Exploitable Bugs in Hardware Designs

Cynthia Sturton
2017 SaTC PI Meeting
Breakout Session

Outline

- Vulnerable vs. malicious hardware: an orthogonal problem
- Security vulnerabilities do exist
- New opportunities for the attacker
- Research questions

Malicious Hardware

- Threats
 - Malicious foundry
 - Malicious design
- Risks
 - Backdoor
 - Degrade quality
 - Reduce lifespan
 - Weaken cryptographic primitives

Vulnerable Hardware

- We found roughly 9% of recent, published AMD errata were security critical [ASPLOS 2015]
- Of 185 patches and bug reports for OR1200, we found 25 to concern security critical bugs [ASPLOS 2017]
- Intel SYSRET issue
 - Not a bug, but still a vulnerability
- Password protected JTAG functionality

New Opportunities for the Attacker

- A move toward open source
 - RISC-V
- IoT
 - Number of chips extant in the world
 - Cheap devices → Tight budgets → Security given short shrift

Promising Directions and Open Questions

- Verification for security
 - What are the properties we should be verifying?
- Static analysis of hardware designs
 - What are common patterns (e.g., in RTL) that lead to security vulnerabilities?
- Understanding which vulnerabilities lead to security risks
 - Can we automate the process of finding exploits if they exist?
- Dynamic verification for detection of vulnerabilities
 - Can we make it practical to use dynamic verification in the field?
 - Can we drive dynamic verification toward the detection of security bugs?

Open Question

• Can we evaluate the extent of the problem?