
A Toolchain for Verifying Safety Properties of Hybrid Automata
via Pattern Templates

Goran Frehse1, Nikolaos Kekatos1, Dejan Nickovic2, Jens Oehlerking3, Simone Schuler4,
Alexander Walsch4, and Matthias Woehrle5

Abstract— In this paper, we provide a toolchain that fa-
cilitates the integration of formal verification techniques into
model-based design. Applying verification tools to industrially
relevant models requires three main ingredients: a formal
model, a formal verification method, and a set of formal
specifications. Our focus is on hybrid automata as the model and
on reachability analysis as the method. Much progress has been
made towards developing efficient and scalable reachability
algorithms tailored to hybrid automata. However, it is not
easy to encode rich formal specifications such that they can
be interpreted by existing tools for reachability. Herein, we
consider specifications expressed in pattern templates which
are predefined properties with placeholders for state predicates.
Pattern templates are close to the natural language and can
be easily understood by both expert and non-expert users.
We provide (i) formal definitions for selected patterns in
the formalism of hybrid automata and (ii) monitors which
encode the properties as the reachability of an error state. By
composing these monitors with the formal model under study,
the property can be checked by off-the-shelf fully automated
verification tools. We illustrate the workflow on an electro-
mechanical brake use case.

I. INTRODUCTION

Model-based design (MBD) is a paradigm that enables the
cost-effective and quick development of complex systems,
such as control and energy systems. MBD has facilitated the
detection and correction of errors in the early design stages
and has established a common framework for communication
throughout the whole design process [43].

In MBD, there is typically a sequence of steps that should
be followed. Initially, the designer models the physical plant,
relying either on first principles or on system identification;
this model captures the dynamical characteristics of the
physical parts of the system using mathematical equations.
Then, the designer synthesizes a controller that regulates the
behavior of the physical system. Subsequently, he performs
extensive simulations to check the model behavior under
different configuration settings. The aim is to analyze and
evaluate the controller design by inspecting the behavior
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of specific variables over time. The analysis is typically
performed with respect to some requirements. In practice,
however, these requirements are high-level and often vague
or informal. In case the system behavior is not satisfying with
respect to these requirements, the designer has to manually
modify the controller, e.g. by tuning the parameters or gains,
and then repeat the validation step. Through these validation
efforts, the design is deemed to be satisfactory or not. The
evaluation may also remain inconclusive [30].

Over the past years, there have been a lot of efforts to
bridge the gap between formal verification and industrial
applications. The main focus has been on addressing the
issues with the format mismatch and scale of industrially
sized models. That is especially the case with the new
generation of systems, embedded and cyber-physical, as
they are complex with various interacting components and
frequently have a safety-critical nature [46].

An appropriate modeling formalism for the design of such
systems is hybrid systems [1]. Hybrid systems demonstrate
joint discrete and continuous behaviors by combining the
traditional models for discrete systems with classical differ-
ential and algebraic equation-based models for dynamical
systems [2]. Those systems are difficult to analyze, as any
kind of nondeterminism in the system, like disturbances,
measurement noise, uncertainties, user inputs, or operat-
ing conditions, may have adverse effects on the perfor-
mance [17].

Recently, there has been increased interest in fully au-
tomated verification tools for hybrid systems, such as set-
based reachability analysis [37]. This is the case as they have
been successful in finding bugs in real-world applications and
there has been much progress towards efficient and scalable
reachability algorithms [1]. On the contrary, relatively little
progress has been made on formalizing requirements of
hybrid systems such that they can be verified automatically.
The main reason concerns the semantic mismatch between
industrial requirements and formal requirements. Typically,
formal requirements are expressed in temporal logic [44],
whereas industrial requirements are described in natural
language or controlled natural language (CNL) [36]. In this
paper, we aim to mitigate this semantic mismatch and we are
therefore proposing a semi–automated, template–based trans-
lation of industrial requirements into a formal representation
(monitor automata) that enables the algorithmic verification
of rich specifications.

