Formal Methods Meets Testing

Rance Cleaveland

Department of Computer Science
NSF CPS Frontier Project CNS-1446365

Q)

CyberCardia

UNIVERSITY OF The

IACS Instltute for
pcs. 8 MARYLAND SUatsng

Research

U
r\dv

20 October 2017 ©2017 Rance Cleaveland

This Talk: PIYC / TIYC

e “Pick-tick”
— Prove If You Can.

— Test If You Cannot.

* More precisely
— Formal specifications should support verification
— They should also support testing

— Testing should be seen as “approximate formal
verification”

Formal Methods

 Mathematically rigorous approaches to
specifying, verifying systems
— Originally: software, hardware design

— Key people: Clarke, Dijkstra, Hoare, Lamport,
Milner, Pnueli, ...

* Why? To increase confidence!

— If the specification is trusted, verification yields
trust in system

— If specification is not trusted, proving it is
consistent with system builds trust in both

QQRSIT}’_

N e

(h\; o,

O\ }
Q

(
Vs

A §
TRYLAS

The Elements of Formal Methods f

* Formal semantics of systems (e.g. state
machines)

Systems must be mathematical objects!

* Formal specifications (e.g. temporal logic)
Mathematical descriptions of desired behavior

 Formal verification = proof
— Model checking: Proofs done automatically
— Theorem proving: Proofs done “automatedly”

Qe‘“.f;;@'qﬁ
Status of Formal Methods N

ARYLN

* Noteworthy successes!
— sel4 OS kernel verification
— Railway signaling
— Paris Roissy VAL shuttle
— Mars Rover
— Satellite control

 We are not at the stage where success is
expected

e “Scalability”

Building proofs is laborious, even for machines

* |nability to predict level of effort

— Difficulty of proof not correlated to usual measures
of system complexity

— Work needed to coax proof out of tools not easy to
estimate

Testing

* How verification and validation happens in
practice
— Incomplete, but
— Scalable, and
— Mandated (regulation)

 Terminology
— Black box / white box

— Hardware-in-the-loop
— Model-based testing (MBT)

My Perspective

* Proving is hard, but guarantees are very strong

* |f proofs are not possible
— Must test to conduct V&V
— Benefits of formal specifications in this case?

* “Prove If You Can, Test If You Cannot”
(PIYC/TIYC)

We should focus on formal specifications that
support proof and testing!

wRSIp
Q%diiﬁ\:o

Rest of Talk: PIYC / TIYC in Practice &%

Ipa hS

* Model-based testing
— Models used as software specifications
— MBT used to check software vis a vis specs

* |Instrumentation-Based Verification (IBV)
— Specifications given in same notation as software
— Verification = instrument software, check for errors

e Context

— Automotive control software and Model-Based
Development (MBD)

— MATLAB® / Simulink® / Stateflow® / Reactis®

Model-Based Development (MBD)

In Automotive

Requirements Final test
models | Specifications System test
models Design Unit test

\ /

Implementation

Main Motivation: autocode

Models also support V&V, testing

PIYC / TIYC for MBD

* Formalize verification problems
mathematically

* Give testing-based approximate verification
strategies based on formalizations

10

Simulink

* Block-diagram modeling

W cruise_validator/User-defined target: LowSpeedCn @M
Ia nguage / SImU|at0r Of File Edit View Simulation Format Tools Help
O FHE| it B2RB|E 4|52 IWW
The MathWorks, Inc.
* Hierarchical modeling . "
. AND
* Continuous- and O |
discrete-time simulation =
Ready 1100% | |odeds y

11

Discrete Simulink Semantics

Inputs Inputs

@ model ‘@ model ‘Q
state state state
vars [] vars [] vars

outputs outputs

12

Discrete Simulink Semantics

(cont.)

* Simulink models are Mealy machines
— States are assignments to state variables
— Transitions are computed by model

e Can thus speak of language of model M
— | = set of possible input vectors for M
— O = set of possible output vectors for M

— L(M) ={w € (I xO)* | wis sequence of transition
labels of execution of M }

13

MBD Verification Problem #1

models Design

N\

Implementation

Does implementation meet design?

