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Abstract

This report presents results of a friendly competition for formal verification of continu-
ous and hybrid systems with piecewise constant dynamics. The friendly competition took
place as part of the workshop Applied Verification for Continuous and Hybrid Systems
(ARCH) in 2018. In this second edition, five tools have been applied to solve five differ-
ent benchmark problems in the category for piecewise constant dynamics: BACH, Lyse,
PHAVer, PHAVer-lite, and VeriSiMPL. Compared to last year, a new tool has participated
(PHAVer-lite) and a benchmark has been made more complex (Dutch Railway Network).
The result is a snapshot of the current landscape of tools and the types of benchmarks
they are particularly suited for. Due to the diversity of problems, we are not ranking tools,
yet the presented results probably provide the most complete assessment of tools for the
safety verification of continuous and hybrid systems with piecewise constant dynamics up
to this date.

G. Frehse (ed.), ARCH18 (EPiC Series in Computing, vol. 54), pp. 1–13
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1 Introduction

Disclaimer The presented report of the ARCH friendly competition for continuous and
hybrid systems with piecewise constant dynamics aims at providing a landscape of the cur-
rent capabilities of verification tools. We would like to stress that each tool has unique
strengths—not all of the specificities can be highlighted within a single report. To reach a
consensus in what benchmarks are used, some compromises had to be made so that some
tools may benefit more from the presented choice than others. The obtained results have
been verified by an independent repeatability evaluation. To establish further trustworthi-
ness of the results, the code with which the results have been obtained is publicly available
at gitlab.com/goranf/ARCH-COMP.

This report summarizes results obtained in the 2018 friendly competition of the ARCH
workshop1 for verifying hybrid systems with piecewise constant bounds on the dynamics. In
each location (mode, piece of the hybrid state space), the dynamics are given by a differential
inclusion of the form

ẋ(t) ∈ U ,

where U is a convex subset of Rn. Tool developers run their tools summarized in Sec. 2 on
different benchmark problems presented in Sec. 3 and report the results obtained from their
own machines also in Sec. 3.

The results reported by each participant have not been checked by an independent authority
and are obtained on the machines of the tool developers. Thus, one has to factor in the
computational power of the used processors summarized in Sec. A as well as the efficiency of
the programming language of the tools. It is not the goal of the friendly competition to rank
the results, the goal is to present the landscape of existing solutions in a breadth that is not
possible by scientific publications in classical venues. Those would require the presentation of
novel techniques, while this report showcases the current state of the art.

The selection of the benchmarks has been conducted within the forum of the ARCH website
(cps-vo.org/group/ARCH), which is visible for registered users and registration is open for
anybody. All tools presented in this report use some form of reachability analysis. This,
however, is not a constraint set by the organizers of the friendly competition. We hope to
encourage further tool developers to showcase their results in future editions.

2 Participating Tools

The tools participating in the category Continuous and Hybrid Systems with Piecewise Constant
Dynamics are introduced below in alphabetical order.

BACH BACH [12, 11] is a bounded reachability checker for Linear Hybrid Automata (LHA)
model, Hybrid Systems with Piecewise Constant Dynamics (HPWC) in the term of ARCH
competition. The tool provides GUI for LHA modeling and also bounded reachability checkers
for both single automaton and automata network. Be different from classical bounded checkers
of LHA, which encodes the “complete” bounded state space of the system into a huge SMT

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH

2

https://gitlab.com/goranf/ARCH-COMP
http://cps-vo.org/group/ARCH
http://cps-vo.org/group/ARCH


ARCH-COMP HPWC Results Frehse, Abate, Adzkiya, Bu, Giacobbe, Mufid, Zaffanella

problem, BACH conducts the bounded checking in a “path-oriented” layered style. It finds
potential paths which can reach the target location on the graph structure first, then encodes
the feasibility of such path into a linear programming problem and solve it afterwards. In
this way, as the number of paths in the discrete graph structure of an LHA under a given
bound is finite, all candidate paths can be enumerated and checked one by one to tackle the
bounded reachability analysis of LHA. Furthermore, the memory usage is well controlled as
it only encodes and solves one path at a time. Meanwhile, BACH provides an efficient way
to locate the infeasible path segment core when a path is reported as infeasible to guide the
backtracking in the graph structure traversing to achieve good performance [20]. Such infeasible
path segments can also be used to derive complete state arguments under certain conditions [21].

