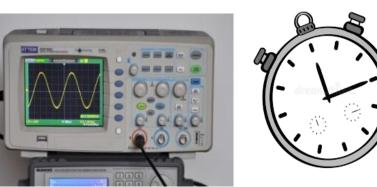


Finding and Mitigating Side-channel Leakage in Embedded Architectures

Patrick Schaumont (PI), William Diehl (Co PI) Virginia Tech, ECE Department

The Problem

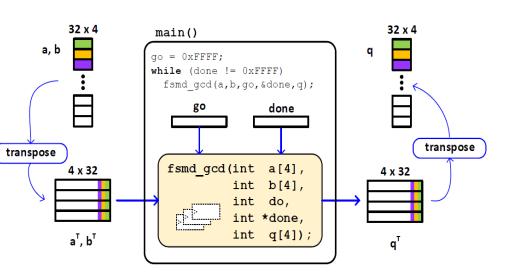

Embedded devices vulnerable to Side Channel Attacks (SCA)

Mathematically secure but physically breakable

Generalized solution to compose SCA-resistant SW remains fleeting

- Languages, compilers, ISA, and Hardware constantly changing
- Automation remains elusive

http://www.pd4pic.com/satellite-flat-icon-cartoon-dish-antenna-signal.htm


Our Objectives

Meet above challenges head-on through *composable*, *multifaceted, automated* approach

- Restructure software into *bitsliced* code to facilitate automated countermeasure insertion
- Automated flow to find, evaluate mode of leakage, and apply *mitigation* techniques

$reg_{0} \uparrow b,$ $reg1 n bit_{1}$ reg1 bit₁

Key Challenges

Generation of bitsliced code

Significance

Inhibits wide-spread

Scientific Impact

Generalized approach to generate bitsliced code

•••	Control intensive processes are
	challenging

Countermeasure insertion is "hit & miss"

 Most embedded designers are not experts in security

Countermeasure effectiveness unpredictable

Many layers of abstraction (HLL, compilers, ISA, logic gates)

Verification is time-consuming

Difficult in HW; How to get accurate results in simulation?

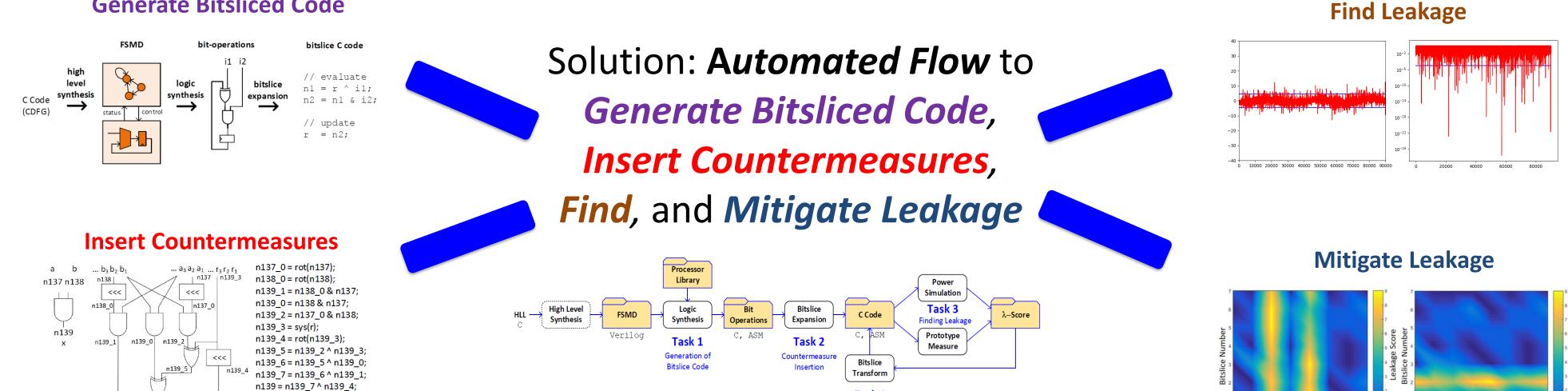
exploration of security & efficiency

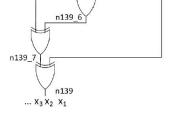
Countermeasures either not, or incorrectly implemented, in embedded architectures

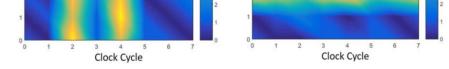
Mathematically "secure" countermeasures end up not being secure

Verification & mitigation of *leakage not performed due to* time and expense

- Improved compiler design **
- Improvements in High Level Synthesis (HLS)
- On-the-fly adjustment of security and variable precision **

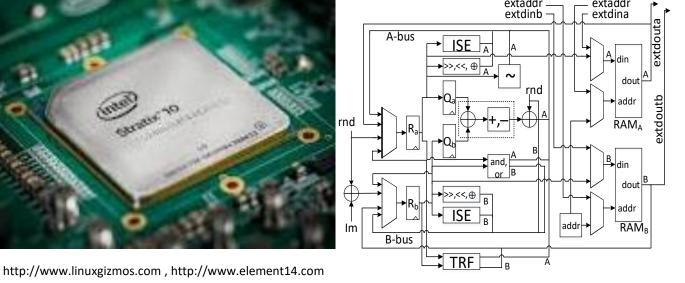

Improved understanding of side-channel "theory versus reality"


- Better understanding of linkage between compiled language and ISA **
- Close the gap between mathematically-derived randomness ** requirements, and empirical observations


Automated insertion of countermeasures; identification and mitigation of leakage

- Secure design depending on arcane science is not secure
- Design flows available to designers as part of main-stream EDA tools

Generate Bitsliced Code



Broader Impacts



Courses

- ECE 4530 Hardware Software Codesign
- ECE 5580 Cryptographic Engineering
- ECE 5520 Secure Hardware Design

http://www.vectorstock.com, http://businessinsider.com, http://www.grid.org

References

P. Kiaei, D. Mercadier, PE. Dagand, K. Heydemann, P. Schaumont, "SKIVA: Flexible and Modular Side-channel and Fault Countermeasures," IACR ePrint 2019/756 W. Diehl, A. Abdulgadir, J. P. Kaps, "Vulnerability Analysis of a Soft Core Processor through Fine-grain Power Profiling," IACR ePrint 2019/742

The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting (2019 SaTC PI Meeting) October 28-29, 2019 | Alexandria, Virginia