
Computing Maximizer Trajectories of Affine Dynamics for Reachability

Goran Frehse1

Abstract— Computing an overapproximation of the reachable
set of states of a continuous or hybrid system is a challenging
problem. The use of overapproximations based on a set of
template directions has led to scalable algorithms. When the
approximation is too conservative, it can be refined by adding
more template directions. Synthesizing suitable directions is
possible but costly without tight underapproximations to guide
the refinement. Suitable underapproximations can be con-
structed from the trajectories of states that are maximal in the
template directions, which we call maximizers. In this paper,
we propose algorithms to compute maximizer trajectories for
dynamical systems with affine dynamics and nondeterministic
inputs. Our computations are based solely on solving ODEs
and, assuming the initial condition is a polytope, solving linear
programs. Highly optimized commercial tools are available for
both tasks, with corresponding performance and numerical
robustness, which may help pave the way towards industrial
applications of reachability analysis. Since maximizer trajecto-
ries represent actual executions of the system, or parts thereof,
they can be used as counterexamples and provide additional
feedback and insight to the user.

I. INTRODUCTION

We consider the problem of computing – in an approxima-
tive form – the reachable states of a hybrid system. Starting
from a convex set of initial states, the states evolve over time
according to a set of affine ordinary differential equations
(ODEs). The set of these states as a function of time is called
a flowpipe. Under these assumptions, this set is convex at
every instant of time, but nonconvex overall. The flowpipe
is generally difficult to compute, so that the challenge lies in
finding an overapproximation that is both precise and cheap.

A compact, i.e., closed and bounded, convex set can be
represented by its support function, which describes the set
by attributing to every direction the signed distance between
the origin and the farthest point of the set in that direction.
Such a point is called a maximizer (support vector) of the
given direction and for many types of sets, e.g., polytopes,
it can be computed efficiently. Choosing a set of template
directions and computing the corresponding values of the
support function, one can obtain an overapproximation in
the form of a polyhedron. In addition, the convex hull of the
maximizers is an underapproximation of the set.

Support functions have been used to overapproximate
flowpipes with a series of template polyhedra, leading to very
efficient and scalable algorithms [1]. However, the accuracy
depends on the chosen template directions. To decide the

*This work was partly supported by the European Commission under
grant 643921 (UnCoVerCPS) and by the Institut Carnot–Logiciels et Sys-
tèmes Intelligents.

1Goran Frehse is with the Department of Computer Science, Mathe-
matics, and Applied Mathematics, Univ. Grenoble Alpes, Verimag, 38610
Gières, France goran.frehse@imag.fr

reachability of a target set or to obtain an arbitrarily exact
approximation of the reachable set requires refining the result
by adding more directions. It is possible to find suitable
directions using support functions only, but the computa-
tional cost is substantial and a large number of directions
are needed for higher-dimensional systems [2].

In this paper, we present algorithms to compute the evo-
lution of the maximizing points over time. Our computation
of maximizer trajectories is based solely on solving ODEs
and, assuming the initial set is a polytope, solving linear
programs. Highly optimized commercial tools are available
for both tasks, and using them may help dealing with
numerical problems that arise quickly in practice, as we
have witnessed in working on an industrial case study [3].
Indeed, our entire approach can be implemented by piloting
an external ODE solver, as long as linear programs (LPs) can
be provided as root functions. One could therefore envision
the integration in existing tools, in particular in an industrial
context.

The main interest of maximizer trajectories is that they
provide a tight underapproximation of the flowpipe. This
opens up new possiblities for refinement on several levels.
To give just two examples, it allows one to use optimal
approximation algorithms such as the Mutually Converging
Polytopes (MCP) by Kamenev [4], or separation algorithm
such as the Gilbert-Johnson-Keerthi (GJK) algorithm [5]
for showing that a target or guard set is not reachable.
Computing maximizer trajectories is more expensive than
simply using support functions, but our experiments in [2],
which use coarse underapproximations derived from support
functions, indicate that having tight underapproximations
can save a lot of effort in the refinement process. This
is particularly relevant for hybrid systems, in which the
intersection of the flowpipe with a guard set is used as the
initial states in the next discrete state. Overapproximation
may lead to spurious transitions, which in turn can lead to a
state explosion that renders standard reachability algorithms
useless even for simple systems [2]. Underapproximations
are evidently useful for creating counterexamples, which
are difficult to obtain for hybrid systems and essential for
falsification and refinement schemes such as CEGAR [6].
A positive side effect of maximizer trajectories is that they
represent actual executions of the system (or parts thereof),
which provides additional feedback and insight to the user.