Lyse Lyse is a tool for the reachability analysis of convex hybrid automata, namely hybrid
automata with piecewise constant dynamics, whose constraints are possibly non-linear but re-
quired to be convex. In this class are HPWC whose flow is contrained in rectangles, polyhedra,
but also ellipses and parabolae. Linear hybrid automata are a special case. Lyse performs for-
ward reachability analysis by means of template-polyhedra, whose directions are incrementally
extracted from spurious counterexamples. The extraction is performed by a novel technique
that generates interpolants by means of convex programming [8].

PHAVer PHAVer [14] is a formal verification tool for computing reachability and equivalence
(simulation relation) of hybrid systems. It can handle the class of Linear Hybrid Automata
(LHA), whose continuous dynamics is characterized by piecewise constant bounds on the deriva-
tives and whose discrete jumps can be a convex linear predicate over the variables before and
after the jump. PHAVer uses standard operations on polyhedra for the reachability compu-
tation over an infinite time horizon (similar to those used in HyTech), and the algorithm for
computing simulation relations is a straightforward extension of these. Using unbounded inte-
ger arithmetic, the computations are exact and formally sound. While termination of LHA is
undecidable, PHAVer provides formally sound, precise overapproximation and widening opera-
tors that can force termination at the cost of reduced precision. These operators also simplify
the computed continuous sets and dynamics of the system, and may result in a considerable
speed-up without much loss in precision. Since 2011, PHAVer is continued as a plugin to the
tool platform SpaceEx.

PHAVer-lite PHAVer-lite is a variant of the verification tool PHAVer, sharing the same ca-
pabilities and formal soundness guarantees, as well as providing the same high level interface
as a plugin to the SpaceEx platform. The main difference with respect to PHAVer is the adop-
tion of the new polyhedra library PPLite [7]: thanks to a novel representation and conversion
algorithm [6] for NNC (Not Necessarily Closed) polyhedra, PPLite is able to obtain significant
efficiency improvements with respect to the classical polyhedra implementation used in PHAVer
(which is based on the Parma Polyhedra Library [5]). Besides changing the polyhedra backend,
PHAVer-lite also applies a couple of more general improvements to the reachability algorithm
(e.g., in the implementation of the continuous post operator), leading to other remarkable
efficiency gains for some of the benchmarks.

VeriSiMPL This toolbox [1, 4] is used to generate finite abstractions and reachability of
max-plus-linear (MPL) systems. VeriSiMPL leverages the piecewise affine (PWA) dynamics
generated from an MPL system and some operations over difference-bound matrices (DBM)
[13]. Abstractions are characterized as finite-state labeled transition systems (LTS). The finite
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LTS abstractions are shown to either simulate or to bisimulate the original MPL system [2]. The
resulting LTS are to be verified against given specifications expressed as formulae in linear tem-
poral logic (LTL) and computation tree logic (CTL). The toolbox intends to leverage the SPIN
and NuSMV model checkers. With regards to the reachability of MPL systems, VeriSiMPL is
able to compute the forward and backward reach sets of MPL systems exactly [3]. The initial
and final states are expressed as a union of finitely many DBM. The reachability algorithm uses
the PWA dynamics associated with an MPL system and some operations on DBM.