A schematic of the proposed workflow is depicted in
Figure 1. A (safety) requirement in CNL is translated into
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Fig. 1: Proposed verification workflow: (i) start with an informal model and
specs, (ii) formalize the model and the specs via pattern templates, (iii) feed
the formal model and the specs into off-the-shelf reachability analysis tools.
The contribution (pink) is the formalization using pattern templates tailored
for model checking.

a monitor automaton using pattern templates [35]. The
monitor automaton has the same syntax and respects the
same semantics as the system model. As such, it can be
composed with the system model and fed into a reachability
tool. The monitor automaton encodes the requirements as
the reachability of a designated error state (see [25] for
one of the earliest works on monitor automata and [9] for
analog and mixed-signal applications). Recently, a tool called
formalSpec was implemented by some of the authors to
automate the instantiation of monitor automata from CNL.
The tool comes with a database of structured English phrases
and the associated template monitors. The monitors of this
paper can be used with formalSpec.

In this paper, we provide a semi-automated toolchain to
conduct formal verification of hybrid systems against rich
formal specifications. To accomplish this task, we introduce
two new elements. First, we give formal definitions for pat-
tern templates [35] that are suitable for hybrid automata (run
semantics). Second, we provide monitor automata whose
correctness we have formally proved and which can be
handled by off-the-shelf fully automated verification tools.
The proofs have been omitted for lack of space. They can
be found in the technical report [21].

The remainder of the paper is organized as follows.
In Section II, we introduce the preliminaries. The pattern
templates and their formalization are presented in Section III.
The monitor automata are described in Section IV. We apply
the introduced monitors to an electromechanical brake use
case in Section V. In Section VI, we give an overview of
the state of the art. The paper concludes with Section VII.

II. BACKGROUND

In this part, we present the preliminaries and give a formal
definition of a hybrid automaton and its run semantics.

Given a set X = {x1, . . . , xn} of variables, a valuation is
a function v : X → R. Let V (X ) denote the set of valuations

over X . Let Ẋ = {ẋ1, . . . , ẋn} and X ′ = {x′1, . . . , x′n}. The
projection of v to variables Y ⊆ X is v↓Y = {x→ v(x)|x ∈
Y }. The embedding of a set U ⊆ V (X) into variables X̄ ⊇
X is the largest subset of V (Y ) whose projection is in U ,
written as U |X̄ .

A hybrid automaton ([2], [26]) H = (Loc, Lab,Edg, X,
Init, Inv,Flow, Jump) consists of

• a finite set of locations Loc = {`1, . . . , `m} which
represents the discrete states,

• a finite set of synchronization labels Lab, which coor-
dinate state changes between several automata,

• a finite set of edges Edg ⊆ Loc×Lab×Loc, also called
transitions, that determines which discrete state changes
are possible using which label,

• a finite set of variables X = {x1, . . . , xn}, partitioned
into uncontrolled variables U and controlled variables
Y ; a state of H consists of a location ` and a value for
each of the variables, and is denoted by s = (`,x);

• a set of states Inv called invariant or staying condition; it
restricts for each location the values that x can possibly
take and determines how long the system can remain in
the location;

• a set of initial states Init ⊆ Inv; every behavior of H
must start in one of the initial states;

• a flow relation Flow, where Flow(`) ⊆ RẊ × RX
determines for each state (`,x) the set of possible
derivatives ẋ, e.g., using a differential equation ẋ =
f(x). Given a location `, a trajectory of duration δ ≥ 0
is a continuously differentiable function ξ : [0, δ]→ RX
such that for all t ∈ [0, δ], (ξ̇(t), ξ(t)) ∈ Flow(`). The
trajectory satisfies the invariant if for all t ∈ [0, δ],
ξ(t) ∈ Inv(`).

• a jump relation Jump, where Jump(e) ⊆ RX × RX′

defines for each transition e ∈ Edg the set of pos-
sible successors x′ of x; jump relations are typically
described by a guard set G ⊆ RX and an assignment
(or reset) x′ = r(x) as Jump(e) = {(x,x′) | x ∈
G ∧ x′ = r(x)}. A jump can be cast as urgent, which
means that time cannot elapse when the state is in the
guard set.

We define the behavior of a hybrid automaton with a run:
starting from one of the initial states, the state evolves
according to the differential equations whilst time passes,
and according to the jump relations when taking an (instanta-
neous) transition. Special events, which we call uncontrolled
assignments, model an environment that can make arbitrary
changes to the uncontrolled variables.