Related work. The use of optimal control and ODEs to derive
bounds on the reachable set has been proposed in [7], [4], [8]
and the principle has first been applied to set-based reachabil-
ity in [9]. But to the best of our knowledge, algorithmically

solving the corresponding continuous-time ODEs has never
been addressed in detail. The central problem is the con-
struction of a sequence of input vectors over time, such that
a linear cost function (the position in the template direction)
is maximized. This is a classic optimal control problem [10],
but our case is somewhat particular. The number of switching
alternatives can be very large (the number of vertices of
the input set), so an explicit enumeration is to be avoided.
The number of switching times is unknown and may vary
widely depending on the time horizon and the set of inputs.
The cost function is particularly simple, which allows us
to reformulate the problem as detecting zero-crossings of a
given root function. We can therefore delegate the problem
of finding the optimal switching times to an ODE solver that
is capable of precisely detecting zero-crossings.

Both fixed-direction and dynamic-direction templates have
been used for set-based reachability based on time discretiza-
tion. Applying fixed-direction templates to continuous-time
systems, [8], [1], [11], [12] discretize time and derive
bounds in continuous time from a first-order Taylor-series
approximation. To obtain bounds that are conservative over a
continuous time interval, these approaches use compensation
terms like e‖A‖δ , where δ is the time step. To meet a given
error bound thus may require extremely small time steps,
which may stall progress or lead to numerical problems. The
computation of maximizer trajectories completely avoids this
problem by relying on the capabilities of the ODE solver.
Higher-order Taylor series approximations are used in [13].
Dynamic-direction templates have been used for discrete-
time systems in [14], [15], where refinement heuristics are
included to detect additional directions that improve the
accuracy.

In the next section, we recall the basics of flowpipe
approximation using support functions and maximizers. In
Sect. III, we present our algorithm for computing trajectories
in a given, fixed direction. In Sect. IV, we show that the
same techniques can be applied to computing trajectories in
directions that evolve with the system. The proofs have been
omitted for lack of space, and can be found in [16].

II. SET-BASED REACHABILITY

We consider the reachability of a continuous dynamic
system of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (1)

where x(t) ∈ Rn is an n-dimensional vector, A is a real
matrix, and U ⊆ Rn a compact convex set. The states
reachable at time t from initial states X0 ⊆ Rn are

Xt(A,X0,U) = {x(t) | x(0) ∈ X0,

∀0 ≤ τ ≤ t ∃u(τ) ∈ U : ẋ(τ) = Ax(τ) + u(τ)}. (2)

In this paper, we consider X0 and U to be polyhedral. We
simply write Xt if A, X0, and U are clear from the context.
The flowpipe over a time interval [0, T] is

X[0,T] =
⋃

t∈[0,T]
Xt(A,X0,U).

`

σ̂P (`)

ρP (`)

P

0

(a) support function and maximizer

`3

`4

`1

`2

P

(b) inner and outer approximations

Fig. 1. The values of the support function in a given set of directions
define a polyhedral outer approximation, and the corresponding maximizers
define an inner approximation

Sometimes we are interested in whether a given target
set G ⊆ Rn is reachable. In a hybrid setting, the target can
be the guard of a transition and for reachability one needs
to compute the intersection of the reachable states with the
guard set. The goal may also be to show that the target set is
actually not reachable. E.g., when G is a set of unsafe states
or the guard set of a transition that leads to unsafe states.

A. Convex Sets and Support Functions

Different types of sets can be used to represent Xt and
X[0,T] exactly or approximately, and the choice of represen-
tation has a large impact on the computational complexity.
Using support functions, one can derive such approximations
very efficiently from maximizer trajectories. We recall the
basics.