3 Verification of Benchmarks

3.1 Adaptive Cruise Controller

Model The adaptive cruise controller is a distributed system for assuring that safety distances
in a platoon of cars are satisfied [9]. It is inspired by a related benchmark in [17]. For n cars, the
number of discrete states is 2n and the number of continuous variables is n. Each variable xi

encodes the relative position of the i-th car, for i = 0, . . . , n− 1. The car i-th car is considered
to be in front of the i + 1-th car. The relative velocity of each car has a drift |ẋi − ẋi+1| ≤ 1
when cruising and |ẋi − ẋi+1 − ε| ≤ 1 when recovering, where ε is the slow-down parameter.
The cars can stay in cruise mode as long as the distance to the preceding vehicle is greater 1.
The can go into recovery mode when the distance is smaller than 2.

ACCSnn The model with nn cars, ε = 2. This model is considered safe with respect to
specification UBSnn (no collisions).

ACCUnn The model with nn cars, ε = 0.9. This model is considered unsafe with respect to
specification UBSnn (collisions are possible).

Specification The distance between adjacent cars should be positive:

ẋldr − ẋ > 0,

where x and xldr are the positions of the car and the car in front, respectively.

UBDnn For i = 0, . . . , n− 1: xi − xi+1 > 0.

Results The computation times of various tools are listed in Tab. 1.

3.2 Distributed controller

Model The benchmark is an extension of the benchmarks presented in [16], to which multiple
sensors with multiple priorities have been added. It models the distributed controller for a robot
that reads and processes data from different sensors. A scheduler component determines what
sensor data must be read according to the priority of the sensor. The controller has 1 continuous
and n discrete variables, the scheduler has n continuous and n discrete variables, and each sensor
has 1 continuous variable. The controller has 4 locations, the scheduler has 1 + n, and each
sensor has 4 locations. The product automaton has 4× (1 + n)× 4 locations, n + 2 continuous
variables and 2n discrete variables. Note that some tools, such as PHAVer, do not support
discrete variables and may model the discrete variables as continuous variables.

DISCnn The model with nn sensors. This model is considered safe with respect to specification
UBSnn.

4
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Table 1: Computation Times of the Adaptive Cruise Controller.

instance
ACCS05
UBD01

ACCU05
UBD01

ACCS06
UBD01

ACCU06
UBD01

ACCS07
UBD01

ACCU07
UBD01

safety safe unsafe safe unsafe safe unsafe

#vars. 5 5 6 6 7 7

#locs. 32 32 64 64 128 128

tool computation time in [s] lang. machine

Lyse 1.08 ≈ 0 – – 573.35 0.233 C++ MLyse

PHAVer 9.4 13.7 461 13430 ∞ ∞ C++ MPHAVer

PHAVer-lite 1.0 0.9 38.1 22.4 – – C++ MPHAVer−lite

Table 2: Computation Times of the Distributed Controller.

instance
DISC02
UBS02

DISC03
UBS03

DISC04
UBS04

DISC05
UBS05

safety safe safe safe safe

#vars. 8 11 14 17

#locs. 48 64 80 96

tool computation time in [s] lang. machine

PHAVer 1.1 ∞ ∞ ∞ C++ MPHAVer

PHAVer-lite 0.1 548.0 – – C++ MPHAVer−lite

bounded-depth tools2

BACH – – 0.1(B : 10) 0.2(B : 10) C++ MBACH

Specification The system is considered safe if at no point in time all sensors send data
simultaneously.

UBSnn It is never the case that all nn sensors are in location send.

Results The computation times of various tools are listed in Tab. 2.

3.3 Dutch Railway Network

We consider a finite-horizon safety problem over max-plus-linear (MPL) systems. More pre-
cisely, given a PWA system generated from an MPL system, a time horizon N , a set of initial
conditions X0 expressed as a difference-bound matrix (DBM) [13], an unsafe set S described
as a DBM, we wanted to know whether the system can reach the unsafe set within the given
time horizon.

