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Project Goal

Technical Approach

Wide-Area Control Game Theory for Cost  Effectiveness

Cyber-Security of Wide-Area Control

Experimental Testbed

To co-design communication, control, and decision-
making algorithms for fast, resilient and cost-optimal
wide-area control of power systems using massive
volumes of Synchrophasor data

Intellectual Merits:
1. Distributed power oscillation damping control
2. Distributed voltage control
3.  Distributed middleware
5. Experimental verification using DETER security testbed
Proposed Distributed Cyber-Physical Architecture 
for Wide-Area Control:

Broader Impacts

• Participated in Smart America Challenge 2014 
Initiative of NIST and US White House

• Federated DETER Cyber-Security Testbed
• Multi-vendor PMU-based hardware-in-loop 

simulation testbed at NCSU and DETERLab at 
Univ. of Southern California to showcase 
resiliency of distributed wide-area control

• Undergraduate, K-12 and minority education via Science House and FREEDM 
ERC programs at  NC State

• Women’s education program at MIT and USC
• Undergraduate summer internship at Information Science Institute at USC
• Industry collaborations with power utilities and software vendors via TTP

New Control Algorithms

Primary questions:
1. How to co-design distributed optimal controllers in 

sync with delay bounds of wide-area comm. networks
2. How to optimally allocate investment costs of 

communication infrastructure to different utility 
companies 

3. How to make WAMS resilient to Denial-of-Service, data 
manipulation, and other forms of cyber attacks.

Coordination of multiple Phasor Measurement Units 
(PMUs) with multiple  control actuators such as Power 
System Stabilizers (PSS) and FACTS devices  to satisfy a 
global control goal in a distributed fashion over a secure 
communication network

Power System Network
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FACTS/PSS based damping control Smart Islanding and fast control actions

Consider the power system model with swing + excitation dynamics:

Choose m generators for implementing wide-area control via ΔΕF. Let the 
measurements available for feedback for the  jth controller be yj(t). Let Y(t,τ) = 
[y(t- τj)] where τj is signal transmission delay. Let τ be the vector of all such 
delays.  

Define a performance metric      to quantify the closed-loop damping of the 
slow eigenvalues of A. Let     denote the set of all possible models resulting from 
parameter/structural variations in the system. Design an output-feedback 
dynamic controller F(Y(t,τ)) that solves:

3.  Graph-theoretic control designs for shaping eigenvalues and eigenvectors 
(convex optimization)

2.  Distributed MPC

Potential approaches:
1.  Delay-aware and sparsity-constrained optimal control designs 

• Inter-area oscillation damping – output-feedback based 
MIMO control design for large power transmission systems 
to shape the  closed-loop dynamic responses of power flows 
and frequencies using real-time Synchrophasor data

• System-wide voltage control – PMU-measurement based 
MIMO control design for coordinated setpoint control of 
voltages across large inter-ties using FACTS controllers (SVC, 
CSC, STATCOM)

• Safe islanding – use PMU data to continuously track 
critical cutsets of the network graph – i.e.,  minimum set of 
tie-lines lines carrying max sets of dynamic power flows  

SDN

Cloud

Control loop 2: network

Control loop 1: power

Control loop 3: data

SDN

The cost for renting bandwidth and channel links 
vary depending on the need for feedback. The 
main question is - how much is each company 
willing to pay off in sharing the network cost?

Our approach is to 
• treat the utility companies as players in a 

cooperative network formation game to jointly 
minimize a global performance metric, 

• determine the required communication cost 
and its fair allocation using Nash Bargaining 
Solution. 

• extend the design to robust H2/H¥
implementation in the presence of model 
uncertainties
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Periodic or Permanent 
Damage/Failure of 

Phasor Data 
Concentrators (PDC)

Software or Hardware 
Intrusion inside an 
operating region

Develop security solutions that operate efficiently 
under different real-world constraints of wide-area 
communication, and that cyber-security defense 
design has to be done strategically with an 
understanding of economic constraints.

Proposed approaches:
1. Threat Modeling
2. Enumerating the Attack Space from PMU data 

and Controller Signals
3. Intrusion Resilience via Response Graphs
4. Allocating Resilience Resources via Game Theory

• Time-scale for computation 

• Communication constraints and threats

Research Challenges

Multi-cast
Routing
Large inter-area delays
Privacy of control gains
DoS attacks

Real-time computing
Fast numerical algorithms

• Control design
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Wide-Area Communication Network

Ensure sparsity 
Accommodate delays
Maintain privacy
Use distributed computation
Utilize output measurements 