The support function of a nonempty compact convex set
S ⊆ Rn with respect to a direction ` ∈ Rn is

ρS(`) = maxx∈S`
Tx.

The support function of a compact convex set S is an exact
representation of the set, since S can be constructed from
the function values using

S =
⋂

`∈Rn

{
x
∣∣ `Tx ≤ ρS(`)

}
.

A point x ∈ S is called a support vector or maximizer of S
for direction ` if `Tx = ρS(`). The set of maximizers of S
for direction ` is denoted by σS(`). Let σ̂S(`) be a function
that returns just one of the maximizers in σS(`), see Fig. 1(a)
for an illustration.

We now recall several geometric operations that can
be carried out efficiently using support functions. Let
S,S1,S2 ⊆ Rn be compact convex sets. The convex hull
of a set V ⊆ Rn is

CH(V) =
{∑m

i=1
λivi

∣∣∣ vi ∈ V, λi ≥ 0 :
∑m

i=1
λi = 1

}
.

The image of a linear map (matrix) M ∈ Rm × Rn is the
set MS = {Ms | s ∈ S}. The Minkowski sum is S1⊕S2 =
{s1 + s2 | s1 ∈ S1, s2 ∈ S2}. The following rules apply to
support functions:

ρMS(`) = ρS(MT`),

ρS1⊕S2(`) = ρS1(`) + ρS2(`),

ρCH(S1∪S2)(`) = max
(
ρS1(`), ρS2(`)

)
.

(3)

Similar rules apply to maximizers:

σMS(`) = MσS(MT`),

σS1⊕S2(`) = σS1(`)⊕ σS2(`),

σCH(S1∪S2)(`) = σCH(σS1
(`)∪σS2

(`))(`).

(4)

Polyhedra. A halfspace H ⊆ Rn is the set of points
satisfying a linear constraint, H =

{
x
∣∣ aTx ≤ b

}
, where

a = (a1 · · · an) ∈ Rn and b ∈ R. A polyhedron P is the
intersection of a finite set of halfspaces and called a polytope
if it is bounded. Using vector-matrix notation,

P =
{
x | Ax ≤ b

}
, A =

 aT1
.
.
.

aTn

 , b =

(
b1

.

.

.
bn

)
.

A linear constraint is active (touching) in x if aTx = b.
Normal Cones. The cone of a set V ⊆ Rn is

Cone(V) =
{∑m

i=1
λivi

∣∣∣vi ∈ V, λi ≥ 0
}
.

A cone is simplical of dimension m if it is the cone of m
linearly independent vectors v1, . . . , vm. A simplical cone of
dimension n is a polyhedron with n constraints:

Cone(v1, . . . , vn) =
{
x | −(v1 · · · vn)−1x ≤ 0

}
. (5)

The normal cone of any point x ∈ P is spanned by the
normal vectors of the constraints active in x.

NP(x) = Cone

({
ai

∣∣∣ aTi x = bi, i = 1, . . . ,m
})

.

The normal cone of x is also the set of directions for which
x is a maximizer:

Lemma 2.1 (folklore): A point x in a polyhedron P is a
maximizer in direction ` 6= 0 iff ` ∈ NP(x).

B. Flowpipe Approximation with Maximizers

Let x1, . . . , xK be maximizers of a compact convex set
S in directions `1, . . . , `K . Then S is bounded by the inner
and outer approximations [7],

CH(x1, . . . , xK) ⊆ S ⊆
⋂

k

{
`Tkx ≤ `Tkxk

}
, (6)

see Fig. 1(b) for an illustration. A maximizer trajectory
(x∗(·), `∗(·)) attributes to every t ≥ 0 a state x∗(t) ∈ Xt
and a direction `∗(t) ∈ Rn for which x∗(t) is a maximizer.
Applying (6) at every time instant t, a set of maximizer
trajectories (x∗1, `

∗
1), . . . , (x∗K , `

∗
K) defines an approximation

of the flowpipe [7]:

CH
(
x∗1(t), . . . , x∗K(t)

)
⊆ Xt ⊆

⋂
k

{
`∗k(t)

T
x ≤ `∗k(t)

T
x∗k(t)

}
.

