
Formal methods for Cyber Physical
Systems

Necmiye Ozay
Electrical Engineering and Computer Science, University of Michigan

2022 NSF CPS PI Meeting
November 9, 2022

1

End-to-end guarantees on safety and task completion?
2

Formal methods: mathematically rigorous
techniques for specification, verification, and
design of software and hardware systems.

3

Formal methods
landscape

Plant
(with a model) decision-making

(autonomy) software

+

Verification

Whitebox system:
Plant + software Specification

Correctness
proof

Counterexample

PROS:
• Strong guarantees

CONS:
• Hybrid system verification is

computationally very hard
• Autonomy software è up to millions

of lines of code (loc):
§ hard to model
§ hard to scale

Mars curiosity rover: 5M loc
Boeing 787 flight software: 15M loc
F 35-fighter jet: 25M loc
Average modern high-end car: 100M loc

'

<latexit sha1_base64="0qxG7Hxb4ahYIPolwcMSF95+u7g=">AAAB7nicbVBLSgNBEK2Jvxh/0SzdNIaAqzAjgnEXcOMygvlAMoSeTk/SpKen6e4JhCE7L+DGhSJuPYkHcKcH8AQewM5noYkPCh7vVVFVL5CcaeO6H05mbX1jcyu7ndvZ3ds/yB8eNXScKELrJOaxagVYU84ErRtmOG1JRXEUcNoMhldTvzmiSrNY3JqxpH6E+4KFjGBjpWZnhJUcsG6+6JbdGdAq8RakWC2U7r7fvj5r3fx7pxeTJKLCEI61bnuuNH6KlWGE00muk2gqMRniPm1bKnBEtZ/Ozp2gklV6KIyVLWHQTP09keJI63EU2M4Im4Fe9qbif147MWHFT5mQiaGCzBeFCUcmRtPfUY8pSgwfW4KJYvZWRAZYYWJsQjkbgrf88ippnJW98/LljU2jAnNk4RhO4BQ8uIAqXEMN6kBgCPfwCE+OdB6cZ+dl3ppxFjMF+APn9Qd2uZQa</latexit>

4

Formal methods
landscape

Plant
(with a model) decision-making

(autonomy) software

+

Verification

Whitebox system:
Plant + software Specification

Correctness
proof

Counterexample

'

<latexit sha1_base64="0qxG7Hxb4ahYIPolwcMSF95+u7g=">AAAB7nicbVBLSgNBEK2Jvxh/0SzdNIaAqzAjgnEXcOMygvlAMoSeTk/SpKen6e4JhCE7L+DGhSJuPYkHcKcH8AQewM5noYkPCh7vVVFVL5CcaeO6H05mbX1jcyu7ndvZ3ds/yB8eNXScKELrJOaxagVYU84ErRtmOG1JRXEUcNoMhldTvzmiSrNY3JqxpH6E+4KFjGBjpWZnhJUcsG6+6JbdGdAq8RakWC2U7r7fvj5r3fx7pxeTJKLCEI61bnuuNH6KlWGE00muk2gqMRniPm1bKnBEtZ/Ozp2gklV6KIyVLWHQTP09keJI63EU2M4Im4Fe9qbif147MWHFT5mQiaGCzBeFCUcmRtPfUY8pSgwfW4KJYvZWRAZYYWJsQjkbgrf88ippnJW98/LljU2jAnNk4RhO4BQ8uIAqXEMN6kBgCPfwCE+OdB6cZ+dl3ppxFjMF+APn9Qd2uZQa</latexit>

5

Synthesis

Partial whitebox system:
Plant (∃? Software) Specification

Software with
correctness guarantee +
validity domain

Proof of
impossibility

Alternative #1: Correct-by-construction
(control) synthesis

PROS:
• Strong guarantees
• Avoids the complexity induced by software
• “Explains” fundamental limits (impossibility)

CONS:
• Correct-by-construction synthesis is

computationally even harder
• Limited specs; spec correctness &

completeness is more crucial
• Almost no synthesis approach for perception or

learning components

6

Synthesis

Partial whitebox system:
Plant (∃? Software) Specification

Software with
correctness guarantee +
validity domain

Proof of
impossibility

Alternative #1: Correct-by-construction
(control) synthesis

We have worked on many applications in
the automotive and aerospace domain.
Two highlights (from ’14-’15):
• Adaptive cruise control
• Lane keeping