An execution of a hybrid automaton H is a sequence

(`0,x0)
δ0,ξ0−−−→ (`0, ξ0(δ0))

α0−→ (`1,x1)
δ1,ξ1−−−→ (`1, ξ1(δ1)) . . .

αN−1−−−−→ (`N ,xN ),

with αi ∈ Lab ∪ {τ}, satisfying for i = 0, . . . , N − 1:

1) Trajectories: In location `i, ξi is a trajectory of duration
δi with ξi(0) = xi and it satisfies the invariant. It does
not go through urgent guard sets unless δi is 0.



2) Jumps: If αi ∈ Lab, there is a transition
(`i, αi, `i+1) ∈ Edg with jump relation Jump(e) such
that (ξi(δi),xi+1) ∈ Jump(e) and xi+1 ∈ Inv(`i+1).

3) Uncontrolled assignments: If αi = τ , then `i = `i+1

and ξi(δi) ↓Y = xi+1 ↓Y . This represents arbitrary
assignments that the environment might perform on the
uncontrolled variables U = X \ Y .

A run of H is an execution that starts in one of the initial
states, i.e. (`0,x0) ∈ Init. A state (`,x) is reachable if there
exists a run with (`i,xi) = (`,x) for some i.

III. PATTERN TEMPLATES FOR HYBRID AUTOMATA

Pattern templates are predefined properties with placehold-
ers for state predicates and were introduced in [23]. As a first
major contribution of this paper, we define a set of pattern
templates in a formalism that is suitable for hybrid automata
and show their usability on practical applications. Later, in
Section 4, we are going to see how to use these templates
with reachability tools.

A. Formalizing Pattern Templates for Hybrid Automata

In this section, we list the requirements considered in
this paper, give a compact (intuitive) definition in structured
English, and a formal definition based on the runs of the
hybrid automaton.

The pattern templates in [35] were formally defined using
temporal logics (MTL). These definitions, however, do not
immediately carry over to monitoring with hybrid automata
(see Section VI). In this respect, we select some common
pattern templates, portrayed in Table I, and define them in a
formalism that is suitable for hybrid automata. Note that the
properties in this paper refer to predicates that describe states,
not events. In addition, the predicates can express timing
properties by adding an extra clock to the monitor, so that the
time becomes a state variable. We consider triggered versions
of the properties that only take effect after a predicate q
holds. A run, for which !q always holds, satisfies the property.

1) Preliminaries:

Let p be a predicate over the state variables, i.e. a function
RX→ B. We write the shorthand p(x) to denote that p is
true for x. Let the set of runs of a hybrid automaton H be
Runs(H). We consider a run r ∈ R given by locations `i,
continuous states xi, trajectories ξi, and durations δi. To
simplify the formalization of the properties, we introduce
some further notation for the timing of states on runs. For
a run r ,the event-times are ti =

∑i
j=0 δi, so the jump

number i takes place at time ti for i = 0, . . . , N − 1. For
notational convenience, let t−1 = 0.

We introduce a total order on the time points of the run by
looking at pairs (i, t), where i is an index and t is the global
time. Formally, let the event-time be T = N0 × R≥0. To
clarify the difference, we denote real time with t and event-
time with τ ∈ T. We use the lexicographical order on event-
times, formally (i, t) < (i′, t′)⇔ (i < i′)∨ (i = i′ ∧ t < t′).
The event-time allows us to uniquely identify discrete and
continuous states on the run. The event-time domain of a run

r is the set of pairs dom(r) =
{

(i, t)
∣∣ 0 ≤ i ≤ N−1, ti−1 ≤

t ≤ ti} ∪ {(N, tN−1)
}
, where the latter term captures that

the last state in the run, (`N ,xN ) is taken at time tN−1 (total
duration of the run).

The open truncated event-time domain of a run r exclud-
ing the last T time units is the set of pairs dom−T (r) ={

(i, t) ∈ dom(r)
∣∣ t < tN−1 − T

}
. The truncated domain

is used for properties that refer to future events and are not
covered by the domain of the run. We take an optimistic
view of such cases: if the property holds on the truncated
domain, then it is considered to hold on the run.

