
Formal Methods at the
National Science Foundation

Nina Amla
Program Director

National Science Foundation
Sept 25 2019

1

NSF programs that support Formal Methods

• Software and Hardware Foundations (SHF) core program
• CISE-wide cross programs
• Formal Methods in the Field (FMitF)
• Scalable Parallelism in the Extreme (SPX)
• Expeditions in Computing

• NSF-wide cross-directorate and cross-agency programs
• Secure and Trustworthy Cyberspace (SaTC)
• Cyber Physical Systems (CPS)

Programming
Languages
Portfolio

3

Formal
Methods
Portfolio

4

Formal
Methods in the
Field Portfolio

5

A Snapshot of Topic Areas

• Semantics
• Types
• Domain Specific Languages
• SAT and SMT
• Model Checking
• Theorem Proving
• Synthesis

• Security & Privacy
• Operating & Distributed

Systems
• Networking
• Cyber Physical Systems
• AI and Machine learning
• Concurrency and parallelism

Semantics

• Semantics-based techniques for compilation of multilingual software
• 1816837/Ahmed, SHF: Principled Compiling and Linking for Multi-Language

Software

• Denotational models for specifying programming languages and
verifying compiler correctness
• 1814460/Siek, SHF: Revisiting Elementary Denotational Semantics

• Categorical foundations of indexed programming (for both
polymorphism and dependent types)
• 1713389/Johann, SHF: New Foundations for Indexed Programming

Types
• Fundamental principles that underlie sound and performant gradual

typing systems.
• 1763922/Tobin-Hochstadt, SHF: Performant Sound Gradual Typing

• Simplify reasoning about properties of Haskell programs by using
dependent types directly in the verification process.
• 1703835/Weirich, SHF: The Theory and Practice of Dependent Types in Haskell

• Logical foundations for message-passing concurrency, based on
session types, application to Rust
• 1718267/Pfenning, SHF: Enriching Session Types for Practical Concurrent

Programming

Domain specific languages/tools

• Verification and synthesis tools for system configuration language
(Puppet)
• 1717636/Guha, SHF: Formal Methods for Modern System Configuration

Languages

• Interactive programming environments for scalable web development
• 1651794/Chugh, CAREER: Direct Manipulation Programming Systems

• Enhance extant DSL tools with automatic verification and synthesis
• 1651225/Torlak, SHF: The Next 700 Solver-Aided Languages

Satisfiability (SAT) and Satisfiability Modulo
Theories (SMT)
• Enhancing Reluplex to scale and give correctness guarantees
• 1814369/Barrett, SHF: Certifiable verification of large neural networks

• Solving open math problems via better encodings and parallel SAT
solving.
• 1813993/Heule, SHF: MaPaMaP: Massively Parallel Solving of Math Problems

• High-level modeling of tensor models & data-aware reasoning and
optimization techniques for both linear and non-linear models
• 1816936/Jovanovic, SHF: SMT Reasoning for Tensors and Data

Model Checking
• Rectification of finite-field arithmetic circuits using Groebner basis

techniques and Craig interpolants
• 1911007/Kalla, SHF: Rectification of Arithmetic Circuits with Craig

Interpolants in Algebraic Geometry
• Theory and model checking for hyper temporal logic for expressing

security and privacy policies
• 1813388/Bonakdarpour, SaTC: Techniques for Software Model Checking of

Hyperproperties
• Paradigms for the exact verification of differential privacy
• 1901069/Sistla, SHF: Medium: Collaborative Research: Verification of

Differential Privacy Mechanisms

Theorem Proving

• Incorporate the universal composability (UC) framework for analyzing
cryptographic systems into EasyCrypt
• 1801564/Stoughton, SaTC: Towards Mechanized Proofs of Composable

Security Properties

• Build a deductive synthesis framework for deriving mechanically
verified program analyzers directly from their induced specifications
• 1900563/Darais, SHF: Synthesizing Verified Analyzers for Critical Software

• Coq-based practical verification framework that enables formally
reasoning about distributed system implementations
• 1749570/Tatlock, CAREER: Verifying Distributed System Implementations

Synthesis and Repair
• Type system for resource aware refinement types and resource

guided synthesis
• 1812876/Hoffmann, SHF: Resource-Guided Program Synthesis

• Scalable synthesis algorithms based on the idea of counterexample-
guided abstraction refinement
• 1811865/Dillig, SHF: Scalable Program Synthesis using Counterexample-

