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Obijective: Traffic control to meet objectives expressed in
temporal logic, e.g.,

* eventually each link
will have £30 vehicles

* upstream link will have
low demand until downstream link is no longer congested
* each queue at a junction will be actuated at least once
every two minutes.

Formal Synthesis Workflow
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Outline:

|. Finite abstraction for formal methods

Exploiting a “mixed monotonicity” property for scalability.

Application to a macroscopic traffic flow model.

2. Compositional synthesis for large networks

Decoupled synthesis for subnetworks with supply and
demand contracts.




|. Finite Abstraction for Formal Methods

Capture the underlying dynamics with a finite set of symbols and

transitions between them. Methods exist for classes of systems

(Tabuada, Girard, Pappas, Reissig, Abate, Belta, and others...)

Example: polyhedral computations for piecewise affine systems
(Belta et al.)




Monotonicity and Mixed Monotonicity

The discrete-time system:
Pt =F(z) z€X
is if
r1 < T9 — F(xl) < F(ZEQ)

with respect to a partial order (standard order in this talk).

Monotonicity offers strong dynamical properties [Hirsch, Smith,
Angeli, Sontag] but is restrictive in practice.

Necessary and sufficient condition for monotonicity:
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Monotonicity and Mixed Monotonicity

vt =F(z) ze€X
is if there exists a “decomposition function’
f: XXX —>X
such that flz,z) = F(x)
1 <z = [f(z1,y) < f(z2,Y)
i Sy2 = flz,y2) < fl@,y).

)

A sufficient condition for mixed monotonicity:
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Decomposition function: Fj(- - - ,:z]y,j- o) if 4y = —1




Mixed Monotonicity Allows Scalable Finite Abstraction

Two function evaluations tightly bound the one-step reach set:

F(x2)
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This allows a scalable

abstraction algorithm:




Traffic Flow: a Macroscopic Model

¢ For each link ¢:
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Traffic Flow is Mixed Monotone

aF o p - . .
5. (z) >0 0y = 1 if 2 and 5 share tail node

& Oz ; | +1 otherwise

Apply abstraction —0
algorithm and add ?{'@\
signaling states to @:% %
transition model =

finite abstraction formal methods

Standard monotonicity breaks down at splits
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Example: Signal Control for a Corridor

* Each signal actuates cross street
traffic infinitely often

* Eventually, links [, 2, 3,and 4
have fewer than 30 vehicles each

* The signal at junction 4 must
actuate cross street traffic for at
least two sequential time-steps

Naive offset optimal policy
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2. Compositional Synthesis for Large Networks

* “Contracts” between neighboring

subnetworks to limit demand and N No
uarantee adequate supply [ " .. T T [ o4 . |
g q PPlY : vl g V2 | . Y4 | :
* Neighbors’ promises allow | l ! :
decoupled subnetwork models ! 2 | 7 :
with set valued maps | | :
| I3 vy l4 E vs 18 g |

* Augment temporal logic specifications with own promises and
synthesize controller for each subnetwork
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Neighbors’ Promises Allow Decoupled Models

N N
Subnetwork 2 promises a 0 _l_ il *_z_ i _l_ oo
minimum supply of g5°mtract I’D ! |5 6
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Ongoing Research

Compositional synthesis: Probabilistic
less conservative contracts guarantees:
and cooperation among exploit demand

subnetwork controllers aasl) = 22 statistics to
rather than fully find transition
decentralized probabilities
control and guarantee
satisfaction with
high probability

Optimality:
add optimality criteria
to specifications, e.g., Coordinated onramp metering / arterial
minimize travel time, signaling
minimize spatial and validation
variations in traffic with hybrid =g

density, maximize freeway/arterial
throughput simulation L
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