7

Synthesis

Partial whitebox system:
Plant (∃? Software) Specification

Software with
correctness guarantee +
validity domain

Proof of
impossibility

Alternative #1: Correct-by-construction
(control) synthesis

Deployment of
synthesized

controllers in Mcity

8

Synthesis

Partial whitebox system:
Plant (∃? Software) Specification

Software with
correctness guarantee +
validity domain

Proof of
impossibility

Alternative #1: Correct-by-construction
(control) synthesis What we learned from early

deployments?
• Putting “correct” and automatically

synthesized software on a car is feasible
• There were failures but having mathematical

models and formal assumptions help detect
failures
• We realized that the model was missing

actuator delays
• Conservativeness due to not looking ahead

• Motivated future work on safety with learned
models, delays, and predictions (see the
poster session)

9

Synthesis

Partial whitebox system:
Plant (∃? Software) Specification

Software with
correctness guarantee +
validity domain

Proof of
impossibility

Alternative #1: Correct-by-construction
(control) synthesis

Theorem:
For an n dimensional linear system model with k
steps of actuation delay (overall system dimension
= n+k), there exist an auxiliary n dimensional
system such that any safe and invariant set of the
original delay system can be obtained from that of
the auxiliary system.

What we learned from early
deployments?
• Putting “correct” and automatically

synthesized software on a car is feasible
• There were failures but having mathematical

models and formal assumptions help detect
failures
• We realized that the model was missing

actuator delays
• Conservativeness due to not looking ahead

• Motivated future work on safety with learned
models, delays, and predictions (see the
poster session)

Formal methods
landscape

Plant
(with a model) decision-making

(autonomy) software

+

Verification

Whitebox system:
Plant + software Specification

Correctness
proof

Counterexample

'

<latexit sha1_base64="0qxG7Hxb4ahYIPolwcMSF95+u7g=">AAAB7nicbVBLSgNBEK2Jvxh/0SzdNIaAqzAjgnEXcOMygvlAMoSeTk/SpKen6e4JhCE7L+DGhSJuPYkHcKcH8AQewM5noYkPCh7vVVFVL5CcaeO6H05mbX1jcyu7ndvZ3ds/yB8eNXScKELrJOaxagVYU84ErRtmOG1JRXEUcNoMhldTvzmiSrNY3JqxpH6E+4KFjGBjpWZnhJUcsG6+6JbdGdAq8RakWC2U7r7fvj5r3fx7pxeTJKLCEI61bnuuNH6KlWGE00muk2gqMRniPm1bKnBEtZ/Ozp2gklV6KIyVLWHQTP09keJI63EU2M4Im4Fe9qbif147MWHFT5mQiaGCzBeFCUcmRtPfUY8pSgwfW4KJYvZWRAZYYWJsQjkbgrf88ippnJW98/LljU2jAnNk4RhO4BQ8uIAqXEMN6kBgCPfwCE+OdB6cZ+dl3ppxFjMF+APn9Qd2uZQa</latexit>

10

Alternative #2: Falsification

Falsification

Blackbox system:
Plant + software Specification

Inconclusive Counterexample

PROS:
• Can handle arbitrarily complex models (plant +

software) including learning-based components
• Industry-adopted tools (e.g., Breach, S-Taliro)

CONS:
• Weaker conclusions
• No explanation of the counterexamples:

§ can give “trivial” counterexamples if
assumptions are not modeled carefully

§ is it a hardware (plant) limitation or
software bug?

