ForceBot: A Robotic Platform for Body-Scale Human Physical Interaction in Embodied Virtual Reality

Dr. Alexander Leonessa

Dr. Divya Srinivasan

Dr. Jing Du

Department of Mechanical Engineering
Virginia Tech

Department of Industrial Engineering and Bioengineering Clemson University

Department of Civil and Coastal Engineering
University of Florida

[Challenges

- **Physical Human-Machine Interface Design:** Establish an interface to dynamically interact with a remote target (e.g., virtual environment, teleoperated robot) in a human-robot aligned workspace.
- Human-Robot Coupled System Control: Develop a control algorithm that interprets user intention to provide responsive force feedback and motion, while maintaining system stability.
- Multi-Robotic Sub-Systems Integration with VR: Integrate multiple sub-systems with a scalable and low-latency communication field to guarantee simultaneous manipulation between the robots and VR.

[Scientific Impact]

- A Comprehensive Human-Machine Interface for VR interaction and human biomechanical study: User cognition in VR paired with physical interaction can benefit rehabilitation and training purposes.
- A control algorithm that utilizes biomechanical measurement (COP, ZMP) to regulate human-robot interaction.

Linux Central Web Web Computer Socket Socket RT Robot Robot Controller Motion Generator Robot Robot Computer Computer Controller VR Gait Helmet & Simulator Trackers Robotic Arm Force / Haptic Torque Glove Sensor

Solutions

- Admittance-based haptic interface for realistic ground simulation with low power consumption.
- Adaptive admittance based on user intention that improves system stability and transparency.
- **Scalable** robotic framework for robotic and VR system integration with low-latency communication field.
- Use of motion captured data to design a safe and unrestricted human-robot workspace.

Broader Impacts]

- Aid various sectors of industry and government to train personnel with virtual reality simulation.
- Assist the scientific community in understanding human behavior and motion with biomechanical data.
- Educate and gather interest from STEM students with experience in advanced robotic systems.
- Benefit the society with the embodied virtual reality for enhanced rehabilitation training.