2The search depth p is indicated as (B : p), and counted as the number of discrete transitions taken.
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Model In [19, p. 30], a subset of Dutch railway networks is modeled as a max-plus-linear
(MPL) system. That model has 14 state variables x1(k), . . . , x14(k) representing the k-th de-
parture time of trains at the following stations:

• x1(k): Den Haag CS to Utrecht,

• x2(k): Utrecht to Deventer (via Amersfoort and Apeldoorn),

• x3(k): Deventer to Enschede (via Almelo and Hengelo),

• x4(k): Enschede to Deventer (via Hengelo and Almelo),

• x5(k): Deventer to Utrecht (via Apeldoorn and Amersfoort),

• x6(k): Utrecht to Rotterdam CS and to Den Haag CS,

• x7(k): Den Haag CS to Amersfoort (via Utrecht),

• x8(k): Rotterdam CS to Amersfoort (via Utrecht),

• x9(k): Amersfoort to Zwolle,

• x10(k): Zwolle to Leeuwarden and to Groningen,

• x11(k): Leeuwarden to Amersfoort (via Zwolle),

• x12(k): Groningen to Amersfoort (via Zwolle),

• x13(k): Amersfoort to Utrecht,

• x14(k): Utrecht to Den Haag CS and to Rotterdam CS.

Every MPL system can be transformed into a discrete-time piecewise affine (PWA) system in
event domain [15]. The PWA system corresponding to the above MPL system has 12 regions:

• Region 1, given by {x : 40 +x1 ≥ 72 +x6, 55 +x7 ≥ 54 +x8, 55 +x7 ≥ 37 +x5, 90 +x11 ≥
93 + x12}, with dynamics

x1(k) = 38 + x6(k − 1), x6(k) = 53 + x5(k − 1), x11(k) = 54 + x10(k − 1),
x2(k) = 40 + x1(k − 1), x7(k) = 38 + x14(k − 1), x12(k) = 58 + x10(k − 1),
x3(k) = 50 + x2(k − 1), x8(k) = 36 + x14(k − 1), x13(k) = 90 + x11(k − 1),
x4(k) = 41 + x3(k − 1), x9(k) = 55 + x7(k − 1), x14(k) = 16 + x13(k − 1).
x5(k) = 41 + x4(k − 1), x10(k) = 35 + x9(k − 1),

• Region 2, given by {x : 40 +x1 ≥ 72 +x6, 55 +x7 ≥ 54 +x8, 55 +x7 ≥ 37 +x5, 93 +x12 ≥
90 + x11}, with dynamics

x1(k) = 38 + x6(k − 1), x6(k) = 53 + x5(k − 1), x11(k) = 54 + x10(k − 1),
x2(k) = 40 + x1(k − 1), x7(k) = 38 + x14(k − 1), x12(k) = 58 + x10(k − 1),
x3(k) = 50 + x2(k − 1), x8(k) = 36 + x14(k − 1), x13(k) = 93 + x12(k − 1),
x4(k) = 41 + x3(k − 1), x9(k) = 55 + x7(k − 1), x14(k) = 16 + x13(k − 1).
x5(k) = 41 + x4(k − 1), x10(k) = 35 + x9(k − 1),
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• Region 3, given by {x : 72 +x6 ≥ 40 +x1, 55 +x7 ≥ 54 +x8, 55 +x7 ≥ 37 +x5, 90 +x11 ≥
93 + x12}, with dynamics

x1(k) = 38 + x6(k − 1), x6(k) = 53 + x5(k − 1), x11(k) = 54 + x10(k − 1),
x2(k) = 72 + x6(k − 1), x7(k) = 38 + x14(k − 1), x12(k) = 58 + x10(k − 1),
x3(k) = 50 + x2(k − 1), x8(k) = 36 + x14(k − 1), x13(k) = 90 + x11(k − 1),
x4(k) = 41 + x3(k − 1), x9(k) = 55 + x7(k − 1), x14(k) = 16 + x13(k − 1).
x5(k) = 41 + x4(k − 1), x10(k) = 35 + x9(k − 1),

