
Rance Cleaveland
Department of Computer Science

NSF CPS Frontier Project CNS-1446365

Formal Methods Meets Testing

20 October 2017 ©2017 Rance Cleaveland

This Talk: PIYC / TIYC

• “Pick-tick”

– Prove If You Can.

– Test If You Cannot.

• More precisely

– Formal specifications should support verification

– They should also support testing

– Testing should be seen as “approximate formal
verification”

1

Formal Methods

• Mathematically rigorous approaches to
specifying, verifying systems
– Originally: software, hardware design

– Key people: Clarke, Dijkstra, Hoare, Lamport,
Milner, Pnueli, …

• Why? To increase confidence!
– If the specification is trusted, verification yields

trust in system

– If specification is not trusted, proving it is
consistent with system builds trust in both

2

The Elements of Formal Methods

• Formal semantics of systems (e.g. state
machines)

Systems must be mathematical objects!

• Formal specifications (e.g. temporal logic)

Mathematical descriptions of desired behavior

• Formal verification = proof

– Model checking: Proofs done automatically

– Theorem proving: Proofs done “automatedly”

3

Status of Formal Methods

• Noteworthy successes!

– sel4 OS kernel verification

– Railway signaling

– Paris Roissy VAL shuttle

– Mars Rover

– Satellite control

– …

• We are not at the stage where success is
expected

4

Why?

• “Scalability”

Building proofs is laborious, even for machines

• Inability to predict level of effort

– Difficulty of proof not correlated to usual measures
of system complexity

– Work needed to coax proof out of tools not easy to
estimate

5

Testing

• How verification and validation happens in
practice
– Incomplete, but

– Scalable, and

– Mandated (regulation)

• Terminology
– Black box / white box

– Hardware-in-the-loop

– Model-based testing (MBT)

– …

6

My Perspective

• Proving is hard, but guarantees are very strong

• If proofs are not possible

– Must test to conduct V&V

– Benefits of formal specifications in this case?

• “Prove If You Can, Test If You Cannot”
(PIYC/TIYC)

We should focus on formal specifications that
support proof and testing!

7

Rest of Talk: PIYC / TIYC in Practice

• Model-based testing
– Models used as software specifications

– MBT used to check software vis à vis specs

• Instrumentation-Based Verification (IBV)
– Specifications given in same notation as software

– Verification = instrument software, check for errors

• Context
– Automotive control software and Model-Based

Development (MBD)

– MATLAB® / Simulink® / Stateflow® / Reactis®

8

Model-Based Development (MBD)
in Automotive

Requirements

System test

Design

Specifications

Unit test

Implementation

Final test

models

models

Main Motivation: autocode

9

Models also support V&V, testing

PIYC / TIYC for MBD

• Formalize verification problems
mathematically

• Give testing-based approximate verification
strategies based on formalizations

10

Simulink

• Block-diagram modeling
language / simulator of
The MathWorks, Inc.

• Hierarchical modeling

• Continuous- and
discrete-time simulation

11

state
vars

model

inputs

[]

[]
outputs

state
vars

model

inputs

[]

[]
outputs

state
vars

Discrete Simulink Semantics

12

Discrete Simulink Semantics
(cont.)

• Simulink models are Mealy machines

– States are assignments to state variables

– Transitions are computed by model

• Can thus speak of language of model M

– I = set of possible input vectors for M

– O = set of possible output vectors for M

– L(M) = {w ∈ (I x O)* | w is sequence of transition
labels of execution of M }

13

MBD Verification Problem #1

Does implementation meet design?

models Specifications

Design models

Implementation

14

Model-Based Testing

• An emerging approach to this problem

– From Simulink model …

– … generate test cases

– … and run them on system

– … comparing results

• Model serves as

– Specification

– Test oracle

15

Improving MBT

• Recall formalization of Problem #1
– Given M, S
– Prove L(M) = L(S)
– Classical MBT: generate tests from M, run on S

• If L(M) = L(S) is goal, why not also generate tests
from S, run them on M?

• Result: “back-to-back testing”
– Reactis used to generate tests from M
– Reactis for C used to generate tests from C code
– Controversial!

• “You can’t generate tests from implementations”
• But formalization suggests this is perfectly reasonable!

16

MBD Verification Problem #2

Do specs satisfy requirements?

Requirements

Design

Specifications models

models

17

Formalizing Verification Problem #2

• Need following for PIYC / TIYC:
– Formalized requirements

– Formalized notion of satisfaction

• Our approach: Instrumentation-Based Verification

Requirements

Design

Specifications models

models

18

IBV: Requirements

• Formalize
requirements as
monitor models

• Example

 If speed is < 30,
cruise control must
remain inactive

19

IBV: Satisfaction

• Instrument design model
with monitors

• Model satisfies monitors if:

– For every input sequence …

– … every monitor model output
remains true

• Reachability problem!

– Proof possible

– State space an issue

20

Approximate Verification for
Problem #2
• Use coverage testing on

instrumented model
– Better scalability

– If booleans part of coverage
criteria:
• Test generator tries to make

monitor outputs false

• Skeptical testing!

• Reactis
– Supports instrumentation

– Acts as skeptical tester

– Reports violations

21

Summary

• PIYC / TIYC!

– Formalize specs

– View testing as “approximate” formal verification

• Applications in model-based testing,
verification against requirements

22

Provocative Statement!

• Down with Temporal Logic!

• Really?

