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End-to-end guarantees on safety and task completion?
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Formal methods: mathematically rigorous 
techniques for specification, verification, and 
design of software and hardware systems.
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Formal methods 
landscape

Plant
(with a model) decision-making 

(autonomy) software

+

Verification

Whitebox system:
Plant + software Specification

Correctness 
proof

Counterexample

PROS: 
• Strong guarantees

CONS:
• Hybrid system verification is 

computationally very hard 
• Autonomy software  è up to millions 

of lines of code (loc):
§ hard to model
§ hard to scale

Mars curiosity rover: 5M loc
Boeing 787 flight software: 15M loc
F 35-fighter jet: 25M loc
Average modern high-end car: 100M loc

'
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Synthesis

Partial whitebox system:
Plant  (∃? Software) Specification

Software with 
correctness guarantee + 
validity domain

Proof of 
impossibility

Alternative #1: Correct-by-construction 
(control) synthesis

PROS: 
• Strong guarantees
• Avoids the complexity induced by software
• “Explains” fundamental limits (impossibility)

CONS:
• Correct-by-construction synthesis is 

computationally even harder 
• Limited specs; spec correctness & 

completeness is more crucial
• Almost no synthesis approach for perception or 

learning components
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Synthesis

Partial whitebox system:
Plant  (∃? Software) Specification

Software with 
correctness guarantee + 
validity domain

Proof of 
impossibility

Alternative #1: Correct-by-construction 
(control) synthesis

We have worked on many applications in 
the automotive and aerospace domain.
Two highlights (from ’14-’15):
• Adaptive cruise control
• Lane keeping
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Synthesis

Partial whitebox system:
Plant  (∃? Software) Specification

Software with 
correctness guarantee + 
validity domain

Proof of 
impossibility

Alternative #1: Correct-by-construction 
(control) synthesis

Deployment of 
synthesized 

controllers in Mcity
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Synthesis

Partial whitebox system:
Plant  (∃? Software) Specification

Software with 
correctness guarantee + 
validity domain

Proof of 
impossibility

Alternative #1: Correct-by-construction 
(control) synthesis What we learned from early 

deployments?
• Putting “correct” and automatically 

synthesized software on a car is feasible
• There were failures but having mathematical 

models and formal assumptions help detect 
failures
• We realized that the model was missing 

actuator delays
• Conservativeness due to not looking ahead

• Motivated future work on safety with learned 
models, delays, and predictions (see the 
poster session)
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Synthesis

Partial whitebox system:
Plant  (∃? Software) Specification

Software with 
correctness guarantee + 
validity domain

Proof of 
impossibility

Alternative #1: Correct-by-construction 
(control) synthesis

Theorem:
For an n dimensional linear system model with k 
steps of actuation delay (overall system dimension 
= n+k), there exist an auxiliary n dimensional 
system such that any safe and invariant set of the 
original delay system can be obtained from that of 
the auxiliary system.

What we learned from early 
deployments?
• Putting “correct” and automatically 

synthesized software on a car is feasible
• There were failures but having mathematical 

models and formal assumptions help detect 
failures
• We realized that the model was missing 

actuator delays
• Conservativeness due to not looking ahead

• Motivated future work on safety with learned 
models, delays, and predictions (see the 
poster session)
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Alternative #2: Falsification

Falsification

Blackbox system:
Plant + software Specification

Inconclusive Counterexample

PROS: 
• Can handle arbitrarily complex models (plant + 

software) including learning-based components 
• Industry-adopted tools (e.g., Breach, S-Taliro)

CONS:
• Weaker conclusions
• No explanation of the counterexamples:

§ can give “trivial” counterexamples if 
assumptions are not modeled carefully

§ is it a hardware (plant) limitation or 
software bug?