• Region 4, given by {x : 72 +x6 ≥ 40 +x1, 55 +x7 ≥ 54 +x8, 55 +x7 ≥ 37 +x5, 93 +x12 ≥
90 + x11}, with dynamics

x1(k) = 38 + x6(k − 1), x6(k) = 53 + x5(k − 1), x11(k) = 54 + x10(k − 1),
x2(k) = 72 + x6(k − 1), x7(k) = 38 + x14(k − 1), x12(k) = 58 + x10(k − 1),
x3(k) = 50 + x2(k − 1), x8(k) = 36 + x14(k − 1), x13(k) = 93 + x12(k − 1),
x4(k) = 41 + x3(k − 1), x9(k) = 55 + x7(k − 1), x14(k) = 16 + x13(k − 1).
x5(k) = 41 + x4(k − 1), x10(k) = 35 + x9(k − 1),

• Region 5, given by {x : 40 +x1 ≥ 72 +x6, 54 +x8 ≥ 55 +x7, 54 +x8 ≥ 37 +x5, 90 +x11 ≥
93 + x12}, with dynamics

x1(k) = 38 + x6(k − 1), x6(k) = 53 + x5(k − 1), x11(k) = 54 + x10(k − 1),
x2(k) = 40 + x1(k − 1), x7(k) = 38 + x14(k − 1), x12(k) = 58 + x10(k − 1),
x3(k) = 50 + x2(k − 1), x8(k) = 36 + x14(k − 1), x13(k) = 90 + x11(k − 1),
x4(k) = 41 + x3(k − 1), x9(k) = 54 + x8(k − 1), x14(k) = 16 + x13(k − 1).
x5(k) = 41 + x4(k − 1), x10(k) = 35 + x9(k − 1),

• Region 6, given by {x : 40 +x1 ≥ 72 +x6, 54 +x8 ≥ 55 +x7, 54 +x8 ≥ 37 +x5, 93 +x12 ≥
90 + x11}, with dynamics

x1(k) = 38 + x6(k − 1), x6(k) = 53 + x5(k − 1), x11(k) = 54 + x10(k − 1),
x2(k) = 40 + x1(k − 1), x7(k) = 38 + x14(k − 1), x12(k) = 58 + x10(k − 1),
x3(k) = 50 + x2(k − 1), x8(k) = 36 + x14(k − 1), x13(k) = 93 + x12(k − 1),
x4(k) = 41 + x3(k − 1), x9(k) = 54 + x8(k − 1), x14(k) = 16 + x13(k − 1).
x5(k) = 41 + x4(k − 1), x10(k) = 35 + x9(k − 1),

• Region 7, given by {x : 72 +x6 ≥ 40 +x1, 54 +x8 ≥ 55 +x7, 54 +x8 ≥ 37 +x5, 90 +x11 ≥
93 + x12}, with dynamics

x1(k) = 38 + x6(k − 1), x6(k) = 53 + x5(k − 1), x11(k) = 54 + x10(k − 1),
x2(k) = 72 + x6(k − 1), x7(k) = 38 + x14(k − 1), x12(k) = 58 + x10(k − 1),
x3(k) = 50 + x2(k − 1), x8(k) = 36 + x14(k − 1), x13(k) = 90 + x11(k − 1),
x4(k) = 41 + x3(k − 1), x9(k) = 54 + x8(k − 1), x14(k) = 16 + x13(k − 1).
x5(k) = 41 + x4(k − 1), x10(k) = 35 + x9(k − 1),

