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This Talk:  PIYC / TIYC 

• “Pick-tick” 

– Prove If You Can. 

– Test If You Cannot. 

• More precisely 

– Formal specifications should support verification 

– They should also support testing 

– Testing should be seen as “approximate formal 
verification” 
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Formal Methods 

• Mathematically rigorous approaches to 
specifying, verifying systems 
– Originally: software, hardware design 

– Key people:  Clarke, Dijkstra, Hoare, Lamport, 
Milner, Pnueli, … 

• Why?  To increase confidence! 
– If the specification is trusted, verification yields 

trust in system 

– If specification is not trusted, proving it is 
consistent with system builds trust in both 
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The Elements of Formal Methods 

• Formal semantics of systems (e.g. state 
machines) 

Systems must be mathematical objects! 

• Formal specifications (e.g. temporal logic) 

Mathematical descriptions of desired behavior 

• Formal verification = proof 

– Model checking:  Proofs done automatically 

– Theorem proving:  Proofs done “automatedly” 
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Status of Formal Methods 

• Noteworthy successes! 

– sel4 OS kernel verification 

– Railway signaling 

– Paris Roissy VAL shuttle 

– Mars Rover 

– Satellite control  

– … 

• We are not at the stage where success is 
expected 
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Why? 

• “Scalability” 

Building proofs is laborious, even for machines 

• Inability to predict level of effort 

– Difficulty of proof not correlated to usual measures 
of system complexity 

– Work needed to coax proof out of tools not easy to 
estimate 
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Testing 

• How verification and validation happens in 
practice 
– Incomplete, but 

– Scalable, and 

– Mandated (regulation) 

• Terminology 
– Black box / white box 

– Hardware-in-the-loop 

– Model-based testing (MBT) 

– … 
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My Perspective 

• Proving is hard, but guarantees are very strong 

• If proofs are not possible 

– Must test to conduct V&V 

– Benefits of formal specifications in this case? 

• “Prove If You Can, Test If You Cannot” 
(PIYC/TIYC) 

We should focus on formal specifications that 
support proof and testing! 
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Rest of Talk: PIYC / TIYC in Practice 

• Model-based testing 
– Models used as software specifications 

– MBT used to check software vis à vis specs 

• Instrumentation-Based Verification (IBV) 
– Specifications given in same notation as software 

– Verification = instrument software, check for errors 

• Context 
– Automotive control software and Model-Based 

Development (MBD) 

– MATLAB® / Simulink® / Stateflow® / Reactis® 
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Model-Based Development (MBD) 
in Automotive 

Requirements 

System test 

Design 

Specifications 

Unit test 

Implementation 

Final test 

models 

models 

Main Motivation:  autocode 
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Models also support V&V, testing 



PIYC / TIYC for MBD 

• Formalize verification problems 
mathematically 

• Give testing-based approximate verification 
strategies based on formalizations 
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Simulink 

• Block-diagram modeling 
language / simulator of 
The MathWorks, Inc. 

• Hierarchical modeling 

• Continuous- and 
discrete-time simulation 
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Discrete Simulink Semantics 
(cont.) 

• Simulink models are Mealy machines 

– States are assignments to state variables 

– Transitions are computed by model 

• Can thus speak of language of model M 

– I = set of possible input vectors for M 

– O = set of possible output vectors for M 

– L(M) = {w  ∈ (I x O)* | w is sequence of transition 
labels of execution of M } 
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MBD Verification Problem #1   

Does implementation meet design? 

models Specifications 

Design models 

Implementation 
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Model-Based Testing 

• An emerging approach to this problem 

– From Simulink model … 

– … generate test cases 

– … and run them on system  

– … comparing results 

• Model serves as 

– Specification 

– Test oracle 
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Improving MBT 

• Recall formalization of Problem #1 
– Given M, S 
– Prove L(M) = L(S) 
– Classical MBT: generate tests from M, run on S 

• If L(M) = L(S) is goal, why not also generate tests 
from S, run them on M? 

• Result:  “back-to-back testing” 
– Reactis used to generate tests from M 
– Reactis for C used to generate tests from C code 
– Controversial! 

• “You can’t generate tests from implementations” 
• But formalization suggests this is perfectly reasonable! 
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MBD Verification Problem #2  

Do specs satisfy requirements? 

Requirements 

Design 

Specifications models 

models 
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Formalizing Verification Problem #2 

• Need following for PIYC / TIYC: 
– Formalized requirements 

– Formalized notion of satisfaction 

• Our approach:  Instrumentation-Based Verification 
 

Requirements 

Design 

Specifications models 

models 
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IBV:  Requirements 

• Formalize 
requirements as 
monitor models 

• Example 

 If speed is < 30, 
cruise control must 
remain inactive 
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IBV:  Satisfaction 

• Instrument design model 
with monitors 

• Model satisfies monitors if: 

– For every input sequence … 

– … every monitor model output 
remains true 

• Reachability problem! 

– Proof possible 

– State space an issue 
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Approximate Verification for 
Problem #2 
• Use coverage testing on 

instrumented model 
– Better scalability 

– If booleans part of coverage 
criteria: 
• Test generator tries to make 

monitor outputs false 

• Skeptical testing! 

• Reactis 
– Supports instrumentation 

– Acts as skeptical tester 

– Reports violations 
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Summary 

• PIYC / TIYC! 

– Formalize specs 

– View testing as “approximate” formal verification 

• Applications in model-based testing, 
verification against requirements 
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Provocative Statement! 

 

 

 

 

• Down with Temporal Logic! 

• Really? 

