
Flexible manipulation without prior shape models
Principal Investigators: Tomás Lozano-Pérez and Leslie Pack Kaelbling, MIT CSAIL

M0M: Manipulation with zero models

PDSketch: Integrated learning and planning

RDDLStream: TAMP under uncertainty

M0M: Manipulation with 0 Models

Curtis, Fang, Kaelbling, Lozano-Perez, Garrett; ICRA22

Segmentation

RGB Depth DBSCAN UOIS-Net

Scene
1

Scene
2

Scene
3

Shape estimation for collision checking

RGB

Only point cloud Convex hull Concave hull

PDSketch: Integrated Planning Domain Programming and Learning

Intuition:

Engineers decide how much amount of knowledge they want to program in.

??? indicates functions that they don’t know how to write/don’t want to write manually.

But programming the overall “structures” is usually easy.

def press_button(b: Button):
for m in objects:
if belongs_to(b, m) and is_painter(m):
for x: Any in objects:
if in(x, m):
x.color = mix(x.color, m.color)

if ...

def press_button(b: Button):
for m in objects:
if belongs_to(b, m) and ???(m):
for x: Any in objects:
if ???(x, m):
x.color = ???(x.color, m.color)

if ...

Mao, Lozano-Perez, Tenenbaum, Kaelbling; NeurIPS22

Existing Frameworks

def facing(agent, object): ...

def move_forward(s):
if not any(
facing(s.agent, x) and
is_obstacle(x)
for x in s.objects

):
if s.agent.facing == 0:
s.agent.x -= 1

elif s.agent.facing == 1:
s.agent.y += 1

elif ...

A lot of prior knowledge.
No/Minimal training data.
Fast planning.

Minimal prior knowledge.
A lot of training data.
Slow planning.

?? : Trainable Neural Networks.

Domain Programming Neural Network LearningPDSketch (Our Work)

def move_forward(s):
if not any(
??(s.agent, x)
for x in s.objects

):
s.agent = ??(s.agent)

Small amount of prior knowledge.
Small amount of training data.
Fast planning.

def move_forward(s):
s.agent = ??(s)
for i in range(n):
s.objects[i] = ??(s)

State Space:
s.agent = (x, y, facing)
s.objects[i] = (x, y, image)

Transition Model
def move_forward(s): ...
def rturn(s): ...
def toggle(s): ...
......

MiniGrid Example

Domain-Independent
PlannerState

Predicates
next_to(agent, object)
is_yellow(object)
is_box(object)
......

“Go to a red object”
∃x. is_yellow(x) & next_to(agent, x)Goal

Action
RTurn

Domain Model

Learning and Planning Efficiency

Full robot movement models.
Need to learn object classifiers.

Abstract robot models.
(Sparse and local structures)

Graph neural network.
(Weakest prior)

Behavior Cloning 0.79

Decision Xformer 0.82

DreamerV2 0.79

PDS-Base 0.62

PDS-Abs 0.98

PDS-Rob 1.00

Success RateData Efficiency Planning Efficiency

PDS-Rob PDS-BasePDS-Abs

PDS-Base
Learned
PDS-Abs

Planning For Complex Manipulation

Simplified Example On a Table: Three Strategies

Goal: in(cube, box)

Initial State:

s0

s1

s2

sT

a0

a1

Torque Level

si: physical states.
ai: torque commands.

s0

s1

s2

sT

a0

a1

Contact Mode Level

si: physical states.
ai: contact mode commands.
(transit, transfer)

transit

grasp

s0

s1

sT

a0

a1

“Operator” Level

si: physical states.
ai: mechanism commands.
(transit, transfer)

hook

transfer

......

Mechanisms: Representation

Goal: in(cube, box)

Initial State:

s0

s1

sT

a0

a1

hook

transfer

A mechanism is a “macro over contact modes”.

s0

s1

s2

a0

a1

transit(#!)

grasp(tool; #")

s3

a2
transfer_with_contact(tool, cube; ##)

s4

a3
place(tool; #$)

*: Modes are continuously
parameterized.