• Region 8, given by {x : 72 +x6 ≥ 40 +x1, 54 +x8 ≥ 55 +x7, 54 +x8 ≥ 37 +x5, 93 +x12 ≥
90 + x11}, with dynamics

x1(k) = 38 + x6(k − 1), x6(k) = 53 + x5(k − 1), x11(k) = 54 + x10(k − 1),
x2(k) = 72 + x6(k − 1), x7(k) = 38 + x14(k − 1), x12(k) = 58 + x10(k − 1),
x3(k) = 50 + x2(k − 1), x8(k) = 36 + x14(k − 1), x13(k) = 93 + x12(k − 1),
x4(k) = 41 + x3(k − 1), x9(k) = 54 + x8(k − 1), x14(k) = 16 + x13(k − 1).
x5(k) = 41 + x4(k − 1), x10(k) = 35 + x9(k − 1),
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• Region 9, given by {x : 40 +x1 ≥ 72 +x6, 37 +x5 ≥ 55 +x7, 37 +x5 ≥ 54 +x8, 90 +x11 ≥
93 + x12}, with dynamics

x1(k) = 38 + x6(k − 1), x6(k) = 53 + x5(k − 1), x11(k) = 54 + x10(k − 1),
x2(k) = 40 + x1(k − 1), x7(k) = 38 + x14(k − 1), x12(k) = 58 + x10(k − 1),
x3(k) = 50 + x2(k − 1), x8(k) = 36 + x14(k − 1), x13(k) = 90 + x11(k − 1),
x4(k) = 41 + x3(k − 1), x9(k) = 37 + x5(k − 1), x14(k) = 16 + x13(k − 1).
x5(k) = 41 + x4(k − 1), x10(k) = 35 + x9(k − 1),

• Region 10, given by {x : 40+x1 ≥ 72+x6, 37+x5 ≥ 55+x7, 37+x5 ≥ 54+x8, 93+x12 ≥
90 + x11}, with dynamics

x1(k) = 38 + x6(k − 1), x6(k) = 53 + x5(k − 1), x11(k) = 54 + x10(k − 1),
x2(k) = 40 + x1(k − 1), x7(k) = 38 + x14(k − 1), x12(k) = 58 + x10(k − 1),
x3(k) = 50 + x2(k − 1), x8(k) = 36 + x14(k − 1), x13(k) = 93 + x12(k − 1),
x4(k) = 41 + x3(k − 1), x9(k) = 37 + x5(k − 1), x14(k) = 16 + x13(k − 1).
x5(k) = 41 + x4(k − 1), x10(k) = 35 + x9(k − 1),

• Region 11, given by {x : 72+x6 ≥ 40+x1, 37+x5 ≥ 55+x7, 37+x5 ≥ 54+x8, 90+x11 ≥
93 + x12}, with dynamics

x1(k) = 38 + x6(k − 1), x6(k) = 53 + x5(k − 1), x11(k) = 54 + x10(k − 1),
x2(k) = 72 + x6(k − 1), x7(k) = 38 + x14(k − 1), x12(k) = 58 + x10(k − 1),
x3(k) = 50 + x2(k − 1), x8(k) = 36 + x14(k − 1), x13(k) = 90 + x11(k − 1),
x4(k) = 41 + x3(k − 1), x9(k) = 37 + x5(k − 1), x14(k) = 16 + x13(k − 1).
x5(k) = 41 + x4(k − 1), x10(k) = 35 + x9(k − 1),

• Region 12, given by {x : 72+x6 ≥ 40+x1, 37+x5 ≥ 55+x7, 37+x5 ≥ 54+x8, 93+x12 ≥
90 + x11}, with dynamics

x1(k) = 38 + x6(k − 1), x6(k) = 53 + x5(k − 1), x11(k) = 54 + x10(k − 1),
x2(k) = 72 + x6(k − 1), x7(k) = 38 + x14(k − 1), x12(k) = 58 + x10(k − 1),
x3(k) = 50 + x2(k − 1), x8(k) = 36 + x14(k − 1), x13(k) = 93 + x12(k − 1),
x4(k) = 41 + x3(k − 1), x9(k) = 37 + x5(k − 1), x14(k) = 16 + x13(k − 1).
x5(k) = 41 + x4(k − 1), x10(k) = 35 + x9(k − 1),

The model instance is defined formally as follows:

DRNW02 initial condition X0 = {x : 0 ≤ xi ≤ 5, for all i = 1, . . . , 14}
The model is easily embedded in a hybrid automaton with a single location, where the time
derivative of all variables is zero, and a self-loop transition that models the discrete dynamics
for each region.