Falsification

Blackbox system:
Plant + software Specification

Inconclusive Counterexample

* SUT: system under test; CUT: controller (autonomy software) under test

Synthesis-guided
Falsification

System:
Whitebox plant +
Blackbox software Specification

Inconclusive Counterexample
+ explanation

Alternative #2.5: Synthesis-guided falsification

12

Alternative #2.5: Synthesis-guided
falsification

Synthesis-guided
Falsification

System:
Whitebox plant +
Blackbox software Specification

Inconclusive Counterexample
+ explanation

Key insights:
• Steering the search via specification-

guided backward reachable sets of the
plant model

• Querying the unknown controller only at
specification-critical regions

13

Alternative #2.5: Synthesis-guided
falsification

Synthesis-guided
Falsification

System:
Whitebox plant +
Blackbox software Specification

Inconclusive Counterexample
+ explanation

Key insights:
• Steering the search via specification-

guided backward reachable sets of the
plant model

• Querying the unknown controller only at
specification-critical regions

0 5 10 15
Time (sec)

-1

-0.5

0

0.5

D
ev

ia
tio

n
fro

m
 c

en
te

rli
ne

 (m
)

Unsupervised
Supervised

0 5 10 15 20 25 30
Time (sec)

0

20

40

60

D
is

ta
nc

e
he

ad
w

ay
 (m

)

Unsupervised
Supervised

Adaptive cruise control

Lane keeping

14

Alternative #2.5: Synthesis-guided
falsification

Synthesis-guided
Falsification

System:
Whitebox plant +
Blackbox software Specification

Inconclusive Counterexample
+ explanation

Key insights:
• Steering the search via specification-

guided backward reachable sets of the
plant model

• Querying the unknown controller only at
specification-critical regions

Extensions to vision-based controllers

Formal methods in CPS

15

Falsification

Blackbox system:
Plant + software Specification

Inconclusive Counterexample

Synthesis-guided
Falsification

System:
Whitebox plant +
Blackbox software Specification

Inconclusive Counterexample
+ explanation

Verification

Whitebox system:
Plant + software Specification

Correctness
proof

Counterexample

Synthesis

Partial whitebox system:
Plant (∃? Software) Specification

Software with correctness
guarantee + validity domain

Proof of
impossibility

Formal methods in CPS

16

Falsification

Blackbox system:
Plant + software Specification!!!

Inconclusive Counterexample

Synthesis-guided
Falsification

System:
Whitebox plant +
Blackbox software Specification!!!

Inconclusive Counterexample
+ explanation

Verification

Whitebox system:
Plant + software Specification!!!

Correctness
proof

Counterexample

Synthesis

Partial whitebox system:
Plant (∃? Software) Specification!!!

Software with correctness
guarantee + validity domain

Proof of
impossibility

Back to: Adaptive Cruise Control

• A first attempt at specification:
“If there is no car in front, go at a set speed given by the user. If there is a

car in front, follow the lead car.”
• Would this work?

17

Mathematical
model of the

system

Formal
specification

Back to: Adaptive Cruise Control

• Final specification after carefully studying ISO and SAE
standards:

• Is there an easier way of coming up with specifications?
18

Mathematical
model of the

system

Formal
specification

assumptions

guarantees

19

Learning from demonstrations è constraint/task learning

Generalization
(performing the tasks in new environments)

“Small” data

Teaching a robot to do a task

Data à Models + Specificationà Control
Task specifications useful for (i) control design

(ii) system monitoring, (iii) anomaly detection, etc.

Learning from demonstration (LfD)
• Specifying tasks by hand can be challenging.
• Goal: Given demonstrations of a task, learn a policy which

completes the task in similar scenarios.
• Common approach: inverse optimal control (IOC) [Kalman ‘64, Ng et al. ‘00].
• Assume demonstrator solves an unconstrained optimization problem.
• Infer the cost function.
• Plan using the learned cost function.

minimize
⇠

c(⇠) ⇡ �>�(⇠)
learned

parameters
known

features
demonstrated

trajectory
cost

function

minimize
⇠

c(⇠) ⇡ �>�(⇠)

20

What if there are unknown constraints?
• IOC replaces the hard constraints with a soft cost penalty

• May not satisfy underlying constraint when generalizing
• Difficult to write down interpretable cost function features
• Very difficult to scale to multiple subtasks

• Our approach: directly learn the hard constraints
0

2

4

6

8

10

62646668

Task: Fill the cup

Grasp the cup

Deliver it without spills

Task: Avoid obstacle

21

Problem statement

minimize
⇠

c(⇠)

subject to ⇠ 2 S(✓)
⇠ 2 S i

known

Safe set defined by 𝜃:
unknown to the learner
Known constraints, e.g.
dynamics, start/goal state

Demonstrator’s problem:

find ✓

subject to ⇠1, ... , ⇠N optimal

Learner’s problem

Given: N optimal demos (and
their known constraints)

Core challenge:
Need to distinguish between valid and

invalid behavior from only valid examples

S1
knownS2

known

How? Demonstrator optimality.