For a given τ = (i, t) ∈ dom(r), let r(τ) ∈ RX be the
continuous state ξi(t− ti) and rLoc(τ) ∈ Loc be the discrete
state (location) `i. This denotes the time elapsed between
two event-times τ = (i, t), τ ′ = (i′, t′) as d(τ, τ ′) = t′ − t.

Sometimes, we are interested in the first time that a
predicate holds. If the predicate, say q, is true over a
left-open interval, the infimum shall be used. Let τq.1 =
infτ∈dom(r) q(r(τ)). To formally denote that a predicate
holds at τ for some nonzero amount of time, we define for
a run r, a predicate p, and event-time τ , persists (r, p, τ) =
∃δ > 0 : ∀τ ′, τ ≤ τ ′, d(τ, τ ′) ≤ δ : r(τ ′).

2) Formal Definitions:

We define the properties of a hybrid automaton via its runs.
A hybrid automaton H satisfies a property φ if and only if
all runs r ∈ Runs(H) satisfy φ. We use the convention: (i)
r |= φ when a run r satisfies the property φ, (ii) p following
q means that there are τq and τp with τp ≥ τq such that
p(r(τp)) and q(r(τq)) hold, (iii) τq , τp, τp̄, τ ′p respectively
imply that q(r(τq)), p(r(τp)), ¬p(r(τp̄), p(r(τ ′p)) hold.

Absence. After q, it is never the case that p holds.
r |= φ iff for all τq, τ ∈ dom(r) with τ ≥ τq , holds
¬p(r(τ)).

q

p
T

q

p
τq τp ≥ τq

Fig. 2: Absence pattern: satisfied (left), violated (right).

Absence (timed). When T time units are measured, after q
was first satisfied, it is never the case that p holds.
r |= φ iff for all τq, τ ∈ dom(r) with d(τq, τ) ≥ T , holds

¬p(r(τ)).

q

p
τq τp τq + T

q

p
τq τq + T τp

Fig. 3: Timed absence pattern: satisfied (left), violated (right).

Minimum duration. After q, it is always the case that once
p becomes satisfied, it holds for at least T time units.
r |= φ iff p following q implies that for τq.1 holds:

1) for all τp, τp̄ ∈ dom(r) with τq.1 ≤ τp < τp̄,
d(τq.1, τp̄) > T (p not becoming false within T after
τq.1), and



TABLE I: Short overview of Pattern Templates [35]

Pattern name Description & Example

absence Specifies a state formula that must not hold.
ABS system: “The ABS controller should never allow a wheel skidding.”

minimum duration Describes the minimum amount of time a state formula has to hold once it becomes true.
Engine starter system: “The system has a minimum ‘off’ period of 120s before it reenters the cranking mode.”

maximum duration Captures that a state formula always holds for less than a specified amount of time.
Engine starter system: “The system can only operate in engine cranking mode for no longer than 10s.”

bounded recurrence Denotes the amount of time in which a state formula has to hold at least once.
ABS system: “The ABS controller checks for skidding every 10ms.”

bounded response Restricts the maximum amount of time that passes after a formula holds until another formula becomes true.
ABS System: “From direct client input, detection and response to rapid deceleration must occur within 0.015s.”

bounded invariance Specifies the minimum amount of time a state formula must hold once another state formula is satisfied.
Engine starter system: “If the error 502 is sent to the Drive Information System, the braking system is inhibited
for 10s.”

2) for all τp, τp̄, τ ′p̄ ∈ dom(r) with τq.1 ≤ τp̄ < τp < τ ′p̄, it
holds that d(τp̄, τ

′
p̄) > T (violations of p are more than

T apart).

q

p
τq τp τp + T

q

p
τq τp τ ′p τp + T

Fig. 4: Minimum duration pattern: satisfied (left), violated (right).

Maximum duration. After q, it is always the case that once
p becomes satisfied, it holds for less than T time units.
r |= φ iff p following q implies that for all τp, τ ′p ∈

dom(r) with τp ≥ τq one of the following holds:
1) d(τp, τ

′
p) < T (τ ′p is early enough, including the τp = τ ′p

case), or
2) there is a τp̄ such that τp < τp̄ < τ ′p (p is false in

between).

q

p
τq τp τp + T

q

p
τq τp τp + T τ ′p

Fig. 5: Maximum duration pattern: satisfied (left), violated (right).