Guided Abstraction Refinement

• Verifying program fairness , explaining & repairing unfair programs
• 1749664/Albargouthi, SHF: Formal Methods for Program Fairness

Security and Privacy
• Design methodology for a fully-verified, functionally-correct

hypervisor that satisfies confidentiality and integrity.
• 1918400/Nieh, FMitF: A Secure and Verifiable Commodity Hypervisor

• Machine checked verification for proving confidentiality in file
systems and mail server
• 1812522/Zeldovich, SaTC: Verifying security for data non-interference

• Programming environment (DevDP) to develop programs that behave
correctly wrt differential privacy policies
• 1702760/Kifer, SaTC: CORE: Medium: Developing for Differential Privacy with

Formal Methods and Counterexamples

Networking
• New programming and verification abstractions for distributed

network and control planes
• 1837030/Gupta, FMitF: OpenRDC: A Framework for Implementing Open,

Reliable, Distributed, Network Control

• Synthesize code from user-provided sketches and specifications into
low-level switch configurations
• 1837023/Qiu, FMitF: Transplanting Syntax-Guided Synthesis to Computer

Networks

• Methodology for formal specification and testing of complex Internet
protocols (QUIC) using Ivy
• 1918429/Zuck, FMitF: Injecting Formal Methods into Internet Standardization

Operating and Distributed Systems
• Investigate how Rust's type system interacts with SMT-style

verification (Boogie) to build a verified OS
• 1837051/Rakamaric, FMitF: RedLeaf: Verified Operating Systems in Rust

• A framework for synthesis-aided development of efficient, reliable,
and secure OS components
• 1836724/Torlak, FMitF: A Framework for Synthesis of Efficient, Reliable, and

Secure Operating System Components

• A new symbolic execution system (based on KLEE) that is extensible
and modular and easier for OS developers to use
• 1918573/Stefan, FMitF: Finding and Eliminating Bugs in Operating Systems

Artificial Intelligence and Machine Leaning

• Methods for developing verifiably safe Deep Neural Networks (DNNs)
• 1900676/Dwyer, SHF: Rearchitecting Neural Networks for Verification

• Automatically construct simple, coherent, human-readable
explanations (programs) of a ML model or its decisions.
• 1918211/D’Antoni, FMitF: Track I: Formal Methods for Explainable Machine Learning

• Inference algorithms for probabilistic programming that leverage
model checking and model counting techniques.
• 1837129/Millstein, FMitF: Opening Up the Black Box of Probabilistic Program

Inference

Cyber Physical Systems
• Bounded model-checking via reduction to satisfiability modulo convex

(SMC) programming
• 1845194/Shoukry, CAREER: Decision Procedures for High-Assurance, AI-Controlled,

Cyber-Physical Systems
• Reasoning about predictive data-driven models that consider noise and

uncertainties
• 1815983/Sankaranarayanan, Rigorous Synthesis and Verification of Decisions Using

Data-Driven Models
• Methods for state estimation, online model identification and runtime

verification for V2V connected vehicles
• 1918531/Mitra, FMitF: Predictive Online Safety Analysis from Multi-hop State

Estimates for High-autonomy on Highways

Concurrency and Parallelism
• A library of reusable, high-performance persistent data structures to

simplify NVM programming
• 1717712/Scott, SHF: Data Structures and Transactions for Emerging

Nonvolatile Memory

• Systematize the implementation of scalable applications written in
DSLs that target GPUs and DSPs
• 1919197/Kulkarni , SPX: Write Once, Run on Anything: Verified, Tuned

Accelerator Kernels from High Level Specifications

• New abstractions and verification for traditional processor cores &
accelerators
• 1628926/Malik, XPS: FULL: Hardware Software Abstractions: Addressing

Specification and Verification Gaps in Accelerator-Oriented Parallelism

FM @ Scale
• What is scale in this context?
• Size (LOC, netlist)
• Performance (time, memory)
• Generality vs Domain specific
• Usability
• Computing platform
• Others?

• Key factors
• Design for correctness

(which includes security)
• Domain expertise
• Automation
• Performance
• Usability

FM @ Scale
• What is needed?
• Continue to push foundational advances on new methods and tools
• Engage with domain experts & industry to identify new applications
• Need methodology that can integrate FM into actual design processes/flows

• E.g. hardware, SLAM
• Engage internationally

• What lessons have we learned about scalability of FM in practice?
• e.g. static analysis, concolic testing, hardware verification, certifiable

compilation