Specification We have four specifications of interest:

BDR01 there exists a k = 0, . . . , 100 such that 50 ≤ x2(k)− x7(k) ≤ 60 (satisfied)

BDR02 there exists a k = 0, . . . , 100 such that 70 ≤ x2(k)− x7(k) ≤ 80 (satisfied)

BDR03 there exists a k = 0, . . . , 100 such that 90 ≤ x2(k)− x7(k) ≤ 100 (not satisfied)

BDR04 there exists a k = 0, . . . , 100 such that 10 ≤ x2(k)− x7(k) ≤ 20 (satisfied)

In the sense of a safety specification, the above specifications specify unsafe states. If the unsafe
are reachable, the corresponding specification BDR01,. . . ,BDR04 is satisfied.
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Table 3: Computation Times of the Dutch Railway Benchmark.

instance
DRNW02
BDR01

DRNW02
BDR02

DRNW02
BDR03

DRNW02
BDR04

safety unsafe unsafe safe unsafe

# vars. 14 14 14 14

# locs. 1 1 1 1

tool computation time in [s] lang. machine

VeriSiMPL 0.057 0.030 6.081 0.033 MATLAB MVeriSiMPL

PHAVer 528.1 528.1 528.1 528.1 C++ MPHAVer

PHAVer-lite 113.0 113.0 113.0 113.0 C++ MPHAVer−lite

SpaceEx3 1.2 1.2 1.2 1.2 C++ MPHAVer

Results The computation times of various tools are listed in Tab. 3.

Note PHAVer/SpaceEx Since the iteration count in PHAVer/SpaceEx does not guarantee
the actual search depth, we added a counter automaton that models each value of k with a
discrete location. The counter is limited to 100 transitions, after which it deadlocks. The tool
is then run until a fixed point is found, which guarantees that all values up to k = 100 are
explored. The flow predicate in the hybrid automaton model was set to false, which means
that there is no computation of time elapse in the reachability. We therefore expect that the
overhead of embedding the discrete-time model in a continuous-time model is minimal. Note
that PHAVer/SpaceEx computes the full reach set before checking whether the unsafe states are
reachable. This explains why all instances of the specification take the same time. To compare
the performance of exact polyhedral computations with that of template polyhedra, we also
include the results of SpaceEx running the LGG scenario and box directions. This gives the
same variable ranges as PHAVer, but it should be noted that the result is not formally sound
due to the double precision floating point used by LGG.

3.4 Fischer’s Protocol

Model Fischer’s protocol is a time based protocol of mutual exclusion between processes,
originally from [18]. The flow constraints are given by 1

2 ≤ ẋ1 ≤ 3
2 , . . . ,

1
2 ≤ ẋm ≤ 3

2 , where
xi is the clock of the i-th process. The product automaton has (n + 1) × 4n locations and n
variables.

FISCSnn protocol with nn processes, considered safe with respect to specification UBDnn.

FISCUnn protocol with nn processes, considered unsafe with respect to specification UBDnn.

Specification The protocol is correct if no two processes are ever in the critical section at
the same time.

UBDnn There are no two processes such that both are in location cs (critical section) at the
same time.

3In contrast to the other tools, the results of SpaceEx given here are numerically unsound due to the use of
double precision floating point arithmetic.
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Table 4: Computation Times of the Fischer Benchmark.

instance
FISCS04
UBD01

FISCU04
UBD01

FISCS05
UBD01

FISCU05
UBD01

safety safe unsafe safe unsafe

# vars. 4 4 5 5

# locs. 1280 1280 6144 6144

tool computation time in [s] lang. machine

Lyse 33.59 0.06 859.84 0.16 C++ MLyse

PHAVer 90.5 579 ∞ ∞ C++ MPHAVer

PHAVer-lite 12.3 102.2 14722.2 – C++ MPHAVer−lite

Results The computation times of various tools are listed in Tab. 4.