Bounded recurrence. After q, it is always the case that p
holds at least every T time units.

For the unbounded case, r |= φ iff for all τq ∈ dom(r)
both following criteria hold:

(i) for all τp ∈ dom(r) with τp ≥ τq there is a τ ′p ∈
dom(r) such that τp < τ ′p, d(τp, τ

′
p) ≤ T (τp’s with

distance less than T ),
(ii) there is a τp ∈ dom(r) with τp ≥ τq such that

d(τq, τp) ≤ T (distance between τq and first τp is
less than T ).

For a bounded time horizon, r |= φ iff for all τq ∈
dom−T (r) both following criteria hold:

(i) for all τp ∈ dom−T (r) with τp ≥ τq there is a τ ′p ∈
dom(r) such that τp < τ ′p and d(τp, τ

′
p) < T ,

(ii) there is a τp ∈ dom(r) with τp ≥ τq and d(τq, τp) ≤ T .

q

p
τq τp τq + T τ ′p τ ′′p τ ′p + T

q

p
τq τq + T τp

Fig. 6: Bounded recurrence pattern: satisfied (left), violated (right).

Bounded response (persisting). After q, it is always the case
that if p holds, then s persists (holds for nonzero time) after
at most T time units.

For an unbounded time horizon, r |= φ iff p following q
implies that for all τq ∈ dom(r), it holds that for all τp ∈
dom(r) with τp ≥ τq , there is a τs ∈ dom(r) such that
τp ≤ τs, d(τs, τp) ≤ T , and persists (r, τs, s).

For a bounded time horizon, r |= φ iff p following q
implies that for all τq, τp ∈ dom−T (r) with τp ≥ τq , there
is a τs ∈ dom(r) such that τp ≤ τs, d(τp, τs) ≤ T , and
persists (r, τs, s).

q

p

s
τq τp τ ′p τs τp + T

q

p

s
τq τp τ ′p τsτp + T

Fig. 7: Bounded response pattern: satisfied (left), violated (right).

Remark 1: We require τ ∈ dom−T (r) in the bounded
time horizon (with the restricted domain being right-open)
as we assume an optimistic interpretation of bounded runs.
If there is a continuation of the run for which the system
satisfies the property, then the bounded run satisfies the
property. If the restricted domain was right-closed, then a
run ending with ¬s could violate the property, but have a
continuation that (in zero time) sets s to true, which then
should satisfy the property.

Remark 2: We require s to hold for nonzero time, for-
mally with the use of persists (·), because the monitor
automaton may give a false alarm otherwise.

Bounded invariance. After q, it is always the case that if p
holds, then s holds for at least T time units.
r |= φ iff p following q implies that for all τp ∈ dom(r)

with τp ≥ τq.1 and for all τ ∈ dom(r) such that τp ≤ τ ,
d(τp, τ) < T , the predicate s(r(τ)) is true.

q

p

s
τq τp, τs τ ′p τ ′p + T τ ′s

q

p

s
τq τp, τs τ ′p τ ′p + Tτ ′s

Fig. 8: Bounded invariance pattern: satisfied (left), violated (right).



Remark 3: Note that in the case that predicates s = p,
then p has to hold forever (by recursion).

B. Application of Formalized Pattern Templates

Formalizing practical requirements is a challenging task,
even for experts [16], [27]. Control specifications can be
expressed with Temporal Logic [32] or with Simulink mon-
itors [5]. In this section, we show how some common
control specifications can be expressed with our formalized
pattern templates. We consider the untriggered version of
the requirements (q := true). We assume a constant, positive
reference signal xref as well as that x(0) < xref holds.

Safety. The state x of the system should always be inside
the acceptable operating range expressed as safe region S.

absence pattern with p := {x /∈ S}.

Target Reachability. The state x of the system should be
within distance ε of the target (xtarget) within T time units.

bounded response pattern, where p := true and s :=
{||x, xtarget|| ≤ ε}.

Overshoot. The state x of the system should not exceed an
overshoot of ov% with respect to the reference xref .

absence pattern, where p := {x > (100 + ov)% · xref}.