14

Model-Based Testing

o)]

* An emerging approach to this problem

ormat Tools Help
FERE L

— From Simulink model ...

e t B
e e a e e S C a S e S ﬂﬂ : J JJ T 5
LRCN) I I I Port Step. Stpa] o] otp S 5|
Ipus
i eoon w oo I
2 sxceRenme e} 10 1
3 canee 00 o 1
ascasic 00 10 0
5ibiske 10 0

o "
— ... dnd run them on system fee=_____- d el
LN

— ... comparing results S

e Model serves as
— Specification
— Test oracle

15

Improving MBT

* Recall formalization of Problem #1

— Given M, S

— Prove L(M) = L(S)

— Classical MBT: generate tests from M, runon S
 IfL(M)=L(S)is goal, why not also generate tests

from S, run them on M?

* Result: “back-to-back testing”

— Reactis used to generate tests from M

— Reactis for C used to generate tests from C code

— Controversial!
* “You can’t generate tests from implementations”
* But formalization suggests this is perfectly reasonable!

16

MBD Verification Problem #2

Requirements

\

models | Specifications

Do specs satisfy requirements?

17

Formalizing Verification Problem #2

Requirements

"

models Specifications

* Need following for PIYC / TIYC:

— Formalized requirements
— Formalized notion of satisfaction

 Qur approach: Instrumentation-Based Verification

18

IBV: Requirements

* Formalize
re q u i re m e n tS a S [cruise_validator/Assertion: LowSpeedinactive * |:| |E||E|

File Edit Yiew Simulaton Format Tools Help

monitor models DIZR& f B@ s D> =0 e

* Example {
If speed is < 30, I T el e e e
cruise control must D g
remain inactive

Operator

19

IBV: Satisfaction

° |nstrument design mOdeI . Reatis:crui.mdl-crui.rsi [diﬁed] .
. . File Edit View Simulate TestSuite Validate Coverage Window Help
with monitors = oo & & aaq (ol
* Model satisfies monitors if:
— For every input sequence ... =D o onor
anQff
— ... every monitor model output =D |
remains true acceResume
. @ ¥ cancel L}
* Reachability problem!
4 ¥ decelSet
— Proof possible —
— State space an issue) (. ya
rake throttleDetta [—————
" | 3

20

QQRSI]

Approximate Verification for ",()(.

Problem #2

) Use Coverage testlng On Reactis: cruise.mdl - cruise.rsi [modified]

File Edit View Smulate TestSuite Validate Coverage Window Help

Instrumented model S oo & & aaaq 1 ol
— Better scalability — . T
- e |Assertiu:un: 5 Eedﬁ:uk'|
— If booleans part of coverage s =
Cl‘i'[el’iai . » onOff active >Pet
- Test generator tries to make o
monitor outputs false 22 | acceResume
accelResumes
« Skeptical testing!
. Lok ¥ cancel B
* Reactls
. . @ W decelSet
— Supports instrumentation deceiset
— Acts as skeptical tester o » brake speed
— Reports violations - rtteDets | ————
P - » gas .

21

Summary

* PIYC/TIYC!

— Formalize specs
— View testing as “approximate” formal verification

* Applications in model-based testing,
verification against requirements

22

Provocative Statement!

* Down with Temporal Logic!

* Really?
— Of course not! Great vehicle for research
— But PIYC/TIYC? Not so much ...

23

Specification Reconstruction

* V&V needs requirements specifications

— Requirements then checked using testing, formal
methods, etc.

— Quality of V&V depends on quality of specification

* Problem!
— Specification must be maintained, updated, checked
— Implicit requirements often not documented
— “Emergent behavior?”

* Specification reconstruction
— Given system (model) ...
— ... automatically propose requirements

26

White-Box Invariant

Reconstruction

* Invariants: one type of requirements

— Invariant stipulates relationship that should be preserved
among state variables as system evolves

— E.g.
If the brake pedal is pressed, the cruise control must
immediately disengage

* Invariant reconstruction via models, data mining, IBV
— Generate test cases
— Compute proposed invariants using data mining
— Check proposed invariants using IBV
— Repeat

(Joint work with Christoph Schulze)

27

Data Mining

e Tools for inferring patterns in (time-series)

data

— Input: table
0 1 0
1 -1 1
2 2 1

— Output: patterns (= formulas)
e.g. -1<x<2
0<x<3 ->y>0

28

Association Rules

* An important class of patterns!

