Formal Methods at the
National Science Foundation

Nina Amla
Program Director

National Science Foundation
Sept 25 2019

NSF programs that support Formal Methods

 Software and Hardware Foundations (SHF) core program

* CISE-wide cross programs
 Formal Methods in the Field (FMitF)
 Scalable Parallelism in the Extreme (SPX)
* Expeditions in Computing

* NSF-wide cross-directorate and cross-agency programs
» Secure and Trustworthy Cyberspace (SaTC)
e Cyber Physical Systems (CPS)

PROGRAMMING LANGUAGE (37)

programming language (27) ‘ memory model (5)

transactional data
centers
memory

false
sharing

language
memory

memory management (2)

execution
order

host weak

garbage
collection

STATIC ANALYSIS (25)

static analysis (10) control flow (7) critical path (3)

data
flow

dependence
graph

model
checking

information
flow

dynamic _—
analysis

dependence

data race performance taint
detection modeling analysis control path

dependence = selection

data
races

instructjon e
scheduling !

hybrid mobile abstract
Y A
analysis [REERENEE

dependence
analysis

event power failure (1)

handlers

sequential
effects

ergy harvesﬁg

TYPE SYSTEM (11)

type
checking

gradual
typing

type
inference

dependent
types

typed
languages

type
errors

core
language

dynamically = cfrect

type
y p typ ed system

annotations

UNCLUSTERED (2)

cost function genetic programming

MODEL CHECKING (38) FORMAL METHODS (12)
] abstract interpretation (4) formal methods (9)

model checking (27)

Formal |
‘ " - . verification

M et h (@) d S | ia " i conditions
Portfolio system transition | concurrent 4OMain S —
t ' ﬁf ta assumptions

analysis problems

verify bug
programs finding

‘] it ster eran: static analysis (1)

student resource

concurrent | 0 ‘ > ~
programs submissions = analysis

multiagent weak

aﬁ;:rgu&?':'.‘;s o S y m bo I I C systems memory
| = roof systems (1)
prmsstic - | ‘. exe C u t I 0 n r contrZI policies
o L] AUTOMATIC STATE SPACE
i o flo FEEDBACK (3) (3)
‘ decision

PROGRAMMING LANGUAGE (15) diagrams
data

programming language (10) Ian“g?:lt:grg'(s)

concrete
domain

proof separation 3@ scjence i

distributed =~ @ssistant jgeic ATCRAA
) ; -~ - O tormatitl i monitorin

SYSteMS information R st data-driven @ e gm
@2 methods cot

flow remen| 0t (T .
T preparation 1
. oS i computing

Formal
Methods in the
Field Portfolio

FORMAL METHODS (51)

formal methods (34)

Wi r'E|ESS ContrOI reachability

runtime netiBrks 8w g o

verification

‘ symbolic = regular | routing network
execution expressions policies — synthesis
distributed |

——— 1 L= 1

applications |

ContrOI neural mm‘:slon fé'a?o"r‘.’.ﬁ p;om:::k

| learning

lane [| T
p reachable constraint -
SYQ::m = — C?S;LOI syls‘;:m
network = data |
sensor-actuator

source (| state | transfer | seroracta

network — 1 et

cellular = decision | automatic
COde control networks @ diagrams feedback

data plane (1)

search space (1) hybrid automata (1) ‘

agent
models

network protocols (1) proof assistant (1)

learning system (2)

network
algorithms

candidate

machine
programs

learning systems

hybrid systems (2)

. merid . | €ONgestion
I n p Ut d ata VL verification Control

verification

PROGRAMMING LANGUAGE (7)

type
checking

type
system |esic e,

probabilistic | inference
programming | algorithms

MODEL CHECKING (9)

probabilistic static analysis
model

checking
probabilistic safety safety
models analysis | constraints

load -
ba | an Ci N g convergence coné:lajgen
conditions S trlctures

OPERATING
FORMAL VERIFICATION (3) SYSTEM (2)

floating
point

content
producers

energy
management

DISTRIBUTED SYSTEMS (3)

distributed | theory
algorithms | solvers

A Snapshot of Topic Areas

* Semantics * Security & Privacy

* Types e Operating & Distributed
« Domain Specific Languages Systems

e SAT and SMT * Networking

* Model Checking * Cyber Physical Systems

* Theorem Proving * Al and Machine learning

* Synthesis * Concurrency and parallelism

Semantics

* Semantics-based techniques for compilation of multilingual software

e Denotational models for specifying programming languages and
verifying compiler correctness

4

» Categorical foundations of indexed programming (for both
polymorphism and dependent types)

Types

 Fundamental principles that underlie sound and performant gradual
typing systemes.

* Simplify reasoning about properties of Haskell programs by using
dependent types directly in the verification process.

* Logical foundations for message-passing concurrency, based on
session types, application to Rust

Domain specific languages/tools

e Verification and synthesis tools for system configuration language
(Puppet)

* Interactive programming environments for scalable web development

* Enhance extant DSL tools with automatic verification and synthesis

Satisfiability (SAT) and Satisfiability Modulo
Theories (SMT)

* Enhancing Reluplex to scale and give correctness guarantees

* Solving open math problems via better encodings and parallel SAT
solving.

