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Introduction
Motivated by automative applications, we propose an approach for fault-tolerance in embedded systems

that is based on fault detection/prediction, identification and recovery. Computing (for controls, monitoring,
other services) in large systems, including safety-critical systems such as automobiles, aircrafts, nuclear
plants, medical devices, etc., is performed using distributed embedded systems. There are many documented
cases of failures of such systems due to software/hardware errors. The existing simulation/testing/verification
practices cannot guarantee that a deployed embedded system will continue to operate error-free. (The
problem is in general undecidable.) So it is important that measures be built-in for providing tolerance
against any design-errors or runtime-faults that can compromise the safety of the users or the surrounding
environment.

Modern vehicles will be equipped with advanced features such as collision avoidance, adaptive cruise
control, lane centering/changing, all of which will be implemented in software running over distributed
embedded systems, typically interconnected using a CAN bus. The existing approaches to fault-tolerance
are either restrictive or not cost effective. E.g., design-diversity based approaches provide tolerance at the
cost of redundancy and do not necessarily identify the root-cause of failures. On the other hand, the execption
handlers based approaches can only react to faults that have been anticipated in advance whereas certain
faults, specially those of software, are hard to
anticipate in advance. Similarly the simplex
architecture is limited by the ability to accu-
rately define the safety envelope for its highly
reliable mode of operation. New approaches
are needed for fault tolerance of safety critical
automotive applications. We envision intro-
ducing a new module to the exisiting vehicle
control architecture to enable software fault-
tolerance as shown in Figure 1. A similar ar-
chitecure will be employed for fault-tolerance
in hardware components—We are targetting
the CAN bus as a concrete benchmark appli-
cation.
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Figure 1: Control Architecture for software fault tolerance

Our Approach
Our approach to software fault-tolerance (which we plan to adapt for hardware fault-tolerance as well)

consists of (i) Hierarchical two-tier monitoring of software and system behaviors against their specfications for
fault-detection, (ii) Model-based fault-diagnosis to identify the faulty component in case a fault is detected
at the system level, (iii) Model-based analysis of run-time data for fault-localization to identify and debug
the faulty lines of code, and (iv) On-line reconfiguration for fault-mitigation and recovery. The approach
assumes the availability of the following information:

1. Software (component) level specs to detect software (component) faults.
2. System (= software + computing-platform + plant) level specs to detect system faults, in case missed

at component level owing to incompleteness of compnent level specs.
3. Nonfaulty plant model to enable ruling out plant fault when a system fault is detected (a residue-based

analysis is used for this purpose).
4. Sensor noise distributions to determine appropriate cut-offs for system-level monitors and residue

generators in order to “balance out” false-alarm/missed-detection/detection-delay.
5. Computing-platform specs and tests, and also a dual-redundancy computing to enable ruling out

transient/permanent computing-platform fault when a system fault is detected.
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6. Existence of simplex architecture or other alternative to enable mitigation/recovery (a system level
analysis will be used to determine the control-switching policy to attain recovery).

7. Software/hardware-task execution times (including monitoring overhead), their periods and the task
dependency graph (to detect any timing fault caused by added task of monitoring).

Note our approach does not require the availability of any software (component) model for monitoring (ie.,
only their specifications are needed). In case software (component) models are available, more could be
done, eg., fault-localization to aid debugging. We use input/output extended finite automata (I/O-EFA)
for software (component) as well as system level modeling, and also for modeling the specification monitors.
(Since the control changes only at the discrete times when the system/environment states are sampled, the
controlled system has a discrete-time hybrid dynamics which can be modeled as I/O-EFA.) The approach
for software fault-tolerance (which we will adapt for hardware fault-tolerance) is illustrated in Figure 2 and
involves the following steps.
Hierarchical Fault-Detection. The observed input/output behavior of software components and also
the entire system is monitored against their specifications. A software failure is immediately detected when
an observed behavior is rejected by a software level monitor, whereas when a system level fault is detected
further diagnosis is performed to rule out the faults of plant or of computing-platform.
Fault-Diagnosis or Identification. To rule out a fault in the plant hardware, the residue method is used,
where residue is defined as the errot between the observed and model-predicted outputs of the plant. The
residue is small if and only if there is no hardware fault. Note that residue generation requires the model of
non-faulty plant hardware as well as noise distribution parameters. Computing-platform hardware faults can
be of two types: Transient and permanent. For ruling out transient faults, redundant computing-platform
computation and comparison is used. For ruling out any permanent fault, tests such as challenge-response
are are triggered and executed.
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Figure 2: Approach for fault tolerance of embedded software

Software Fault-Localization. This in-
volves localizing the root-cause, namely lo-
cating the faulty lines of code, or the indica-
tors for missing lines of code. We formalize
the concept of a plausible root-cause by in-
troducing the notion of a fault-seed: A sub-
set of statements included in a faulty-run is
called a fault-seed if their influencive execu-
tion in any run of the software causes a failure
to occur. Note a fault-seed can itself con-
tain faults in which case itself a root-cause
and referred as fault-fragment or, if not itself
faulty, its execution is essential for the man-
ifestation of failure caused by some missing
code and in this case is an indicator of the
root-cause. Thus the approach is helpful in
localizing faulty lines of code or an indica-
tor for missing lines of code (as the case may
be). A fault-seed can be algorithmically com-
puted: Checking whether a chosen subset of
statements is a fault-seed is formulated as an
instance of a model-checking problem.

Reconfiguration for Fault-Mitigation. Once a controller fault is detected, measures are taken to recon-
figure the control to ensure the safety and stability of the overall system. For this, reconfiguration strategies
are being developed in the framework of hybrid systems. If a software fault is detected, control is switched
to simpler version that is known to be reliable or to an alternative. For example if braking software has
fault, we can switch to either a simpler reliable braking software or, steering may be used to achieve braking
(by forcing the wheels inwards towards each-other).
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Application to CAN Bus
Controller area networks (CAN) are widely used in automotive embedded control systems for communi-

cations among multiple ECUs (electronic control units). The CAN communication protocol is a CSMA/CD
(Carrier Sense Multiple Access / Collision Detection) protocol. In CAN protocol, a nondestructive bitwise
arbitration method is utilized, i.e., the highest priority message remains intact after arbitration is completed
even if collisions are detected. CAN is a message-based broadcast bus. All nodes in the system receive every
message transmitted on the bus, ie., it is up to each node in the system to decide whether the message
received should be immediately discarded or kept to be processed. A CAN communication from a sender
to a receiver involves multiple hardware devices and different software components. At the high level, the
communication involves the sender ECU node, the bus, and the receiver ECU node. At the low level, in
the sender and receiver ECU nodes, the communication involves hardware (like CPU, memory, etc.) and
software (like application software, Operating System (OS) scheduler, communication software stack, etc.);
on the bus, it involves bus controllers, transceivers, connectors and cables.

It is very important to detect, diagnose, and mitigate failures in CAN systems accurately and timely.
In the communication, different types of failures (transient, intermittent and permanent) could happen
in different sofware/hardware components. Although we could detect some failures at some layers using
different approaches (like the CAN physical layer faults could be detected at the CAN data link layer by
using CRC, bit stuffing, acknowledgement, etc.; and the loss of periodic messages could be detected at the
receiver side by using time-out), we still need an integrated approach for fault detection and isolation in
CAN systems so that we could pinpoint the exact faulty device/component. At the same time we want to
minimize the resources (CPU and memory) needed for the fault detection and isolation while maximize the
fault coverage and the accuracy of the fault isolation. We plan to extend our hierarchical approach to solve
the above problem.
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