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NSF programs that support Formal Methods

 Software and Hardware Foundations (SHF) core program

* CISE-wide cross programs
 Formal Methods in the Field (FMitF)
 Scalable Parallelism in the Extreme (SPX)
* Expeditions in Computing

* NSF-wide cross-directorate and cross-agency programs
» Secure and Trustworthy Cyberspace (SaTC)
e Cyber Physical Systems (CPS)
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A Snapshot of Topic Areas

* Semantics * Security & Privacy

* Types e Operating & Distributed
« Domain Specific Languages Systems

e SAT and SMT * Networking

* Model Checking * Cyber Physical Systems

* Theorem Proving * Al and Machine learning

* Synthesis * Concurrency and parallelism




Semantics

* Semantics-based techniques for compilation of multilingual software

e Denotational models for specifying programming languages and
verifying compiler correctness

4

» Categorical foundations of indexed programming (for both
polymorphism and dependent types)




Types

 Fundamental principles that underlie sound and performant gradual
typing systemes.

* Simplify reasoning about properties of Haskell programs by using
dependent types directly in the verification process.

* Logical foundations for message-passing concurrency, based on
session types, application to Rust




Domain specific languages/tools

e Verification and synthesis tools for system configuration language
(Puppet)

* Interactive programming environments for scalable web development

* Enhance extant DSL tools with automatic verification and synthesis




Satisfiability (SAT) and Satisfiability Modulo
Theories (SMT)

* Enhancing Reluplex to scale and give correctness guarantees

* Solving open math problems via better encodings and parallel SAT
solving.

* High-level modeling of tensor models & data-aware reasoning and
optimization techniques for both linear and non-linear models



Model Checking

 Rectification of finite-field arithmetic circuits using Groebner basis
techniques and Craig interpolants

* Theory and model checking for hyper temporal logic for expressing
security and privacy policies
e 1813388/Bonakdarpour, SaTC: Techniques for Software Model Checking of
Hyperproperties

* Paradigms for the exact verification of differential privacy




Theorem Proving

* Incorporate the universal composability (UC) framework for analyzing
cryptographic systems into EasyCrypt

e 1801564/Stoughton, SaTC: Towards Mechanized Proofs of Composable
Security Properties

 Build a deductive synthesis framework for deriving mechanically
verified program analyzers directly from their induced specifications

* Cog-based practical verification framework that enables formally
reasoning about distributed system implementations



Synthesis and Repair

* Type system for resource aware refinement types and resource
guided synthesis

 Scalable synthesis algorithms based on the idea of counterexample-
guided abstraction refinement

* Verifying program fairness , explaining & repairing unfair programs




Security and Privacy

* Design methodology for a fully-verified, functionally-correct
hypervisor that satisfies confidentiality and integrity.

e 1918400/Nieh, FMitF: A Secure and Verifiable Commodity Hypervisor

 Machine checked verification for proving confidentiality in file
systems and mail server

e 1812522 /Zeldovich, SaTC: Verifying security for data non-interference

* Programming environment (DevDP) to develop programs that behave
correctly wrt differential privacy policies

» 1702760/Kifer, SaTC: CORE: Medium: Developing for Differential Privacy with
Formal Methods and Counterexamples




Networking

* New programming and verification abstractions for distributed
network and control planes

» 1837030/Gupta, FMitF: OpenRDC: A Framework for Implementing Open,
Reliable, Distributed, Network Control

» Synthesize code from user-provided sketches and specifications into
low-level switch configurations

e 1837023/Qiu, FMitF: Transplanting Syntax-Guided Synthesis to Computer
Networks
* Methodology for formal specification and testing of complex Internet
protocols (QUIC) using Ivy
e 1918429/Zuck, FMitF: Injecting Formal Methods into Internet Standardization




Operating and Distributed Systems

* Investigate how Rust's type system interacts with SMT-style
verification (Boogie) to build a verified OS

e 1837051/Rakamaric, FMitF: RedLeaf: Verified Operating Systems in Rust

* A framework for synthesis-aided development of efficient, reliable,
and secure OS components

» 1836724/Torlak, FMitF: A Framework for Synthesis of Efficient, Reliable, and
Secure Operating System Components

* A new symbolic execution system (based on KLEE) that is extensible
and modular and easier for OS developers to use

e 1918573/Stefan, FMitF: Finding and Eliminating Bugs in Operating Systems




Artificial Intelligence and Machine Leaning

* Methods for developing verifiably safe Deep Neural Networks (DNNs)

e Automatically construct simple, coherent, human-readable
explanations (programs) of a ML model or its decisions.
» 1918211/DAntoni, FMitF: Track I: Formal Methods for Explainable Machine Learning

* Inference algorithms for probabilistic programming that leverage
model checking and model counting techniques.

» 1837129/Millstein, FMitF: Opening Up the Black Box of Probabilistic Program
Inference




Cyber Physical Systems

* Bounded model-checking via reduction to satisfiability modulo convex
(SMC) programming

» 1845194/Shoukry, CAREER: Decision Procedures for High-Assurance, Al-Controlled,
Cyber-Physical Systems

* Reasoning about predictive data-driven models that consider noise and
uncertainties

 Methods for state estimation, online model identification and runtime
verification for V2V connected vehicles

* 1918531/Mitra, FMItF: Predictive Online Safety Analysis from Multi-hop State
Estimates for High-autonomy on Highways




Concurrency and Parallelism

* A library of reusable, high-performance persistent data structures to
simplify NVM programming

 Systematize the implementation of scalable applications written in
DSLs that target GPUs and DSPs

e 1919197/Kulkarni, SPX: Write Once, Run on Anything: Verified, Tuned
Accelerator Kernels from High Level Specifications

* New abstractions and verification for traditional processor cores &
accelerators

» 1628926/Malik, XPS: FULL: Hardware Software Abstractions: Addressing
Specification and Verification Gaps in Accelerator-Oriented Parallelism




FM @ Scale

 What is scale in this context?
* Size (LOC, netlist)

Performance (time, memory)

Generality vs Domain specific

Usability

Computing platform

Others?

 Key factors

* Design for correctness
(which includes security)

* Domain expertise
* Automation

* Performance

* Usability



FM @ Scale

e What is needed?

e Continue to push foundational advances on new methods and tools
* Engage with domain experts & industry to identify new applications

* Need methodology that can integrate FM into actual design processes/flows
* E.g. hardware, SLAM

* Engage internationally

* What lessons have we learned about scalability of FM in practice?

* e.g. static analysis, concolic testing, hardware verification, certifiable
compilation



