FRESCO: Fast, Resilient, and Cost-Optimal Co-Designs for Wide-Area **Control of Power Systems**

Southern California

UNIVERSITY Massachusetts Aranya Chakrabortty*, Alexandra Duel-Hallen*, Anuradha Annaswamy+, Alefiya Hussain++

Institute of

NC STATE

Information Sciences Institute

USC Viterbi School of Engineering

North Carolina State University, +Massachusetts Institute of Technology, and ++Information Sciences Institute at University of

CPS Project Numbers:-1544871, 1544751, 1544742

Project Goal

To co-design communication, control, and decisionmaking algorithms for fast, resilient and cost-optimal wide-area control of power systems using massive volumes of Synchrophasor data

- Inter-area oscillation damping output-feedback based MIMO control design for large power transmission systems to shape the closed-loop dynamic responses of power flows and frequencies using real-time Synchrophasor data
- System-wide voltage control PMU-measurement based MIMO control design for coordinated setpoint control of voltages across large inter-ties using FACTS controllers (SVC, CSC, STATCOM)
- Safe islanding use PMU data to continuously track critical cutsets of the network graph – i.e., minimum set of tie-lines lines carrying max sets of dynamic power flows

Wide-Area Control

Coordination of multiple Phasor Measurement Units (PMUs) with multiple control actuators such as Power System Stabilizers (PSS) and FACTS devices to satisfy a global control goal in a distributed fashion over a secure communication network

Power System Network Wide-Area Communication Network

Research Challenges

- Time-scale for computation Real-time computing Fast numerical algorithms
- **Communication constraints and threats** Multi-cast
- Routing Large inter-area delays Privacy of control gains DoS attacks
- **Control design Ensure sparsity** Accommodate delays Maintain privacy Use distributed computation Utilize output measurements

Game Theory for Cost Effectiveness

The cost for renting bandwidth and channel links vary depending on the need for feedback. The main question is - how much is each company willing to pay off in sharing the network cost?

Our approach is to

- treat the utility companies as players in a cooperative network formation game to jointly minimize a global performance metric,
- determine the required communication cost and its fair allocation using Nash Bargaining Solution.
- extend the design to robust H2/H∞ implementation in the presence of model uncertainties

Technical Approach

Intellectual Merits:

- Distributed power oscillation damping control
- Distributed voltage control
- Distributed middleware
- 5. Experimental verification using DETER security testbed

Proposed Distributed Cyber-Physical Architecture for Wide-Area Control:

Primary questions:

- How to co-design distributed optimal controllers in sync with delay bounds of wide-area comm. networks
- 2. How to optimally allocate investment costs of communication infrastructure to different utility companies
- 3. How to make WAMS resilient to Denial-of-Service, data manipulation, and other forms of cyber attacks.

New Control Algorithms

FACTS/PSS based damping control

Smart Islanding and fast control actions

Consider the power system model with swing + excitation dynamics:

$$\begin{bmatrix} \Delta \dot{\delta} \\ M \Delta \dot{\omega} \\ \Delta \dot{E} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 \\ -L(G) & -D & -P \\ K & 0 & J \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta \omega \\ \Delta E \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \operatorname{col}_{i=1(1)n}(\gamma_i) \\ \operatorname{col}_{i=1(1)n}(\rho_i) \end{bmatrix}}_{\text{due to load}} + \begin{bmatrix} 0 & 0 \\ 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} \Delta P_m \\ \Delta E_F \end{bmatrix}$$

 $y = \operatorname{col}_{i \in \mathcal{S}}(\Delta V_i, \Delta \theta_i).$

Choose m generators for implementing wide-area control via ΔE_F . Let the measurements available for feedback for the j^{th} controller be $y_i(t)$. Let $Y(t,\tau)=0$ $[y(t-\tau_i)]$ where τ_i is signal transmission delay. Let τ be the vector of all such delays.

Define a performance metric ${\mathcal J}$ to quantify the closed-loop damping of the slow eigenvalues of A. Let $\mathcal P$ denote the set of all possible models resulting from parameter/structural variations in the system. Design an output-feedback dynamic controller $F(Y(t,\tau))$ that solves:

$\min_{\mathcal{F}} \max_{\mathcal{D}} \mathcal{J}$

Potential approaches:

- . Delay-aware and sparsity-constrained optimal control designs
- 2. Distributed MPC
- 3. Graph-theoretic control designs for shaping eigenvalues and eigenvectors (convex optimization)

Cyber-Security of Wide-Area Control

Develop security solutions that operate efficiently under different real-world constraints of wide-area communication, and that cyber-security defense design has to be done strategically with an understanding of economic constraints.

Proposed approaches:

- 1. Threat Modeling
- 2. Enumerating the Attack Space from PMU data and Controller Signals
- Intrusion Resilience via Response Graphs
- 4. Allocating Resilience Resources via Game Theory

Experimental Testbed

- Participated in Smart America Challenge 2014 Initiative of NIST and US White House
- Federated DETER Cyber-Security Testbed
- Multi-vendor PMU-based hardware-in-loop simulation testbed at NCSU and DETERLab at Univ. of Southern California to showcase resiliency of distributed wide-area control

Broader Impacts

- Undergraduate, K-12 and minority education via Science House and FREEDM ERC programs at NC State
 - Women's education program at MIT and USC
- Undergraduate summer internship at Information Science Institute at USC
- Industry collaborations with power utilities and software vendors via TTP