3.5 TTEthernet

Model The TTEthernet protocol is a protocol for the remote synchronization of possibly
drifted clocks distributed over multiple components, taken from [10]. The system consists of
two compression masters (CM) and k synchronisation masters (SM). Each CM has two clocks
cmi, each SM has one clock smi. Both CM and SM are modeled by a hybrid automaton with
4 locations each. The product automaton has 4 + k variables and 4k+2 locations.

TTESnn protocol with nn SM. This model is considered safe with respect to specification
UBDnn. The global time horizon is limited to 3000 ms.

Specification The difference between the clocks of the SM should not exceed a threshold of
2max drift .

UBDnn For all i, j, smi − smj ≤ 2max drift , where max drift = 0.001 ms.

Results The computation times of various tools are listed in Tab. 5.

4 Conclusions and Outlook

This report presents the results of the second edition of a friendly competition for the formal
verification of continuous and hybrid systems with linear continuous dynamics as part of the
ARCH’18 workshop. The reports of other categories can be found in the proceedings and on
the ARCH website: cps-vo.org/group/ARCH.

In the spirit of a friendly competition, this report does not provide any ranking of tools. A
few casual observations can be made nonetheless. For the reported instances, PHAVer computes
the exact set of reachable states and can therefore be regarded as a base line. PHAVer-lite is
a variation of PHAVer that uses a different polyhedra library and includes some algorithmic
improvements that lead to a considerable speedup. PHAVer is vastly outperformed by Lyse,

4The search depth p is indicated as (B : p), and counted as the number of discrete transitions taken.
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Table 5: Computation Times of the TTEthernet Benchmark.

instance
TTES05
UBS01

TTES07
UBS01

safety safe safe

# vars. 9 11

# locs. 15384 262144

tool computation time in [s] lang. machine

PHAVer 25.2 113 C++ MPHAVer

PHAVer-lite 1.9 7.7 C++ MPHAVer−lite

bounded-depth tools4

BACH 0.15(B : 11) 0.2(B : 11) C++ MBACH

which relies on abstraction refinement. VeriSiMPL also vastly outperforms PHAVer in the
specific category for which it was developed. The bounded model checker BACH was included
for rough comparison and to create a link to the ARCH-COMP category on bounded model
checking (HBMC). For the reported depths, BACH performed very well.

More benchmarks and more tools are necessary to obtain a clearer picture of which methods
work for which types of systems. The code with which the results have been obtained is publicly
available at gitlab.com/goranf/ARCH-COMP. New benchmarks for inclusion in next year’s
edition will be solicited in a public call.
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A Specification of Used Machines

A.1 MBACH

• Processor: Intel(R) Core(TM)2 Quad CPU Q9500 @ 2.83GHz x 4

• Memory: 4 GB
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• Average CPU Mark on www.cpubenchmark.net: 3636 (full), 1203 (single thread)

A.2 MLyse

• Processor: Intel(R) Core(TM) i5-3210M CPU @ 2.50GHz x 2

• Memory: 4 GB

• Average CPU Mark on www.cpubenchmark.net: 3818 (full), 1521 (single thread)

A.3 MPHAVer

• Processor: Intel Core i7-4850HQ CPU @ 2.30GHz x 4

• Memory: 15.9 GB

• Average CPU Mark on www.cpubenchmark.net: 9057 (full), 1966 (single thread)

A.4 MPHAVer−lite

• Processor: Intel Core i7-3632QM CPU @ 2.20GHz x 4

• Memory: 15.5 GB

• Average CPU Mark on www.cpubenchmark.net: 6939 (full), 1566 (single thread)

A.5 MV eriSiMPL

• Processor: Intel Core i7-4720HQ CPU @ 2.6GHz x 4

• Memory: 4 GB

• Average CPU Mark on www.cpubenchmark.net: 8010 (full), 1912 (single thread)
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