truth 
Goal Gt

Predicted 
Goal Pt

Automate the design of deep neural network 
architectures for robotics.

Low cost automatic design of multiple-input neural  network models 
with Baysesian Optimization.

HyperTree Architecture SearchCoSTAR Block Stacking Dataset rENAS: regression Efficient 
Neural Architecture Search

Includes:
▪ vastly different 

lighting conditions
▪ plush toy 

distractors
▪ stacks of 3 or 4 

blocks
▪ object wear
▪ movable bin 
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Results

A high percentage of samples with low error is better. Results compare the predicted gripper positions and orientations against the real robot data in the 
CoSTAR Block Stacking Dataset. This is done by showing the neural network random time steps in the video and asking it to predict the position and 
orientation the robot will have at the next goal. (Left) The importance of hyperparameter choice is visible in models 1-9 which were selected from the 
best of 1100 HyperTree candidates and then trained for 200 epochs.

Much like how Dr.  Frankenstein’s  creature was assembled from 
pieces before he came to life in the eponymous book, HyperTrees 
substitute in and combine parts of other architectures to optimize 
for  a  new  problem  domain.   Particular  component  substitution 
details can be found in the paper.

Low cost automatic design of multiple-input neural network models 
with Reinforcement Learning.

Predicting translation and rotation of the gripper independently was 
more accurate than making those predictions simultaneously. Each 
mark is a separate HyperTree model with 1 epoch of training. 

Each  row  shows  key  goal  time  steps  from  separate  stacking 
attempts. Images sequences are ordered from left to right.
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▪ An LSTM predicts architectures in a meta-model
▪ Weights are not discarded, increasing search efficiency
▪ rENAS extends  the  so-called  “micro  search  space”  of  ENAS 

with a new loss and reward function to minimize error.
▪ rENAS parameterizes placement and number of reduction cells, 

which rescale the data width and height by half.

Final rENAS Rotation Cells
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