Settling Time. The state x of the system should reach and
stay within a per% of the reference xref within Tset time
units.

absence (timed) pattern, where T := Tset, p:= {x ≤
(100− per)% · xref ∨ x ≥ (100 + per)% · xref}.

Rise-Time. The state x of the system should reach 90% of
the reference xref at time Trise.

bounded response pattern, where p :=true, T := Trise,
and s := {x >= 0.9 ∗ xref}.

Undershoot. After reaching the reference xref , the state x
of the system should not fall below a threshold of u% with
respect to the reference.

bounded invariance pattern, where T := ∞, p := x ≥
xref and s := {x ≥ (100− u)% · xref}.

Remark 4: In several cases above, the monitor can be
simplified (when p :=true, T := 0, etc.) or be expressed
with multiple pattern templates. A varying reference signal
can be captured with the introduction of predicate q.

IV. VERIFYING PATTERN TEMPLATES USING MONITOR
AUTOMATA

In this section, we briefly present reachability analysis and
provide monitor automata which encode the requirements
as reachability problems. These monitor automata constitute
the second main contribution of this paper, as they can be
composed with the system under study and thus can be
straightforwardly used by reachability tools.

A. Reachability Analysis

Set-based reachability analysis can be seen as a general-
ization of numerical simulation. In numerical simulation, one
picks an initial state and tries to compute a successor state
that lies on one of the solutions of the corresponding flow
constraint and satisfies one of the jump conditions. Then,
one of the successor states of the jump is picked and the
process is repeated. Reachability analysis directly follows
the transition semantics of hybrid automata, but considers
sets of states instead of single states [17].

The reachable set consists of all the states that can be
visited by a trajectory of the hybrid system starting in spec-
ified initial states. Reachability analysis is often motivated
by safety verification, which consists in checking whether
the intersection of the reachable set with a set of error
(forbidden) states is empty. When the reachable set of a
hybrid system is not exactly computable, we try to compute
an overapproximation so that if it does not intersect the set
of error states, the hybrid system is guaranteed to be safe [4].

Computation costs generally increase sharply with respect
to the number of continuous variables. Scalable approxima-
tions are available for certain types of dynamics, but this
performance comes at a price in accuracy. The trade-off
between runtime and accuracy remains a central problem in
reachability analysis. Surveys of reachability techniques for
hybrid automata can be found in [4], [17].

B. Monitor Automata for Reachability

In this section, we define monitor automata that, composed
with the system under test, encode the requirements as
reachability properties. Consider a system under test H and
a monitor automaton M . The goal is that H satisfies a
property φ if and only if the location error is unreachable in
the parallel composition H||M . We prove correctness of M
by showing that every violating run of H has a corresponding
run in H||M that reaches the error location, and vice versa.
The proofs have been omitted for lack of space and can be
found in the technical report [21]. The monitor automata are
shown in Table II.

V. APPLICATION EXAMPLE

In this section, we illustrate the workflow on an industrial
use case on electro-mechanical brakes (EMB) and highlight
how the introduced pattern templates and associated monitor
automata can facilitate the verification process. The EMB
use case is described in [47]. The requirements that shall be
enforced are presented in [20]. The steps of the proposed
workflow are as follows.

a) Industrial Model: The model is designed with
Simulink. It consists of an experimental electro-mechanical
braking system, a feedforward and a feedback controller.

b) Formal Model: The Simulink to SpaceEx (SL2SX)
translator [40] is used to construct the formal model. The
model is expressed in the SpaceEx format [19] and it consists
of 8 base components (single HA) and 4 network components
(networks of HA). General, nonlinear Simulink systems can



TABLE II: Pattern templates and translation to monitor automata.

