
Formal Methods at Scale
Formal + Informal

Paul Miner
NASA Langley Research Center

p.s.miner@nasa.gov

25 September 2019

Issues of scale

• One niche in aerospace is formal analysis of specific models
and requirements codified into industry-wide standards
– When possible, design models to be reusable for similar applications

(open source release)
• Three recent examples:

– SAE AS 6802: Time-Triggered Ethernet
• Formalization of fault-tolerance properties of a safety-critical data network

– (SC 228) RTCA DO-365: Minimum Operational Performance Standards
[MOPS] for Detect and Avoid (DAA) Systems

• Formalization of well-clear requirements and DAA alerting logic
– (SC 186) RTCA DO-260C (draft): MOPS for ADS-B

• Formalization of requirements and reference implementation of Compact
Position Reporting algorithm

25 September 2019 Formal Methods at Scale 2

Time-Triggered Ethernet

• Fault-tolerant data network for safety-critical applications
• Formal modeling and analysis using SAL and PVS during

development of AS 6802 standard (by SRI, TTTech, &
Honeywell)

• Analysis using PVS helped identify and fix a design defect.
The fix was incorporated into the published standard:
– B. Dutertre, A. Easwaran, B. Hall, and W. Steiner, Model-Based

Analysis of Timed-Triggered Ethernet, presented at the 31st
Digital Avionics Systems Conference (DASC), October 2012.

25 September 2019 Formal Methods at Scale 3

http://www.csl.sri.com/users/bruno/publis/tte-dasc2012.pdf

Detect and Avoid Alerting Logic For Unmanned Systems
(DAIDALUS)

• Reference implementation of NASA’s detect and avoid concept for the integration
of Unmanned Aircraft Systems into civil airspace (RTCA DO 365).

• Formally verified core algorithms that:
– Determine the current pairwise well-clear status (Detection Logic).
– Compute maneuver guidance to maintain or regain well-clear status (Maneuver Guidance

Logic).
– Determine alert type (Alerting Logic).

• DAIDALUS core algorithms have been implemented as an Application
Programming Interface (API) library in Java and C++ (≈ 44k lines of code).

• DAIDALUS API provides a highly configurable interface:
– Aircraft performance limits (acceleration, turn rate, etc.)
– Wind information (simple wind-field model)
– Alerting and guidance thresholds

• Code is released under NASA Open Source Agreement:
http://github.com/nasa/wellclear

http://github.com/nasa/wellclear

ompact osition eporting – ADS-B Positioning

25 September 2019 Formal Methods at Scale 5

On (formal) models …

• “Essentially, all models are
wrong, but some are
useful”
– George Box

25 September 2019 Formal Methods at Scale 6

Formal or Informal models?

Benefits
• Explore system behavior earlier

in lifecycle
• Ability to verify properties that

cannot be effectively
demonstrated by test
– Airborne separation
– Robust partitioning for Integrated

Modular Avionics
– No memory leaks, buffer

overflows, etc.
• …

Risks
• Invalid assumptions
• Unstated assumptions
• Tendency to conflate model with

reality
• Maintaining consistency between

multiple models (with different
underlying abstractions)

• Incompatibility between models
– Especially design models vs.

failure models
• …

25 September 2019 Formal Methods at Scale 7

Representative Avionics Incidents

• Ariane 501 – 4 June 1996; Software defect in initialization
routine for the inertial reference unit resulted in shutdown of
both IRU and subsequent loss of rocket 37 seconds into launch

• B777 Malaysia Airlines Flight 124 – 1 August 2005; Latent
software defect in ADIRU startup routine forgot prior failure of an
accelerometer; second failed accelerometer resulted in incorrect
data output from ADIRU to other critical systems (ADIRU was
supposed to fail silent in this case).

• F-22 International Date Line – February 2007; multiple software-
related systems failures when crossing the 180th meridian;
failures resulted in simultaneous loss of navigation and
communication; clear weather allowed squadron to follow
tankers back to Hawaii.

Common to these incidents is presence of a
software defect coupled with error propagation
affecting critical functions unrelated to the software
failure..

8

9

First Picture of a Byzantine Fault?

From https://c3.nasa.gov/dashlink/static/media/other/ObservedFailures4.html

https://c3.nasa.gov/dashlink/static/media/other/ObservedFailures4.html

Questions?

Downloaded from http://xkcd.com/246/

25 September 2019 Formal Methods at Scale 10

Backup Slides

25 September 2019 11Formal Methods at Scale

An assumption will remain valid only until you
come to depend on it*.

25 September 2019 Formal Methods at Scale 12

* http://www.ece.mtu.edu/faculty/rmkieckh/Kieckhafer-top-ten.htm (version 11.1; law 4.2)

http://www.ece.mtu.edu/faculty/rmkieckh/Kieckhafer-top-ten.htm

On Standards

25 September 2019 Formal Methods at Scale 13

Downloaded from https://xkcd.com/927/

Design Verification vs. Certification

Design Verification
• Focus on functional

correctness, desired properties,
and performance

• Emphasis on average case
behavior (e.g., for
performance)

• Intended interactions between
components & environment
– Presumption that the only

interaction is through defined
interfaces

Certification
• Focus on non-functional

requirements – Safety, Security,
etc.

• Emphasis on worst-case behavior
• Preclude adverse interaction

between components &
environment

– In addition to failure propagation
through defined interfaces, must
also consider “out-of-band” failure
modes

25 September 2019 Formal Methods at Scale 14

15

• Assumed importance order
- Assumed/known fault hypothesis violated

wexhaustion of resources (known fault hypothesis)
- Single point of failure

wunknown fault hypothesis
w forgotten failure mode
wunderestimated probability of occurrence

- Fault propagation = domino effect (fault containment)
• Real occurrence frequency order

- Chain or domino effect (missing fault containment)
wE.g. TTP membership; shown to be a fault propagation path [Ademaj,

Sivencrona]
- Single point of failure (unknown fault hypothesis)

wE.g. quad-redundant control system (termination of bus)[2003]
- Exhaustion of resources (known fault hypothesis)

"How Systems Fail"