⇠ = (⇠x = [x1, x2, ...], ⇠u = [u1, u2, ...])

S(✓)c

find ✓

subject to ⇠1, ... , ⇠N optimal

22

KKT conditions for demonstration i, :

Local changes to the demo
either increase the cost or

cause infeasibility

Auxiliary conditions needed to
show stationarity

Find a parameter which
makes the demos safe

Key insight: Find constraints that make each demonstration satisfy
its Karush-Kuhn-Tucker (KKT) optimality conditions.

KKT(⇠i , ✓)
Primal feasibility

Dual feasibility +
complementary slackness

Can dramatically reduce the set of valid constraints!

23

Stationarity

find ✓

subject to KKT(⇠i , ✓), i = 1, ... N

Mixed integer linear program (MILP)-
representable for some constraint
parameterizations (integer due to

complementary slackness)

• Ill-posed: many parameters 𝜃 can be consistent with Inverse-KKT
• But parameters may all agree on safety for some states
• Simple way to check:

CCC

G
¬
s

G
s

CCC

G
¬
s

uncertain

find ✓

subject to KKT(⇠i , ✓), i = 1, ... N
xquery unsafe

xquery
If infeasible, then xquery must be safe (if the parameterization
is correct).

Learner’s problem: Inverse-KKT

Can also do more sophisticated checks (reason about uncertainty directly).

24

Results

25

7DOF arm 7DOF arm (animated plan)

Quadrotor with 12D dynamics Quadrotor (animated plan)

Multi-stage task:

Question:
Can we learn multi-stage, constrained tasks from only

safe, locally-optimal demonstrations, and use them to complete tasks
in new environments while guaranteeing safety?

Challenges:
● Hard time-varying constraints must be satisfied to

complete the task
● Only given a small number of positive

demonstrations

• Need: hybrid continuous-discrete
constraints on trajectory over time

• Use linear temporal logic (LTL): extends
propositional logic to trajectories
• Until: : prop. A must hold until

prop. B holds for the first time
• Always: : prop. A must always

hold (Globally)
• Eventually: : prop. C must hold

at some time (Finally)
• Connect to the continuous world via the

atomic propositions (APs)
at time t, pi(✓p) = True , xt 2 S(✓p

i)

A UB

GA

FC

S(✓p
1)

S(✓p
2) S(✓p

3)

Multi-stage constrained tasks

27

A
A
B

A
B B

t
xt xt+1 xt+2 xt+3

A

A
A
B

A
B B

t
xt xt+1 xt+2 xt+3

A
CA

A
B

A
B B

t
xt xt+1 xt+2 xt+3

A UB

GA FC

Eventually visit p3

'(✓s , ✓p) = (¬p3(✓p) U p2(✓p)) ^ (¬p2(✓p) U p1(✓p)) ^ (Fp3(✓p))
Don’t visit p3 before p2 Don’t visit p2 before p1

Task: Fill glass → Grasp glass → Deliver

S(✓p
1)

S(✓p
2) S(✓p

3)

S(✓) = {⇠ | ⇠ satisfies '(✓s , ✓p)}

: structure parameters: high-level
(discrete) constraints

✓s

: atomic proposition (AP) parameters:
low-level (continuous) constraints

✓p

Goal: learn , ✓s ✓p

28

p3 p2 p1

U U

¬ ¬

∧

♦

∧

'(✓s , ✓p) = (¬p3(✓p) U p2(✓p)) ^ (¬p2(✓p) U p1(✓p)) ^ (Fp3(✓p))

Search over parse
tree representation of
the structure; MILP-

representable

Captured by the
geometry

Captured by the
grammar

Enforce the demonstrations
satisfy their KKT conditions

(continuous optimality
conditions) to learn .✓p

Enforce the demonstrations don’t
perform unnecessary subtasks (i.e.
APs) for the learned (enforces

discrete optimality).
✓s

Core ideas:
Learning ,✓s ✓p

• Why is discrete optimality important?
• Demonstrations are also feasible for far weaker

formula structures
• Harder to enforce. Why?
• Boils down to exhaustive enumeration of lower-

cost solutions.