– Of course not! Great vehicle for research

– But PIYC/TIYC? Not so much …

23

TL

Specification Reconstruction

• V&V needs requirements specifications
– Requirements then checked using testing, formal

methods, etc.
– Quality of V&V depends on quality of specification

• Problem!
– Specification must be maintained, updated, checked
– Implicit requirements often not documented
– “Emergent behavior?”

• Specification reconstruction
– Given system (model) …
– … automatically propose requirements

26

White-Box Invariant
Reconstruction
• Invariants: one type of requirements

– Invariant stipulates relationship that should be preserved
among state variables as system evolves

– E.g.

 If the brake pedal is pressed, the cruise control must
immediately disengage

• Invariant reconstruction via models, data mining, IBV
– Generate test cases

– Compute proposed invariants using data mining

– Check proposed invariants using IBV

– Repeat

(Joint work with Christoph Schulze)

27

Data Mining

• Tools for inferring patterns in (time-series)
data
– Input: table

– Output: patterns (= formulas)

 e.g. -1 ≤ x ≤ 2

 0 ≤ x ≤ 3 -> y ≥ 0

28

Time x y

0 1 0

1 -1 -1

2 2 1

… … …

Association Rules

• An important class of patterns!

– Form: ∧ φi -> ∧ γj

• φi, γ j are propositions involving variables, constants

• {φi}, {γ j} are disjoint

• Traditionally: j = 1

– E.g. x = 1 -> y = 0

• Our work: find invariants in form of association
rules

– LHS: propositions involving inputs, “incoming state”

– RHS: proposition involving outputs, “outgoing state”

29

Apriori Algorithm

• Widely used association-rule mining
technique

• Developed in 1993-94 by Agrawal et al.

– SIGMOD 1993

– VLDB 1994

• Implemented in many data-mining tools
(Weka, Magnum Opus, …)

30

Invariant Reconstruction

• General idea

– Treat test results (I/O sequences) as “tables”

– Invariants: association rules with coverage ≥ 1, strength
= 1

– Use Apriori to compute invariants involving inputs
(antecedent), outputs (consequent)

• Additionally

– Ensure test cases satisfy structural coverage criteria
(e.g. branch coverage) to ensure “thoroughness”

– Use IBV to double-check proposed invariants

31

What About IBV Tests?

• In IBV, coverage testing of instrumented
model used to check for monitor violations

• Tests inducing violations can be used to
remove invariants subsequent “minings”

• They also can be a source of other invariants

©2010 Fraunhofer USA Inc. 32

Our Approach in Detail

33

Tests
Test Generation
(Reactis)

Rule mining
(Apriori)

IBV (Reactis)

Model

Rules Spec

Tests

• Reactis creates tests to do IBV check

• These tests are “cycled back through” the data-mining tool,
together with original tests

Pilot Study: Production Body-
Electronic Application

• Artifacts

– Simulink model (ca. 75 blocks)

– Requirements spec formulated as state machine

– Requirements correspond to 42 invariants
defining transition relation, e.g.

 state = 1 ∧ pressed = true -> new_state = 2

• Goal: Compare our approach, random testing

– Completeness (% of 42 detected?)

– Accuracy (% false positives?)

34

Experimental Results

• Hypothesis: coverage-testing yields better
invariants than random testing

• Coverage results (one iteration of test generation)

95% of inferred invariants true
97% of requirements inferred
Two missing requirements detected

• Random results:

55% of inferred invariants true
40% of requirements inferred

• Hypothesis confirmed (for this case study)

©2010 Fraunhofer USA Inc. 35

Requirement Issue

• Missing reset transitions in requirements

• Code was correct

36

Procedural Issues

• How do you trust generated invariants in
absence of “requirements baseline”?

• Our approach: Jaccard similarity

©2010 Fraunhofer USA Inc. 37

Jaccard Similarity Measures

• Jaccard: a tool for measuring set similarity

• Let A, B be sets. Then the Jaccard similarity
measure, J(A,B), of A and B is:

 J(A,B) =

• Facts

– 0 ≤ J(A,B) ≤ 1

– Closer to 1 means “more similar”

©2010 Fraunhofer USA Inc. 38

|A ∩ B|

|A U B|

Jaccard and Invariant Generation

• High Jaccard similarity means more “stable”

– For coverage: average Jaccard score is 0.87

– For random: average is 0.65

• Another use: iteration termination

– Our approach allows iteration of “test / generate /
check”

– When to terminate: use Jaccard! (i.e. terminate
when successive invariant sets are “similar
enough”)

©2010 Fraunhofer USA Inc. 39

43

Provocative Statement!

44

Focus at UMD in CyberCardia

• Foundations, tools for reasoning about CPS
– Formal modeling of CPS
– Formal specification, verification

• This year: Specification reconstruction
– Given model M, infer temporal properties that M

(likely) satisfies
– Motivations

• Model understanding
• Specification updating
• Means for “jump-starting” formal specificiations in often

unfamiliar notations

• See poster (48-50)!

45

Specific Results in 2017

• Linear temporal-logic query checking
– Problem

• Given Kripke structure M, LTL “template” phi[x]
• Find most general solution phi’ for missing formula x so that M satisfies

phi[x:=phi’]

– Algorithmic solution based on model checking developed,
implemented, evaluated

– Work presented at AVoCS/FMICS 2017

• Invariant mining from test data
– Problem

• Given (Simulink) model M, state variables of interest
• Propose invariants describing relationships among variables

– Approach: use data-mining on test data coupled with retesting to
generate likely invariants

– Evaluation used 11 models from automotive, medical-device domain
– Work presented at EMSOFT 2017

46