(7)
We are interested in computing the values of x∗(t′) and `∗(t′)
for a given t′ ≥ 0. Ignoring numerical errors, we assume to
have an ideal ODE solver at our disposal, i.e., a function

ODEA(x0, u0, tf)

that takes as arguments an initial state x0, a constant input
u0, a final time tf , and returns the state x(tf), where x(t)

A

l

CB

A’

C’

B’

Fig. 2. A fixed-direction maximizer trajectory x∗(t) (bold grey) for fixed-
direction `. The trajectory xA(t) with xA(0) = A is valid until t′. At t′,
both xA(t′) = A′ and xC(t′) = C′ are maximizers. However, ` leaves
the normal cone of xA(t) (light grey) as time goes on, while it enters that
of xC(t). Therefore, x∗(t) jumps from xA(t) to xC(t) at t′ and remains
with it for the remainder of the shown trajectory

A

CB

A’

C’

B’

Fig. 3. A flowpipe approximation constructed from fixed-direction maxi-
mizer trajectories in the positive and negative axis directions. At every time
instant t, the approximation is the bounding box of the reachable set Xt.
The nonsmootheness in the outline at A′ corresponds to the switch from
the point A′ as maximizer to the point C′ as maximizer as illustrated in
Fig. 2 – the vertical derivative at C′ is zero while at A′ it is not

is given by x(0) = x0, ẋ(t) = Ax(t) + u0. We also assume
an ideal root solver

ODEA(x0, u0, t0, T, g),

which is an ideal ODE solver that takes as additional
arguments a start time t0 and a vector g of root functions
gi : Rn → R. If for any t′ in the time interval (t0, T] one of
the root functions satisfies g(x(t′)) = 0, the solver returns
(x(t′), t′) for the smallest such t′. Otherwise, it returns
(x(T), T).

In this paper, we consider two particular instances of
maximizer trajectories: In the first case, the direction remains
constant and we change the state when necessary to obtain
a maximizer for that direction. We call this a fixed-direction
maximizer trajectory. In the second case, we track the
evolution of the same state and let the direction evolve such
that the state remains its maximizer. We call this a dynamic-
direction maximizer trajectory. Note that in the first case, the
trajectory is generally not continuous. As we will see, both
types are closely related.

III. FIXED-DIRECTION MAXIMIZER TRAJECTORIES

In this section, we discuss how to compute a trajectory
(states over time) that are maximal points of the flowpipe

with respect to a given, fixed, direction. We consider a system
with affine dynamics

ẋ(t) = Ax(t) + u(t), x(0) ∈ X0, u(t) ∈ U . (8)

Given a direction ` ∈ Rn, our goal is to compute a solution
x∗(t) such that (x∗(t), `∗(t)) is a maximizer trajectory,
where `∗(t) = ` = const. An example maximizer tra-
jectory is shown in Fig. 2, and a flowpipe approximation
constructed using the axis directions is shown in Fig. 3. Note
that the flowpipe approximation is equivalent to the time-
discretization approach from [1] with infinitesimally small
time steps.

According to the superposition principle, a solution of (8)
is the sum of a solution for U = 0 (autonomous solution)
and a solution for X0 = 0 (input solution). Let xaut(t) be a
maximizer trajectory for Xt(X0, 0) and xinp(t) a maximizer
trajectory for Xt(0,U), both for the same direction `. Their
sum is a maximizer trajectory of (8),

x∗(t) = xaut(t) + xinp(t).

To compute xaut(t), we need to consider linear dynamics

ẋaut(t) = Axaut(t), xaut(0) ∈ X0 (9)

The flowpipe for these dynamics is Xt = eAtX0. Given a
direction ` ∈ Rn, the goal is to find a function x∗aut(t) such
that for every t ≥ 0, x∗aut(t) ∈ σXt

(`). To find a solution,
we can change to a moving coordinate system, such that the
set is fixed and the direction is moving. This is equivalent
since with (4),

σXt
(`) = σeAtX0

(`) = eAtσX0
(eA

Tt`), (10)

where on the left we have the maximizers of Xt for a fixed
direction ` and on the right the maximizers of X0 for the
dynamic direction

`t = eA
Tt`0, (11)

with `0 = `. Let y∗ ∈ σX0(`t), then x∗aut(t) = eAty∗. The
value of x∗aut(t) can be computed from y∗ using an ODE
solver, but this is not incremental. For subsequent values
of t it will be quicker to compute the matrix exponential
incrementally by solving n initial value problems

ėi(t) = Aei(t), (12)

where ei(0) is a unit vector with the i-th coordinate being 1
and the others being zero. Then eAt =

(
e1(t) · · · en(t)

)
.