Mechanisms: Representation

s0

s1

sT

a0

a1

hook

transfer

A mechanism is a “macro over contact modes”.

s0

s1

s2

a0

a1

hook-1-transit(#!)

hook-2-grasp(tool; #")

s3

a2
hook-3-transfer_with_contact(

tool, cube; ##)

s4

a3
hook-4-place(tool; #$)

*: Modes are continuously
parameterized.

s0

s1

s2

a0

a1

s3

a2

s4

a3

Transition Model

a0 a1 a2 a3

PowerfulNeuralNet(/ ; #)

(Joint) Sampler for
Action Parameters

Mechanisms: Learning

s0

s1

s2

a0

a1

s3

a2

s4

a3

Transition Model

a0 a1 a2 a3

PowerfulNeuralNet(/ ; #)

(Joint) Sampler for
Action Parameters

If I have “a lot of” data, then I can just train my
favorite neural network.
What if I only have very few demos?

In practice, we don’t want to have thousands of videos
to teach the robot just one “trick.”

• The intuition is to exploit the contact
mode structure of mechanisms to
explore.

Mechanisms: Representation in PDSketch

Recall we have three layers of transition model:
• Simulation (PyBullet), Contact Primitives (Transit, Transfer, etc.), Mechanisms.

(:action indirect-push
:parameters (?robot - robot ?target - item ?tool - item ?support - item

?param - indirect-push-param ?qt - qpos-trajectory)
:precondition (and

(robot-holding-item ?robot ?tool)
(support ?target ?support)
(valid-indirect-push-param ... ?param)
(valid-indirect-push-trajectory ... ?param ?qt)

)
:effect (and

(robot-qpos::assign[simulation=true] ?robot (??f1 ?qt))
(item-pose::assign [simulation=true] ?target (??f3 ?qt))
(item-pose::assign [simulation=true] ?tool (??f2 ?qt))

)
:controller (run-indirect-push ... ?param ?qt)

)

?robot ?target?tool ?support
Fixed Fixed* Slide

Specified in Python: use a
simulator to compute the effect
(a.k.a. no amortized model)

An underlying “controller” for this mode.

Mechanisms: Representation in PDSketch

Mechanisms are macros over contact-level primitives.
(:macro

(hook-and-grasp ?robot - robot ?tool - item ?target - item ?support - item ...)
(then

(grasp ?robot ?tool ?support ...)
(indirect-push ?robot ?target ?tool ?support ...)
(place ?robot ?tool ?support ...)
(grasp ?robot ?target ?support ...)

)
)

• During search time, this macro will be treated as a new primitive action.
• It will be expanded into four primitives during search.

Mechanisms: Learning Pipeline

Demonstration

Few-shot (one-shot): arbitrary object.

Extract from demonstration:
1. Contact mode skeleton.
2. Goal expression (by comparing

before/after state).
In this case:
grasp('robot', 'tool1', 'table', '??', '??')
indirect_push('robot', 'box1', 'tool1',
'table', '??', '??')
place('robot', 'tool1', 'table', '??', '??')
grasp('robot', 'box1', 'table', '??', '??')

Random Exploration

Solution

PowerfulNeuralNet(/ ; #)

Training

Planning

Advantage: Handling “Quasi-Dynamic” Motion
(:action place

:parameters (?robot - robot ?target - item ?support - item ?target-pose - pose ?qt - qpos-trajectory)
:precondition (and

(robot-holding-item ?robot ?target)
(valid-placement-param [generator_placeholder=true, generators=["?target-pose"]] (robot-

identifier ?robot) (item-identifier ?target) (item-identifier ?support) (item-pose ?target) (item-
pose ?support) ?target-pose)

(valid-placement-trajectory [generator_placeholder=true, generators=["?qt"]] (robot-
identifier ?robot) (item-identifier ?target) (item-identifier ?support) (robot-qpos ?robot) (item-
pose ?target) (item-pose ?support) ?target-pose ?qt)