— Form: A ¢; > Ay,
* 0, v;are propositions involving variables, constants

* {®}, {v } are disjoint
* Traditionally: j=1

—Eg.x=1->y=0

e Qur work: find invariants in form of association
rules
— LHS: propositions involving inputs, “incoming state”

— RHS: proposition involving outputs, “outgoing state”

29

Apriori Algorithm

* Widely used association-rule mining
technique

* Developed in 1993-94 by Agrawal et al.
— SIGMOD 1993
— VLDB 1994

* Implemented in many data-mining tools
(Weka, Magnum Opuis, ...)

30

SERSITy

. . ST
Invariant Reconstruction (‘;‘,})

* General idea
— Treat test results (I/0 sequences) as “tables”

— Invariants: association rules with coverage > 1, strength
=1

— Use Apriori to compute invariants involving inputs
(antecedent), outputs (consequent)

* Additionally

— Ensure test cases satisfy structural coverage criteria
(e.g. branch coverage) to ensure “thoroughness”

— Use IBV to double-check proposed invariants

31

What About IBV Tests?

* |n IBV, coverage testing of instrumented
model used to check for monitor violations

e Tests inducing violations can be used to
remove invariants subsequent “minings”

* They also can be a source of other invariants

L
©2010 Fraunhofer USA Inc. 32

Our Approach in Detalil

Test Generation Rule mining
W (Reactis) (Tests E (Apriori)
o
> Tests
N
@b IBV (Reactis) é—< Rules {

. Reactis creates tests to do IBV check

N

 These tests are “cycled back through” the data-mining tool,
together with original tests

33

Pilot Study: Production Body-

Electronic Application

* Artifacts
— Simulink model (ca. 75 blocks)
— Requirements spec formulated as state machine

— Requirements correspond to 42 invariants
defining transition relation, e.g.

state = 1 A pressed = true —> new_state =2

* Goal: Compare our approach, random testing

— Completeness (% of 42 detected?)
— Accuracy (% false positives?)

34

Experimental Results

* Hypothesis: coverage-testing yields better
invariants than random testing

* Coverage results (one iteration of test generation)

95% of inferred invariants true
97% of requirements inferred
Two missing requirements detected

e Random results:

55% of inferred invariants true
40% of requirements inferred

* Hypothesis confirmed (for this case study)

©2010 Fraunhofer USA Inc. 35

Requirement Issue

* Missing reset transitions in requirements

e Code was correct

36

Procedural Issues

* How do you trust generated invariants in
absence of “requirements baseline”?

* Our approach: Jaccard similarity

©2010 Fraunhofer USA Inc. 37

Jaccard Similarity Measures

* Jaccard: atool for measuring set similarity

* Let A, B be sets. Then the Jaccard similarity
measure, J(A,B), of Aand B is:

AN BJ
A U B|

J(A,B) =

 Facts
—0<J(AB)<1

— Closer to 1 means “more similar”

©2010 Fraunhofer USA Inc. 38

Jaccard and Invariant Generation

* High Jaccard similarity means more “stable”
— For coverage: average Jaccard score is 0.87
— For random: average is 0.65

e Another use: iteration termination

— Our approach allows iteration of “test / generate /
check”

— When to terminate: use Jaccard! (i.e. terminate
when successive invariant sets are “similar
enough”)

©2010 Fraunhofer USA Inc. 39

43

Provocative Statement!

44

Focus at UMD in CyberCardia

* Foundations, tools for reasoning about CPS

— Formal modeling of CPS
— Formal specification, verification

* This year: Specification reconstruction

— Given model M, infer temporal properties that M
(likely) satisfies

— Motivations
* Model understanding
» Specification updating
* Means for “jump-starting” formal specificiations in often
unfamiliar notations

e See poster (48-50)!

45

Specific Results in 2017

* Linear temporal-logic query checking

— Problem
e Given Kripke structure M, LTL “template” phi[x]
* Find most general solution phi’ for missing formula x so that M satisfies
phi[x:=phi’]
— Algorithmic solution based on model checking developed,
implemented, evaluated

— Work presented at AVoCS/FMICS 2017

* Invariant mining from test data

— Problem
* Given (Simulink) model M, state variables of interest
* Propose invariants describing relationships among variables

— Approach: use data-mining on test data coupled with retesting to
generate likely invariants

— Evaluation used 11 models from automotive, medical-device domain
— Work presented at EMSOFT 2017

46