The trajectory xinp(t) can be obtained by solving [8]

ẋinp(t) = Axinp(t) + u∗(t), xinp(0) = 0, (13)
˙̀∗(t) = AT`∗(t), `∗(0) = `, (14)
u∗(t) ∈ σU (`∗(t)). (15)

The difficulty in solving (13)–(15) lies with the last equation:
We need to find u∗(t) that satisfies (15). With (14) and (11),

`∗(t) = eA
Tt` = `t.

We must therefore find for each τ ∈ [0, t] a point u∗(τ) in U
that is a maximizer for `τ . This will be discussed in the next
section. The final algorithm for computing a fixed-direction
maximizer will be presented in Sect. III-B.

A. Fixed-Direction Maximizer Sequences

The goal is to compute maximizers of a compact convex
set P as a function of time t and direction `t = eA

Tt`.
The result is a function y∗(t) such that for every t ≥ 0,
y∗(t) ∈ σP(`t). We reduce the problem to attributing to each
t a normal cone of P that contains `t. With Lemma 2.1, we
have:

Lemma 3.1: Let (yk, tk) for k ≥ 0 be a sequence such that
t0 = 0, yk ∈ P , and for all τ , tk ≤ τ ≤ tk+1, `τ ∈ NP(yk).
Then y∗(t) defined by y∗(t) = yk for tk ≤ t < tk+1 satisfies
y∗(t) ∈ σP(`t).
Such a sequence of normal cones exists, since the union of
all normal cones of P is Rn [17]. We refer to (yk, tk) as the
fixed-direction maximizer sequence. Each yk is the sequence
where tk < tk+1 not only is a maximizer at tk, but remains
a maximizer for some positive time span. We call any such
yk a forward maximizer of `t. As an example, consider the
set A′B′C ′ in Fig. 2. Both A′ and C ′ are maximizers at time
t′, but only C ′ is a forward maximizer. In the following, we
discuss different criteria to identify a suitable maximizer yk,
and to check whether it remains a maximizer at future points
in time.

1) Pointwise finding a maximizer: We start with a basic
algorithm for finding a maximizer sequence and then discuss
alternatives for different steps. Initially, k = 0 and we
compute a maximizer yk for `k. Then we use the ODE solver
with a root function to compute `t and detect tk+1, i.e., the
end of the time interval over which y0 is a maximizer. The
process is the repeated from tk+1. Let λ(`) be the distance
of the current point yk to the supporting hyperplane of P ,

λ(`) = (σ̂P(`)− yk)T`/‖`‖.

The value of λ(`) is zero if yk is a maximizer and strictly
positive otherwise. According to our definition, an ideal ODE
root solver stops at the first root, while here we would need
it to stop at the last t such that λ(`) = 0. We solve this
problem by using the root function λ(`)− ε to create a zero
crossing that can be detected and then let the solver backtrack
to the last zero of λ(`). Going backwards, we can use as
root function λ(`), or γ(`) = (y∗ − yk)T`/‖`‖, where y∗

is the maximizer at the position where a nonzero value of
λ(`) was detected. The use of γ(`) may be advantageous
in practice, because it is a smooth function and can be
computed faster. A large value of ε increases the risk of
missing a maximizer change (see discussion below), so we
add a maximum time step δ for safety. An alternative root
function will be discussed in Sect. III-A.3.

In detail, the algorithm proceeds as follows. Given a
threshold ε > 0, a maximum time step δ > 0 and a time
horizon T , the following algorithm MSEQA(P, t0, T, ε, δ)
computes a maximizer sequence (yk, tk) of P for the time
interval [t0, T].