– Of course not!  Great vehicle for research 

– But PIYC/TIYC?  Not so much … 
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Specification Reconstruction 

• V&V needs requirements specifications 
– Requirements then checked using testing, formal 

methods, etc. 
– Quality of V&V depends on quality of specification 

• Problem! 
– Specification must be maintained, updated, checked 
– Implicit requirements often not documented 
– “Emergent behavior?” 

• Specification reconstruction 
– Given system (model) … 
– … automatically propose requirements 
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White-Box Invariant 
Reconstruction 
• Invariants:  one type of requirements 

– Invariant stipulates relationship that should be preserved 
among state variables as system evolves 

– E.g. 

 If the brake pedal is pressed, the cruise control must 
immediately disengage 

• Invariant reconstruction via models, data mining, IBV 
– Generate test cases  

– Compute proposed invariants using data mining 

– Check proposed invariants using IBV 

– Repeat 

(Joint work with Christoph Schulze) 
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Data Mining 

• Tools for inferring patterns in (time-series) 
data 
– Input:  table 

 

 

 

 

– Output:  patterns (= formulas) 

 e.g.    -1 ≤ x ≤ 2 

   0 ≤ x ≤ 3  ->  y ≥ 0 
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Time x y 

0 1 0 

1 -1 -1 

2 2 1 

… … … 



Association Rules 

• An important class of patterns! 

– Form: ∧ φi  -> ∧ γj 

• φi, γ j are propositions involving variables, constants 

• {φi}, {γ j} are disjoint 

• Traditionally:  j = 1 

– E.g. x = 1  ->  y = 0 

• Our work:  find invariants in form of association 
rules 

– LHS:  propositions involving inputs, “incoming state” 

– RHS:  proposition involving outputs, “outgoing state” 
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Apriori Algorithm 

• Widely used association-rule mining 
technique 

• Developed in 1993-94 by Agrawal et al. 

– SIGMOD 1993 

– VLDB 1994 

• Implemented in many data-mining tools 
(Weka, Magnum Opus, …) 
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Invariant Reconstruction 

• General idea 

– Treat test results (I/O sequences) as “tables” 

– Invariants: association rules with coverage ≥ 1, strength 
= 1 

– Use Apriori to compute invariants involving inputs 
(antecedent), outputs (consequent) 

• Additionally 

– Ensure test cases satisfy structural coverage criteria 
(e.g. branch coverage) to ensure “thoroughness” 

– Use IBV to double-check proposed invariants 
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What About IBV Tests? 

• In IBV, coverage testing of instrumented 
model used to check for monitor violations 

• Tests inducing violations can be used to 
remove invariants subsequent “minings” 

• They also can be a source of other invariants 
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Our Approach in Detail 
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Tests 
Test Generation 
(Reactis) 

Rule mining 
(Apriori) 

IBV (Reactis) 

Model 

Rules Spec 

Tests 

• Reactis creates tests to do IBV check 

• These tests are “cycled back through” the data-mining tool, 
together with original tests 



Pilot Study:  Production Body-
Electronic Application 

• Artifacts 

– Simulink model (ca. 75 blocks) 

– Requirements spec formulated as state machine 

– Requirements correspond to 42 invariants 
defining transition relation, e.g. 

 state = 1 ∧ pressed = true -> new_state = 2 

• Goal:  Compare our approach, random testing 

– Completeness (% of 42 detected?) 

– Accuracy (% false positives?) 
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Experimental Results 

• Hypothesis:  coverage-testing yields better 
invariants than random testing 

• Coverage results (one iteration of test generation) 

95% of inferred invariants true 
97% of requirements inferred 
Two missing requirements detected 

• Random results: 

55% of inferred invariants true 
40% of requirements inferred 

• Hypothesis confirmed (for this case study) 
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Requirement Issue 

• Missing reset transitions in requirements 

• Code was correct 
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Procedural Issues 

• How do you trust generated invariants in 
absence of “requirements baseline”? 

• Our approach:  Jaccard similarity 
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Jaccard Similarity Measures 

• Jaccard:  a tool for measuring set similarity 

• Let A, B be sets.  Then the Jaccard similarity 
measure, J(A,B), of A and B is: 

 J(A,B) =  

• Facts 

– 0 ≤ J(A,B) ≤ 1 

– Closer to 1 means “more similar” 
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Jaccard and Invariant Generation 

• High Jaccard similarity means more “stable” 

– For coverage:  average Jaccard score is 0.87 

– For random:  average is 0.65 

• Another use:  iteration termination 

– Our approach allows iteration of “test / generate / 
check” 

– When to terminate:  use Jaccard!  (i.e. terminate 
when successive invariant sets are “similar 
enough”) 
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Provocative Statement! 
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Focus at UMD in CyberCardia 

• Foundations, tools for reasoning about CPS 
– Formal modeling of CPS 
– Formal specification, verification 

• This year:  Specification reconstruction  
– Given model M, infer temporal properties that M 

(likely) satisfies 
– Motivations 

• Model understanding 
• Specification updating 
• Means for “jump-starting” formal specificiations in often 

unfamiliar notations 

• See poster (48-50)! 
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Specific Results in 2017 

• Linear temporal-logic query checking 
– Problem 

• Given Kripke structure M, LTL “template” phi[x] 
• Find most general solution phi’ for missing formula x so that  M satisfies 

phi[x:=phi’] 

– Algorithmic solution based on model checking developed, 
implemented, evaluated 

– Work presented at AVoCS/FMICS 2017 

• Invariant mining from test data 
– Problem 

• Given (Simulink) model M, state variables of interest 
• Propose invariants describing relationships among variables 

– Approach:  use data-mining on test data coupled with retesting to 
generate likely invariants 

– Evaluation used 11 models from automotive, medical-device domain 
– Work presented at EMSOFT 2017 
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