)
:effect (and

(robot-hands-free ?robot)
(not (robot-holding-item ?robot ?target))
(forall (?s - item)

(support::assign ?target ?s (??f2 ?qt))
)
(robot-qpos::assign ?robot (??f1 ?qt))
(item-pose::assign ?target ?target-pose)
(item-pose::assign ?support (??f2 ?qt))

)
:controller (run-place (robot-identifier ?robot) (item-identifier ?target) (item-

identifier ?support) ?target-pose ?qt)
)

Task: Supported(P, B) and
not Supported(P, Table)

RDDLStream Outcome Uncertainty Example

Prost

A B

Initial Belief State:
(at a a_pose), (at c c_pose), (at c c_pose)
(shape a sq), (shape b sq), (shape c nsq)

Samplers:
force(?o) –> [?v]
placement(?o) –> [?p]
grasp(?o) –> [?g]

Actions:
pick(?o, ?p, ?g) –> []
– pre: [(not (holding ?o)), (at ?o ?p)]
– veff: [(holding ?o)]
- eff: [(not (at ?o ?p))]
place(?o, ?p, ?g) –>[]
– pre: [(not (holding ?o)), (at ?o ?p)]
– eff: [(holding ?o), (not (at ?o ?p))]
push(?o, ?v) –> [?p]
– eff: [at ?o ?p]

Goal: Create a stack three blocks

Discrete and Simplified
Belief-space abstraction

Partial policy

Pick (a, a_pose) –> {(holding a): 1.0}

Pick (b, b_pose) –> {(holding b): 1.0}

Pick (c, c_pose) –> {(holding c): 0.2}

C

RDDLStream Compilation

RDDLStream

Push (a, v_01) –> {(at p01): 0.5, (at p02): 0.5}

…

RDDLStream Information Gathering

Prost

A
Initial Belief State:
(at a a_pose)
(at b b_pose)

Samplers:
None

Actions:
pick(?o, ?p) –> []
– pre: [(not (holding ?o)), (at ?o ?p)]
– eff: [(not (at ?o ?p)), (holding ?o)]
place(?o, ?p) –>[]
– pre: [(not (holding ?o)), (at ?o ?p)]
– eff: [(holding ?o), (not (at ?o ?p))]
observe(?o, ?o*, ?p*) –> [?p]
– pre: [(handempty), (at ?o*, ?p*)]
– veff: [(at ?o ?p)]

Goal: Hold C

Discrete and Simplified
Belief-space abstraction

Partial policy

Pick (a, a_pose) –> {(holding a): 1.0}
Place (a, a_pose_2) –> {(at a a_pose_2): 1.0}
Pick (b, b_pose) –> {(holding b): 1.0}
Place (b, b_pose_2) –> {(at b b_pose_2): 1.0}
Observe (c, [a,b], [ap, bp])) –> {(at c cpose): 0}
Observe (c, [a,b], [ap, bp2])) –> {(at c cpose): 0.2}
Observe (c, [a,b], [ap2, bp])) –> {(at c cpose): 0.4}
Observe (c, [a,b], [ap2, bp2])) –> {(at c cpose): 1.0}

RDDLStream Compilation

RDDLStream

B

How is this better than an “offline” POMCP?
1.) Pick cannot be executed without full knowledge of an
object’s pose (property of belief)
2.) Observations only either generate full pose
information or not
3.) Outcome sampling is guided by optimisitic
observations

Simple Outcome Uncertainty
• Puck starts in a fixed location
• The agent can push the puck

with a force in R^2 if it is
within a kinematically feasible
region
• There is uncertainty in the

mass, which results in
outcome uncertainty with the
pushing action
• The goal is to land the puck in

the green region

RDDLStream

Outcome Uncertainty with IG

RDDLStream

• Actions can gather
information that change the
belief state
• Information gathering actions

must stay within the
reachable configuration
regions so they can be pushed
again
• Works reliably with
• Depth=2
• Outcome samples = 10
• Force vector samples = 10