1) Let k = 0, `′ = `, t′ = t0, and y0 = σ̂P(`).
2) Let tf = min(T, t′ + δ) and compute

(`′, t′) = ODEAT(`′, 0, t′, tf , λ− ε).

3) If λ(`′) > 0, let y∗ = σ̂P(`∗), `− = `′, t− = t′ and
backtrack to the first zero crossing after tk using the
root function

γ(`) = (y∗ − yk)T`/‖`‖.

a) Let t∗ = t−, `∗ = `−.
b) Compute (backwards in time from t−)

(`−,∆−) = ODE−AT(`−, 0, 0, t− − tk, γ).

c) Let t− := t− −∆−.
d) If t− > tk and ∆− > 0, go to step 3a.

(search for earlier zero until tk is reached)
e) If t∗ = t′, let yk = y∗

(no zero after tk, so change current maximizer).
f) Otherwise, let tk+1 = t∗, yk+1 = y∗, t′ = tk+1,
`′ = `∗, k := k + 1 (adding a new maximizer).

4) If t′ = T , stop. Otherwise, go to step 2.

Example: A small numerical example shall illustrate the
algorithm. Let AT =

(
0 −1
1 0

)
, so that `t describes a counter-

clockwise circular trajectory around the origin. Let P be the
box P = {0 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 0.5}, so the normal
cones of P are simply the quadrants of the plane. Starting
from `0 = (1

0), a fixed-direction maximizer sequence up to
T = π is given by

((1
0.5) , 0) ,

(
(0
0.5) , π2

)
,
((

0
−1
)
, π
)
,
((

1
−1
)
, 3π2
)
. (16)

We run the MSEQ algorithm implemented in C++ on a stan-
dard laptop using double precision. A number comparisons
are to a relative error of 10−12 and an absolute error of
10−14, relaxing equalities and tightening strict inequalities.
As ODE solver we use CVODE [18] with a relative tolerance
of 10−9 and an absolute tolerance of 10−13. The computation
of the support vectors is carried out by the linear program-
ming library GLPK [19]. We use ε = 10−6 and δ = tf .

Initially, y0 = (1
0), which is a maximizer only for t = 0,

i.e., not a forward maximizer. In step 2 the solver stops at
t′ = 2 · 10−6. In step 3, λ(`′) evaluates to almost exactly
1 · 10−6, and we obtain the maximizer y∗ = (1

0.5). The
corresponding time stamp t∗ takes the value t′ if no zero is
found during backtracking, or the time of the earliest zero.
It’s initial value is t′. Step 3b backtracks to t− = 7 · 10−18,
and since t∗ still has the value t′, step 3e sets y0 = (1

0.5).
The backtracking has turned y0 into a forward maximizer.
Continuing with step 2, the solver finds a root at t′ slightly
past π2 , and step 3 obtains y∗ = (0

0.5). Step 3b backtracks to
almost exactly t− = π

2 , which in step 3d is greater than t0
so the backtracking is continued to check for earlier roots. In
step 3a, t∗ = π

2 , which is the time stamp of the earliest zero
found in backtracking. Step 3b backtracks to t− being almost
exactly t0, which ends the backtracking. In step 3f, we have
t∗ < t′, so a new maximizer y1 = (0

0.5) with time stamp
t1 = π

2 is added to the sequence. The remaining maximizers
in the sequence are detected analogously to y1.

The output of this run approximates the maximizer se-
quence (16) with a relative error of 8·10−10 on the switching

times, with the maximizers being exact up to machine
precision. The support vector computation of P is called
432 times in total.

As an alternative, backtracking with λ instead of γ in-
creases the relative error to 7·10−6 and requires an additional
17 support vector computations for backtracking. As another
alternative, going forward with λ, i.e., ε = 0, we need to
replace values of the root function where λ(`) = 0 with
λ(`) = −1 since otherwise CVODE will not detect any
root in step 2. Here, we skip the backtracking steps 3a–
3e and rely on the internal backtracking of the ODE solver
to find the earliest t with λ(`t) > 0. In step 2 the solver
stops at t′ = 1.3 ·10−8. Since no backtracking is performed,
the output sequence is ((1

0) , 0) ,
(
(1
0.5) , 1.3 · 10−8

)
, . . . We

therefore obtain a false result for the first time interval,
since (1

0) is not a forward maximizer. By coincidence, the
remaining elements in the sequence are forward maximizers
and are therefore correct up to a relative error of 8 · 10−10.
A total of 603 support vectors were computed.

