Extreme Manufacturing Workshop

National Institute of Standards and Technology (NIST)
Gaithersburg, MD – January 11-12, 2011
www.nist.gov/mel/extrememanu.cfm

Extreme Manufacturing: What are the technology needs for longterm US manufacturing competitiveness?

- This is a first step to identify the new, longterm technology advances needed to make future manufacturing competitive in the US.
- What are the characteristics of US manufacturing that would make it radically different and more competitive in the future than it is today?
- What are the dimensions of performance (broadly speaking) that could make a big difference if pushed to extremes?
- What long-term technology advances are needed to make these new levels of performance possible?
- What are the technological barriers to achieving these innovations?
- How can the US build and use its innovative capabilities to foster the creation and implementation of future manufacturing leadership?

Why this is important to the future of the US?

- The US faces increasingly global competition as other countries seek to establish prominence in advanced manufacturing and the products of the future.
- The US needs to offset the globalization of traditional manufacturing of products based on low cost volume production of commodities for creating comparative advantage in high-value product areas based on product and processes innovation and the implementation of emerging technologies
- This workshop seeks to define and focus US priorities on providing the means to effectively develop and implement new technology-based concepts for future US manufacturing as a basis for
 - High-value jobs
 - Wealth creation
 - o Sustained economic growth
 - National security

Topics for the Extreme Manufacturing Workshop

Future intelligent manufacturing systems

- Extremely agile, adaptive, responsive and robust manufacturing
- Rapid product realization: scale-up of new products based on emerging technologies and materials
- "Snap-together" modular process and system modeling and simulation building blocks
- Highly integrated control of complex, precise processes throughout distributed multi-level production
- Multi-tiered intelligent and interactive collaboration environments and models

- Extremely efficient and effective manufacturing: affordability and sustainability

- Exceptionally competitive-affordable customized production
- 3D printing: From prototyping to manufacturing
- Extreme improvements in usability of advanced technology for small and medium-sized manufacturers
- Designed-in sustainability for value-based enterprises
- "Condominium" approach for dynamic, modular, affordable facilities infrastructure

- Frontiers of manufacturing science

- Advanced bioscience and biosystems for non-medical manufacturing
- Computational biology for process control
- Precise, high volume directed self-assembly of multifunctional nano-microsystems
- Future additive manufacturing—new ways to create durable, high-quality functional parts

- The Future Manufacturing Enterprise

- Dynamic collaboration across extremely complex multilevel, reconfigurable supply chains
- Rapid engineering and production of integrated highconfidence cyber-physical products and systems
- Tightly integrated design, test, validation across vastly distributed production environments
- Potential new game-changing production paradigms:
 - Digital direct manufacturing of complex products and assemblies
 - Service-oriented manufacturing
 - Cloud manufacturing

Industry, Academic, and Government participation invited to:

- Provide the long-term vision of future manufacturing
- Identify the technology needs to reach this vision and the roadblocks to overcome to ensure future success
- Inform the US public/private manufacturing community -and stakeholders -- of the crosscutting and enabling R&D investments needed to build the innovation infrastructure for successful US manufacturing enterprises

Extreme Manufacturing Workshop
National Institute of Standards and Technology (NIST)
Gaithersburg, MD – January 11-12, 2011
www.nist.gov/mel/extrememanu.cfm