Pattern name Language Template Monitor Automaton

absence After q, it is never the case that p
holdsa.

idle loc1 error
q p

absence (timed) When T time units are measured,
after q was first satisfied, it is
never the case that p holds.

idle loc1 loc2

t′ = 1

errorq
t := 0 t ≤ T p

minimum duration After q, it is always the case that
once p becomes satisfied, it holds
for at least T time units.

idle loc1 loc2

t′ = 1

error
q

t ≤ T
& !p

urgent
p

t := 0

!p

maximum duration After q, it is always the case that
once p becomes satisfied, it holds
for less than T time units.

idle loc1 loc2

p
t′ = 1

error
q

p
t := 0 t ≥ T

bounded recurrence After q, it is always the case that p
holds at least every T time units. idle loc1 loc2

t′ = 1

loc3

c == 0
c′ == 1

error

q
t := 0

!p
t := 0

urgent
p

t > T & !p

bounded response
(persisting)

After q, it is always the case that
if p holds, then s persists (holds
for nonzero time) after at most T
time units.

idle loc1 loc2

t′ = 1

loc3

c = 0
c′ = 1

error

q
p

t := 0

urgent
s

c := 0

t > T

!s

bounded invariance After q, it is always the case that
if p holds, then s holds for at least
T time units.

idle loc1 loc2

t < T
t′ = 1

error
q

p
t := 0 !s

a We use the verb hold to describe a property that was always true. On the contrary, becomes satisfied corresponds to an edge, i.e.
the signal was false earlier and then became true.

be transformed to SpaceEx models in the form of piecewise
affine hybrid automata, as shown in [33] and [34].

c) Specifications: Two braking specifications are pro-
vided in [20].

1) “The caliper must reach x0 = 0.05 dm after the braking
request is issued within 20 ms with a precision of 4%”.
This property can be mapped to the bounded response
pattern, where T := 20, q := true, p := true (braking
request), s := {0.96 · x0 ≤ x} and x represents the
caliper position.

2) “The caliper speed at contact must be below 2 mm/s”.
This property can be mapped to the absence pattern,
where q := true, p := {v ≥ 2}, and v represents the
caliper speed.
d) Monitor: For the first specification, we use the

corresponding monitor automaton of Table II for the bounded
response pattern. The monitor is generated with formalSpec
tool [11]. The formal model and the monitor are expressed
as hybrid automata and comply with SpaceEx format.

Fig. 9: Composition of the formal model (EMB) with the monitor automaton
(bounded response), shown in SpaceEx Model Editor.

e) Composition: This step corresponds to the parallel
composition of the formal model with the corresponding
monitor. In essence, the variables that appear in the monitor
should be connected with the corresponding variables of the
formal model. In our case, only the caliper position x should
be considered. The variables t and c are local and only used
inside the monitor automaton. Figure 9 shows the composed
system in the Model Editor [19].

f) Reachability Analysis: SpaceEx [22] is used for
computing the reachable sets. The safety verification problem
is tackled by introducing a set of error states and checking
whether they are reachable or not. In practice, we check if



Fig. 10: Reachable sets of the caliper position computed with SpaceEx.

“loc(Monitor)==error”. SpaceEx finds a fixed point after 434
iterations and 31.702s. The computation time for the same
model without the monitor is 29.427s. As such, the induced
overhead is around 7.73%. Note that SpaceEx composes
(flattens) the model on-the-fly during reachability analysis.

g) Verification Outcome: The error state is not reach-
able and the property is satisfied. The reachable set for the
caliper position x is portrayed in Figure 10.

VI. RELATED WORK

Conducting hybrid system verification against rich formal
specifications is a scientifically and technically challenging
problem. The authors in [15] studied the topological aspects
of hybrid systems in the context of propositional modal µ-
calculus. Mysore, et al., studied the verification problem of
semi-algebraic hybrid systems for TCTL (Timed Computa-
tion Tree Logic) properties and proved undecidability [41].
Jeannin and Platzer presented in [29] a differential temporal
dynamic logic to specify temporal properties of hybrid
systems. This logic complemented with a theorem prover
could enable verification of nested temporalities for hybrid
systems. The authors in [12] studied the verification of hybrid
systems with K-liveness but restricted the system model to
a small subclass of hybrid automata.

Signal Temporal Logic (STL) was proposed in [38], [39]
as a high-level declarative language for expressing properties
of hybrid systems. However, it has been mainly applied to
the lighter problem of runtime verification (monitoring) of
individual hybrid traces (see [42] for the relevant references).
More recently, property-based model-checking of hybrid
systems was proposed in [13], [14], where the specifica-
tion language used is HRELTL, a hybrid extension of the
discrete-time linear temporal logic enhanced with the regular
expression operators. A similar approach of model checking
HyLTL, another hybrid extension of LTL, was developed and
presented in [7], [8].