The computational cost of the MSEQ algorithm is domi-
nated by the fact that every evaluation of the root function
requires solving a linear program. In our experience with
SpaceEx, a stateful LP solver can solve an LP with (slowly)
changing cost function very quickly if the constraints re-
main the same. Indeed, solving an LP of this form is the
most frequently executed operation in the support function
reachability algorithm of SpaceEx.

The algorithm may overlook changes in maximizers if yk
is a maximizer at t and t+ δ, and the difference in the root
function is smaller than ε. The likelihood of overlooking
a maximizer can be reduced by choosing smaller δ and ε.
A sufficient criterion for detecting an overlooked change
will be discussed in Sect. III-A.3. The algorithm is sure to
terminate: If P is a polytope, the changes in the maximizer
function y∗(t) are generated from zero crossings of affine
functions of the trajectories of the vertices of P . So over a
bounded time horizon T , there is a maximizer sequence with
a finite number of elements, which also implies that there is
a minimum time step that separates the tk.

The above algorithm may require several backtracking
steps (no more than vertices in P) to stabilize on the
maximizer yk. The following section presents a criterion to
identify a maximizer that will be valid for some positive time
interval, thus rendering the test in step 3e unnecessary.

2) Finding a forward maximizer: The set of forward
maximizers can be constructed according to the following
lemma, whose proof can be found in [16].

Lemma 3.2: Let P be a nonempty polytope, P0 = P , and
for i = 0, . . . , n− 1,

Pi+1 = Pi ∩
{
y
∣∣ `TAiy = ρPi

(Ai>`)
}
.

Then y is a forward maximizer in direction ` iff y ∈ Pn.
Furthermore, Pn is nonempty.

Lemma 3.2 provides a constructive way of finding a
forward maximizer. Naively applied to a polytope P , it

requires solving n linear programs, each with n variables
and up to m + n constraints, where m is the number of
constraints of P . For a more efficient approach, one could
exploit that the constraint added to Pi reduces the search
space to a n − i dimensional face of P . Instead of adding
constraints, a modified simplex algorithm could fix the basis
constraints accordingly.

3) Using normal cones: Let P be a polytope

P =
{
y
∣∣∣ ∧m

i=1
pTi y ≤ qi

}
,

so we can construct the normal cones explicitly and use them
for root functions.

If yk is a nondegenerate vertex, i.e., only n constraints
are active in yk, the normal cone of yk is spanned by the n
linearly independent normal vectors of the active constraints,
say p1, . . . , pn. This is a simplical cone, so with (5) we have
`t ∈ NP(yk) iff

(p1 · · · pn)−1`t ≥ 0. (17)

Figures 2 and 5 show the normal cones of Xt, and illustrate
how the direction identifies the maximizers for `∗(t) = `,
respectively `∗(t) = `t.

Let λ(`) ∈ Rn be λ(`) = (p1 · · · pn)−1`. Then λ is a
vector of root functions that can replace the root function
in Sect. III-A.1. The cost is O(n3) for the matrix inversion
(necessary each time we choose a new maximizer) and
O(n2) for the matrix-vector product (necessary at each time
step).

If yk is a degenerate vertex, then ma > n constraints are
active in yk, say p1, . . . , pma

. Then `t ∈ NP(yk) iff there
exists λ1, . . . , λma

≥ 0 such that∑ma

i=1
λipi = `t. (18)

This can be solved as a (ma, n)-LP at every iteration of the
root solver. With Farkas’ Lemma, it is equivalent to

min
{
`Tt y

∣∣∣ ∧ma

i=1
pTi y ≥ 0

}
≥ 0. (19)

One possibility is therefore to use the left side of (19) as a
root function, which involves solving a (n,ma)-LP at every
iteration of the root solver. The difference between (18) and
(19) is that the changing parameter is part of the constraints
in one and part of the cost function in the other. As noted
before, a stateful LP solver typically performs well on a
changing cost function if the constraints remain the same,
so we expect (19) to perform better.