* High-level modeling of tensor models & data-aware reasoning and
optimization techniques for both linear and non-linear models

Model Checking

 Rectification of finite-field arithmetic circuits using Groebner basis
techniques and Craig interpolants

* Theory and model checking for hyper temporal logic for expressing
security and privacy policies
e 1813388/Bonakdarpour, SaTC: Techniques for Software Model Checking of
Hyperproperties

* Paradigms for the exact verification of differential privacy

Theorem Proving

* Incorporate the universal composability (UC) framework for analyzing
cryptographic systems into EasyCrypt

e 1801564/Stoughton, SaTC: Towards Mechanized Proofs of Composable
Security Properties

 Build a deductive synthesis framework for deriving mechanically
verified program analyzers directly from their induced specifications

* Cog-based practical verification framework that enables formally
reasoning about distributed system implementations

Synthesis and Repair

* Type system for resource aware refinement types and resource
guided synthesis

 Scalable synthesis algorithms based on the idea of counterexample-
guided abstraction refinement

* Verifying program fairness , explaining & repairing unfair programs

Security and Privacy

* Design methodology for a fully-verified, functionally-correct
hypervisor that satisfies confidentiality and integrity.

e 1918400/Nieh, FMitF: A Secure and Verifiable Commodity Hypervisor

 Machine checked verification for proving confidentiality in file
systems and mail server

e 1812522 /Zeldovich, SaTC: Verifying security for data non-interference

* Programming environment (DevDP) to develop programs that behave
correctly wrt differential privacy policies

» 1702760/Kifer, SaTC: CORE: Medium: Developing for Differential Privacy with
Formal Methods and Counterexamples

Networking

* New programming and verification abstractions for distributed
network and control planes

» 1837030/Gupta, FMitF: OpenRDC: A Framework for Implementing Open,
Reliable, Distributed, Network Control

» Synthesize code from user-provided sketches and specifications into
low-level switch configurations

e 1837023/Qiu, FMitF: Transplanting Syntax-Guided Synthesis to Computer
Networks
* Methodology for formal specification and testing of complex Internet
protocols (QUIC) using Ivy
e 1918429/Zuck, FMitF: Injecting Formal Methods into Internet Standardization

Operating and Distributed Systems

* Investigate how Rust's type system interacts with SMT-style
verification (Boogie) to build a verified OS

e 1837051/Rakamaric, FMitF: RedLeaf: Verified Operating Systems in Rust

* A framework for synthesis-aided development of efficient, reliable,
and secure OS components

» 1836724/Torlak, FMitF: A Framework for Synthesis of Efficient, Reliable, and
Secure Operating System Components

* A new symbolic execution system (based on KLEE) that is extensible
and modular and easier for OS developers to use

e 1918573/Stefan, FMitF: Finding and Eliminating Bugs in Operating Systems

Artificial Intelligence and Machine Leaning

* Methods for developing verifiably safe Deep Neural Networks (DNNs)

e Automatically construct simple, coherent, human-readable
explanations (programs) of a ML model or its decisions.
» 1918211/DAntoni, FMitF: Track I: Formal Methods for Explainable Machine Learning

* Inference algorithms for probabilistic programming that leverage
model checking and model counting techniques.

» 1837129/Millstein, FMitF: Opening Up the Black Box of Probabilistic Program
Inference

Cyber Physical Systems

* Bounded model-checking via reduction to satisfiability modulo convex
(SMC) programming

» 1845194/Shoukry, CAREER: Decision Procedures for High-Assurance, Al-Controlled,
Cyber-Physical Systems

* Reasoning about predictive data-driven models that consider noise and
uncertainties

 Methods for state estimation, online model identification and runtime
verification for V2V connected vehicles

* 1918531/Mitra, FMItF: Predictive Online Safety Analysis from Multi-hop State
Estimates for High-autonomy on Highways

Concurrency and Parallelism

* A library of reusable, high-performance persistent data structures to
simplify NVM programming

 Systematize the implementation of scalable applications written in
DSLs that target GPUs and DSPs

e 1919197/Kulkarni, SPX: Write Once, Run on Anything: Verified, Tuned
Accelerator Kernels from High Level Specifications

* New abstractions and verification for traditional processor cores &
accelerators

» 1628926/Malik, XPS: FULL: Hardware Software Abstractions: Addressing
Specification and Verification Gaps in Accelerator-Oriented Parallelism

FM @ Scale

 What is scale in this context?
* Size (LOC, netlist)

Performance (time, memory)

Generality vs Domain specific

Usability

Computing platform

Others?

 Key factors

* Design for correctness
(which includes security)

* Domain expertise
* Automation

* Performance

* Usability

FM @ Scale

e What is needed?

e Continue to push foundational advances on new methods and tools
* Engage with domain experts & industry to identify new applications

* Need methodology that can integrate FM into actual design processes/flows
* E.g. hardware, SLAM

* Engage internationally

* What lessons have we learned about scalability of FM in practice?

* e.g. static analysis, concolic testing, hardware verification, certifiable
compilation

