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Objective:  Traffic control to meet objectives expressed in 
temporal logic, e.g., 	


•  eventually each link 	


will have ≤30 vehicles 	


•  upstream link will have 	


low demand until downstream link is no longer congested	


•  each queue at a junction will be actuated at least once	


every two minutes.	
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Formal Synthesis Workflow	
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Outline:   
 
1.  Finite abstraction for formal methods	


 
 
	


2.  Compositional synthesis for large networks	



 
 

Exploiting a “mixed monotonicity” property for scalability.	



Application to a macroscopic traffic flow model.	



Decoupled synthesis for subnetworks with supply and 
demand contracts.	





 1.  Finite Abstraction for Formal Methods	
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Capture the underlying dynamics with a finite set of symbols and	


transitions between them.  Methods exist for classes of systems 

(Tabuada, Girard, Pappas, Reissig, Abate, Belta, and others…)	



Example:  polyhedral computations for piecewise affine systems	


(Belta et al.)	





Monotonicity and Mixed Monotonicity	



The discrete-time system:	



x

+ = F (x) x 2 X
is monotone if	



x1  x2 =) F (x1)  F (x2)

with respect to a partial order (standard order in this talk).	



Monotonicity offers strong dynamical properties [Hirsch, Smith, 
Angeli, Sontag] but is restrictive in practice. 	



Necessary and sufficient condition for monotonicity:	



@Fi(x)

@xj
� 0 8x 2 X 8i, j



x

+ = F (x) x 2 X
is mixed monotone if there exists a “decomposition function”	



such that	



f : X ⇥ X ! X

f(x, x) = F (x)

x1  x2 ) f(x1, y)  f(x2, y)

y1  y2 ) f(x, y2)  f(x, y1).

9�ij 2 {�1, 1} s.t. �ij
@Fi(x)

@xj
� 0 8i, j

A sufficient condition for mixed monotonicity:	



  Decomposition function:	


Fi(· · · , xj , · · · )

yj
if �ij = �1

Monotonicity and Mixed Monotonicity	





Mixed Monotonicity Allows Scalable Finite Abstraction	



Two function evaluations tightly bound the one-step reach set:	



Monotone:	



Mixed Monotone:	



Motivation Mixed Monotonicity Abstraction Examples Conclusions

Efficient abstraction from reachability computation

The transition system T = (Q,M,d ) is an over-approximating
abstraction of x+ = Fm(x,d):

If 9x 2 Iq 9d 2D such that Fm(x,d) 2 Iq0

Then q0 2 d (q,m)

Mixed monotonicity allows efficient abstraction
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This allows a scalable	


abstraction algorithm:	





Traffic Flow:  a Macroscopic Model	



Incoming links:	



Outgoing links:	
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Traffic Flow is Mixed Monotone	



if    and    share tail node	


otherwise	



�ij =

⇢
�1 i j
+1

�ij
@Fi(x)

@xj
� 0

Apply abstraction	


algorithm and add	


signaling states to	


transition model 	
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Example:  Signal Control for a Corridor	



Temporal Logic Specifications:	
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•  Each signal actuates cross street 
traffic infinitely often	



•  Eventually, links 1, 2, 3, and 4 
have fewer than 30 vehicles each	



•  The signal at junction 4 must 
actuate cross street traffic for at 
least two sequential time-steps	
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2.  Compositional Synthesis for Large Networks	



�new

i = �original

i ^ �supply

i ^ �demand

i i = 1, 2, ...

•  “Contracts” between neighboring 	


subnetworks to limit demand and 	


guarantee adequate supply	


	


•  Neighbors’ promises allow	


decoupled subnetwork models	


with set valued maps	


	


•  Augment temporal logic specifications with own promises and	


synthesize controller for each subnetwork	


	


	



                                       promises to neighbors	





Neighbors’ Promises Allow Decoupled Models	



Subnetwork 2 promises a 	


minimum supply of	


on link 5 and to limit its 	


demand on link 4 by   	


vehicles per period.	
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Decoupled subnet 1 model:	
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Ongoing Research	


Probabilistic	


guarantees:	


exploit demand	


statistics to	


find transition	


probabilities	


and guarantee	


satisfaction with	


high probability	



Coordinated onramp metering / arterial	


signaling 	


and validation	


with hybrid 	


freeway/arterial	


simulation	



Compositional synthesis:	


less conservative contracts 	


and cooperation among	


subnetwork controllers 	


rather than fully	


decentralized	


control	



dx2(t
)

dt
=f2(x1

(t), x2
(t), x3

(t))

dx1(t
)

dt
=f1(x1

(t), x2
(t))

dx3(t
)

dt
=f3(x2

(t), x3
(t))

Optimality:	


add optimality criteria	


to specifications, e.g.,	


minimize travel time, 	


minimize spatial	


variations in traffic 	


density, maximize	


throughput	
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