Falsification

Blackbox system:
Plant + software Specification

Inconclusive Counterexample

* SUT: system under test; CUT: controller (autonomy software) under test

Synthesis-guided 
Falsification

System:
Whitebox plant +
Blackbox software Specification

Inconclusive Counterexample
+ explanation

Alternative #2.5: Synthesis-guided falsification
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Alternative #2.5: Synthesis-guided 
falsification

Synthesis-guided 
Falsification

System:
Whitebox plant +
Blackbox software Specification

Inconclusive Counterexample
+ explanation

Key insights:
• Steering the search via specification-

guided backward reachable sets of the 
plant model

• Querying the unknown controller only at 
specification-critical regions
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Alternative #2.5: Synthesis-guided 
falsification

Synthesis-guided 
Falsification

System:
Whitebox plant +
Blackbox software Specification

Inconclusive Counterexample
+ explanation

Key insights:
• Steering the search via specification-

guided backward reachable sets of the 
plant model

• Querying the unknown controller only at 
specification-critical regions
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Alternative #2.5: Synthesis-guided 
falsification

Synthesis-guided 
Falsification

System:
Whitebox plant +
Blackbox software Specification

Inconclusive Counterexample
+ explanation

Key insights:
• Steering the search via specification-

guided backward reachable sets of the 
plant model

• Querying the unknown controller only at 
specification-critical regions

Extensions to vision-based controllers
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Falsification

Blackbox system:
Plant + software Specification

Inconclusive Counterexample

Synthesis-guided 
Falsification

System:
Whitebox plant +
Blackbox software Specification

Inconclusive Counterexample
+ explanation

Verification

Whitebox system:
Plant + software Specification

Correctness 
proof

Counterexample

Synthesis

Partial whitebox system:
Plant  (∃? Software) Specification

Software with correctness 
guarantee + validity domain

Proof of 
impossibility
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Falsification

Blackbox system:
Plant + software Specification!!!

Inconclusive Counterexample

Synthesis-guided 
Falsification

System:
Whitebox plant +
Blackbox software Specification!!!

Inconclusive Counterexample
+ explanation

Verification

Whitebox system:
Plant + software Specification!!!

Correctness 
proof

Counterexample

Synthesis

Partial whitebox system:
Plant  (∃? Software) Specification!!!

Software with correctness 
guarantee + validity domain

Proof of 
impossibility



Back to: Adaptive Cruise Control

• A first attempt at specification:
“If there is no car in front, go at a set speed given by the user. If there is a 

car in front, follow the lead car.”
• Would this work?

17

Mathematical 
model of the 

system

Formal 
specification



Back to: Adaptive Cruise Control

• Final specification after carefully studying ISO and SAE 
standards:

• Is there an easier way of coming up with specifications?
18

Mathematical 
model of the 

system

Formal 
specification

assumptions

guarantees
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Learning from demonstrations è constraint/task learning

Generalization
(performing the tasks in new environments)

“Small” data

Teaching a robot to do a task

Data à Models + Specificationà Control
Task specifications useful for (i) control design

(ii) system monitoring, (iii) anomaly detection, etc.



Learning from demonstration (LfD)
• Specifying tasks by hand can be challenging.
• Goal: Given demonstrations of a task, learn a policy which 

completes the task in similar scenarios.
• Common approach: inverse optimal control (IOC) [Kalman ‘64, Ng et al. ‘00].
• Assume demonstrator solves an unconstrained optimization problem.
• Infer the cost function.
• Plan using the learned cost function.

minimize
⇠

c(⇠) ⇡ �>�(⇠)
learned 

parameters
known 

features
demonstrated 

trajectory
cost 

function

minimize
⇠

c(⇠) ⇡ �>�(⇠)
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What if there are unknown constraints?
• IOC replaces the hard constraints with a soft cost penalty

• May not satisfy underlying constraint when generalizing
• Difficult to write down interpretable cost function features
• Very difficult to scale to multiple subtasks

• Our approach: directly learn the hard constraints
0

2

4

6

8

10

62646668

Task:    Fill the cup

Grasp the cup

Deliver it without spills

Task: Avoid obstacle

21



Problem statement

minimize
⇠

c(⇠)

subject to ⇠ 2 S(✓)
⇠ 2 S i

known

Safe set defined by 𝜃: 
unknown to the learner
Known constraints, e.g. 
dynamics, start/goal state

Demonstrator’s problem:

find ✓

subject to ⇠1, ... , ⇠N optimal

Learner’s problem

Given: N optimal demos                 (and 
their known constraints)

Core challenge:
Need to distinguish between valid and 

invalid behavior from only valid examples

S1
knownS2

known

How? Demonstrator optimality.