In this paper, we opt to use a template language to express
informal requirements rather than a full-blown declarative
language based on temporal logic. Certainly, a declarative
specification language such as STL offers a degree of
freedom and flexibility that cannot be easily matched by
pattern templates. Nevertheless, we see multiple advantages
in choosing this approach.

x ≥ 2

x < 2 x < 2

Fig. 11: Observer automaton for ϕ. The error location is omitted.

We first observe that there is a cultural gap between formal
verification methods and the engineers. While the researcher
typically appreciates the conciseness and the elegance of a
temporal logic formula, an engineer without formal methods
background often sees an unintuitive language that is too
distant from his design practices and hence requires a steep
learning curve to master it. The pattern templates proposed in
this paper have the important advantage of being much closer
to the natural language used in the informal requirements,
while still retaining formal and rigorous semantics. Such
templates can play an important role in bridging the gap
between formal verification research and its users.

We recurrently encounter similar classes of requirements
in many application areas. The main aspects that change
between various requirements are specific parameters. As
such, we believe that parameterized specification templates
are amply sufficient to properly cover most requirements
used in practice. This black-box approach enables engineers
to use existing libraries of templates with little effort.

Finally, we see a number of technical challenges in ap-
plying property-based verification of temporal logic-based
specifications to the class of hybrid systems used in this
paper. Let us first examine STL specifications, that are
defined over continuous-time and real-valued variable do-
mains. An observer for a simple STL specification such as
�♦[99,100](x < 2) requires considerable memory resources –
the underlying automaton needs 200 real-valued clock vari-
ables, resulting in a considerable dimensionality overhead for
any model checking approach. In addition, the continuous-
time semantics of STL has an extreme precision, both in the
time and in the value domain. Consider the STL formula

ϕ = ♦(y ≥ 2 ∧ ((y < 2) S true) ∧ ((y < 2) U true)).

The formula ϕ, illustrated in Figure 11 requires the existence
of some time t, where y is greater or equal to 2 during a
zero duration period (y is strictly smaller than 2 in both the
left and the right neighborhood of t). The hybrid automata
considered in this paper cannot distinguish events with
such precision because the intersection between the location
invariants and location guards must be non-empty. It follows
that hybrid automata cannot be used as the property ϕ
observers. The specification languages HyLTL and HRELTL
are both defined over traces that alternate between continuous
trajectories and discrete events. In contrast to our template
language, these languages use untimed temporal operators,
therefore not being appropriate to express relative real-time
constraints between states and events in the system.

The use of pattern templates for system requirements and
their (semi–) automatic translation to formal specifications
have been proposed earlier. Dwyer et al. [18] were among the
first to introduce qualitative specification pattern templates
and their translation into different logic expressions. Among



others, Konrad and Cheng [35] extended Dwyer’s original
patterns to the real–time domain. Application of the patterns
in the automotive industry can be found in [31], [45]. A gen-
eralization to probabilistic pattern templates was proposed
in [24]. For discrete systems, there are tools that accept as an
input CNL expressions (e.g. in the form of pattern templates)
and automatically translate them into formal specifications.
Examples of such tools are Stimulus [3], Embedded Speci-
fier [10], AutoFocus3 [28], and SpeAR [6]. Pattern templates
for hybrid systems do not differ from pattern templates
already available. Yet, no existing tool can translate them into
a formal representation that is applicable to hybrid systems
and enables the verification of rich properties.

VII. CONCLUSIONS

In this paper, we facilitate the verification of hybrid sys-
tems against rich formal requirements by employing pattern
templates and we provide a comprehensive toolchain. We
define selected patterns in a formalism which is suitable
for hybrid automata and applicable over both bounded and
unbounded time. For these patterns, we give monitor au-
tomata with correctness proofs. The proofs are omitted for
lack of space and can be found in the technical report [21].
By composing the monitors with the system model under
study, the safety verification problem is transformed into the
reachability problem of an error state. Results obtained from
an industrial braking use case indicate that monitor automata
can facilitate the applicability of hybrid system verification
tools to industrial settings. These monitors are applicable
to the development process of industries that utilize text-
based safety requirements and they yield risk reduction when
translating requirements into formal specifications.
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