29

Learning ,✓s ✓p

Demonstrations No

Yes

Propose candidate , .✓s✓p
Can we find a

counterexample? Return , .✓s✓p

Falsification loop

Learner’s problem:

find ✓s , ✓p

subject to KKT(⇠i , ✓p), i = 1, ... N
counterexamples violate '(✓s , ✓p)

Method for enforcing high-
level plan is optimal

Counterexample:
a trajectory satisfying at lower

cost than the demonstration
'(✓s , ✓p)

find ✓s , ✓p

subject to KKT(⇠i , ✓p), i = 1, ... N

Theoretical guarantees:
• Consistent: makes the demonstrations optimal
• Probabilistically complete: returns consistent

formula if one exists
• Simplest: returns shortest consistent formula
• Conservative: obtain safe inner-approximations

of the AP constraints

30

7-DOF arm bartender task Quadrotor
surveillance

Task:
visit green regions without
colliding with the building

Task:
6BHH ;H�bb ! :`�bT ;H�bb ! .2HBp2`

Planned
trajectory

Planned trajectory

Demonstrations

31

Learned:
AP parameters (location of relevant objects)

LTL formula structure (task sequence)
Learned:

AP parameters (locations of interest)
LTL formula structure:

Demos

'(✓s , ✓p) = (¬p3(✓p) U p2(✓p)) ^ (¬p2(✓p) U p1(✓p)) ^ (Fp3(✓p))

'(✓s , ✓p) = Fp1(✓p) ^ Fp2(✓p) ^ Fp3(✓p)

Demonstration (in VR)
Execution in new scene

7-DOF multi-stage package delivery task

;`�bT bQmT ! TH�+2 BM bK�HH #Qt ! /2HBp2` iQ #Hm2 `2;BQM ! ;`�bT *?22x@Aib ! TH�+2 BM H�`;2 #Qt
Task:

2x

32

Learned: LTL formula structure, APs sensed → plan with learned LTL structure in entirely new environment

33

• Synthesis or formal verification require models and
specifications:
• both modeling and specifying requirements can be hard, learning can

help
Key message for learning specifications:
• Optimality (or being close to optimal) is a very strong prior that

can be utilized when learning from limited data
Current work:
• Learning probabilistic constraints for safety of very large scale

complex systems (in the poster session)

Mathematical
model of the

system

Formal
specification

Formal methods in CPS

34

Falsification

Blackbox system:
Plant + software Specification

Inconclusive Counterexample

Synthesis-guided
Falsification

System:
Whitebox plant +
Blackbox software Specification

Inconclusive Counterexample
+ explanation

Verification

Whitebox system:
Plant + software Specification

Correctness
proof

Counterexample

Synthesis

Partial whitebox system:
Plant (∃? Software) Specification

Software with correctness
guarantee + validity domain

Proof of
impossibility

Conclusions and future challenges

35

• We have a good repertoire of formal techniques for specifying,
designing, and analyzing cyber-physical systems in a way to
increase trustworthiness.
• Challenges:
• Scalability

• more complex, high-dimensional, nonlinear models with learning-based
components

• more complex specifications
• Learning: how to trust the learned artifacts or datasets?
• Formal methods for humans CPS

• both modeling and specifying is much harder
• Formal methods for multi-agent CPS (with multiple decision-makers,

including humans)
• How to scale?
• How to safely evaluate?
• How to analyze?

36

ACKNOWLEDGMENTS

Other CPS collaborators: Dmitry Berenson, Johanna Mathieu, Stephane Lafortune, Dimitra Panagou, Sze
Zheng Yong, Samet Oymak, Jessy Grizzle, Huei Peng, Paulo Tabuada, Aaron Ames, Mario Sznaier

Funding Agencies: NSF CPS Program, ONR, Toyota Research Institute, Ford Research, Collins Aerospace

Special thanks to late Kishan Baheti, who was the PM for my NSF CAREER Award (joint between CPS and EPCN)

Glen Chou Petter NilssonZexiang Liu Liren Yang Kwesi Rutledge

Yuxiao Chen Yunus Sahin Sunho Jang Ruya Karagulle Stan Smith

And other team members…