⇠ = (⇠x = [x1, x2, ...], ⇠u = [u1, u2, ...])

S(✓)c

find ✓

subject to ⇠1, ... , ⇠N optimal

22



KKT conditions for demonstration i,                :

Local changes to the demo 
either increase the cost or 

cause infeasibility

Auxiliary conditions needed to 
show stationarity

Find a parameter which 
makes the demos safe

Key insight: Find constraints that make each demonstration satisfy 
its Karush-Kuhn-Tucker (KKT) optimality conditions.

KKT(⇠i , ✓)
Primal feasibility

Dual feasibility + 
complementary slackness

Can dramatically reduce the set of valid constraints!

23

Stationarity



find ✓

subject to KKT(⇠i , ✓), i = 1, ... N

Mixed integer linear program (MILP)-
representable for some constraint 
parameterizations (integer due to 

complementary slackness)

• Ill-posed: many parameters 𝜃 can be consistent with Inverse-KKT
• But parameters may all agree on safety for some states
• Simple way to check:

CCC

G
¬
s

G
s

CCC

G
¬
s

uncertain

find ✓

subject to KKT(⇠i , ✓), i = 1, ... N
xquery unsafe

xquery
If infeasible, then xquery must be safe (if the parameterization 
is correct).

Learner’s problem: Inverse-KKT

Can also do more sophisticated checks (reason about uncertainty directly).

24



Results
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7DOF arm 7DOF arm (animated plan)

Quadrotor with 12D dynamics Quadrotor (animated plan)



Multi-stage task:

Question:
Can we learn multi-stage, constrained tasks from only 

safe, locally-optimal demonstrations, and use them to complete tasks 
in new environments while guaranteeing safety?

Challenges:
● Hard time-varying constraints must be satisfied to 

complete the task
● Only given a small number of positive 

demonstrations



• Need: hybrid continuous-discrete 
constraints on trajectory over time

• Use linear temporal logic (LTL): extends 
propositional logic to trajectories
• Until:            : prop. A must hold until 

prop. B holds for the first time
• Always:        : prop. A must always 

hold (Globally)
• Eventually:        : prop. C must hold 

at some time (Finally)
• Connect to the continuous world via the 

atomic propositions (APs)
at time t, pi(✓p) = True , xt 2 S(✓p

i )

A UB

GA

FC

S(✓p
1 )

S(✓p
2 ) S(✓p

3 )

Multi-stage constrained tasks

27

A
A
B

A
B B

t
xt xt+1 xt+2 xt+3

A

A
A
B

A
B B

t
xt xt+1 xt+2 xt+3

A
CA

A
B

A
B B

t
xt xt+1 xt+2 xt+3

A UB

GA FC



Eventually visit p3

'(✓s , ✓p) = (¬p3(✓p) U p2(✓p)) ^ (¬p2(✓p) U p1(✓p)) ^ (Fp3(✓p))
Don’t visit p3 before p2 Don’t visit p2 before p1

Task: Fill glass → Grasp glass → Deliver

S(✓p
1 )

S(✓p
2 ) S(✓p

3 )

S(✓) = {⇠ | ⇠ satisfies '(✓s , ✓p)}

: structure parameters: high-level
(discrete) constraints

✓s

: atomic proposition (AP) parameters: 
low-level (continuous) constraints

✓p

Goal: learn     , ✓s ✓p

28

p3 p2 p1

U U

¬ ¬

∧

♦

∧

'(✓s , ✓p) = (¬p3(✓p) U p2(✓p)) ^ (¬p2(✓p) U p1(✓p)) ^ (Fp3(✓p))

Search over parse 
tree representation of 
the structure; MILP-

representable

Captured by the 
geometry

Captured by the 
grammar



Enforce the demonstrations 
satisfy their KKT conditions 

(continuous optimality 
conditions) to learn      .✓p

Enforce the demonstrations don’t 
perform unnecessary subtasks (i.e. 
APs) for the learned      (enforces 

discrete optimality).
✓s

Core ideas:
Learning   ,✓s ✓p

• Why is discrete optimality important?
• Demonstrations are also feasible for far weaker 

formula structures
• Harder to enforce. Why? 
• Boils down to exhaustive enumeration of lower-

cost solutions.

29



Learning   ,✓s ✓p

Demonstrations No

Yes

Propose candidate     ,     .✓s✓p
Can we find a 

counterexample? Return     ,     .✓s✓p

Falsification loop

Learner’s problem:

find ✓s , ✓p

subject to KKT(⇠i , ✓p), i = 1, ... N
counterexamples violate '(✓s , ✓p)

Method for enforcing high-
level plan is optimal

Counterexample: 
a trajectory satisfying                  at lower 

cost than the demonstration
'(✓s , ✓p)

find ✓s , ✓p

subject to KKT(⇠i , ✓p), i = 1, ... N

Theoretical guarantees:
• Consistent: makes the demonstrations optimal
• Probabilistically complete: returns consistent 

formula if one exists
• Simplest: returns shortest consistent formula
• Conservative: obtain safe inner-approximations 

of the AP constraints

30



7-DOF arm bartender task Quadrotor 
surveillance

Task: 
visit green regions without 
colliding with the building

Task:
6BHH ;H�bb ! :`�bT ;H�bb ! .2HBp2`

Planned 
trajectory

Planned trajectory

Demonstrations

31

Learned: 
AP parameters (location of relevant objects)

LTL formula structure (task sequence)
Learned: 

AP parameters (locations of interest)
LTL formula structure:

Demos

'(✓s , ✓p) = (¬p3(✓p) U p2(✓p)) ^ (¬p2(✓p) U p1(✓p)) ^ (Fp3(✓p))

'(✓s , ✓p) = Fp1(✓p) ^ Fp2(✓p) ^ Fp3(✓p)



Demonstration (in VR)
Execution in new scene

7-DOF multi-stage package delivery task

;`�bT bQmT ! TH�+2 BM bK�HH #Qt ! /2HBp2` iQ #Hm2 `2;BQM ! ;`�bT *?22x@Aib ! TH�+2 BM H�`;2 #Qt
Task:

2x

32

Learned: LTL formula structure, APs sensed → plan with learned LTL structure in entirely new environment
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• Synthesis or formal verification require models and 
specifications: 
• both modeling and specifying requirements can be hard, learning can 

help
Key message for learning specifications: 
• Optimality (or being close to optimal) is a very strong prior that 

can be utilized when learning from limited data
Current work:
• Learning probabilistic constraints for safety of very large scale 

complex systems (in the poster session)

Mathematical 
model of the 

system

Formal 
specification
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Falsification

Blackbox system:
Plant + software Specification

Inconclusive Counterexample

Synthesis-guided 
Falsification

System:
Whitebox plant +
Blackbox software Specification

Inconclusive Counterexample
+ explanation

Verification

Whitebox system:
Plant + software Specification

Correctness 
proof

Counterexample

Synthesis

Partial whitebox system:
Plant  (∃? Software) Specification

Software with correctness 
guarantee + validity domain

Proof of 
impossibility



Conclusions and future challenges
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• We have a good repertoire of formal techniques for specifying, 
designing, and analyzing cyber-physical systems in a way to 
increase trustworthiness.
• Challenges:
• Scalability 

• more complex, high-dimensional, nonlinear models with learning-based 
components

• more complex specifications
• Learning: how to trust the learned artifacts or datasets?
• Formal methods for humans CPS

• both modeling and specifying is much harder
• Formal methods for multi-agent CPS (with multiple decision-makers, 

including humans)
• How to scale?
• How to safely evaluate?
• How to analyze?
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