A potential problem with using normal cones as root
functions is that `t may graze tangentially to a facet of the
normal cone. In this case, the root function is identically
zero over a time interval. We can use the same remedy as
in Sect. III-A.1 and use λ(`) + ε followed by backtracking
if a crossing has been detected (note that the sign of λ(`) is
opposite compared to Sect. III-A.1).

In terms of performance, the difference between the root
function in Sect. III-A.1 and (19) is that the former requires
solving an LP with all constraints of X0, while the latter only

involves the subset of constraints that are active at the current
maximizer. If the maximizer is a nondegenerate vertex, using
(17) can be significantly faster since at every time step it is
only O(n2), and O(n3) only when the maximizer changes.

Constructing nomal cones can also help to detect if a
third maximizer lies between yk and yk+1. The normal
cones of two successive maximizers overlap, so if NP(yk)∩
NP(yk+1) = ∅, a search for another maximizer between tk
and tk+1 is required. The check can be carried out by solving
an LP with n variables and 2ma constraints. Problems
similar to (18) and (19) have been studied in the literature
on parametric linear programming. An algorithm for finding
a forward maximizing normal cone (called compatible basis)
is sketched out in [20].

B. Fixed-Direction Maximizer Algorithm

We now combine the maximizer sequence with ODE
solving to obtain the final algorithm for computing a fixed-
direction maximizer at a given point in time. The following
algorithm ODEMFDA(X0, tf , `, ε, δ) takes as arguments a
set of initial states X0, a final time tf , a direction `, a
threshold ε > 0, a maximum time step δ > 0 and returns the
fixed-direction maximizer x∗fd = x∗(tf):

1) matrix exponential:
ei(tf) = ODEA(ei(0), 0, tf) for i = 1, . . . , n;
M =

(
e1(tf), . . . , en(tf)

)
2) autonomous maximizer:

`′ = MT`, x∗0 = σ̂X0
(`′), xaut = Mx∗0.

3) maximizing input sequence:
(uk, tk)k=0,...,K = MSEQA(U , 0, tf , ε, δ)

4) nonautonomous maximizer:
xinp := 0. Let tK+1 = tf . For k = 0, . . . ,K, let
xinp := ODEA(xinp, uk, tk+1).

5) x∗fd = xaut + xinp.
All computations in the above procedure can be made
incremental, i.e., having computed x∗(t′), we may compute
x∗(t′′), t′′ > t′, by starting from t = t′ instead of t =
0. The techniques from Sect. III-A (forward maximizers,
normal cones) can be used to reduce redundant computations
of σ̂X0

(`′), and to identify the time points at which the
maximizer of X0 changes.

In practice, the ODE solver might not return the exact
switching times tk for the input sequence uk. The resulting
approximate, i.e., suboptimal, sequence (uk, tk) voids the use
of x∗(t) for creating an overapproximation of Xt in (7), but
x∗(t) is nonetheless a valid underapproximation of Xt.

Example: We illustrate the ODEMFD algorithm with a
helicopter model, taken from [21], 8-dim. flight dynamics, an
20-dim. H∞-controller, and a clock variable. The goal of the
controller is to attenuate wind disturbances, which we model
with U as [−0.01, 0.01] in the dimensions that represent
longitude, latitude, and altitude, and 0 in all other dimensions
except the clock. The initial states of the helicopter are
[0, 0.1] in all dimensions, while the controller and clock
variables are zero. We construct the maximizer trajectories in
the positive and negative axis directions, see Fig. 4, running

0 5 10 15 20 25 30

−0.2

0

0.2

time t

ve
rt

ic
al

ve
lo

ci
ty
v

Fig. 4. Maximizer trajectories for a 29-dim. helicopter model, shown in
the directions of positive and negative vertical speed for a nondeterministic
continuous wind disturbance (solid) and without the disturbance (dotted).
A reachable set approximation obtained with the same number of support
function evaluations is shown for comparison (shaded)

ODEMFD incrementally with a time step of h = 0.15. The
computation takes 21 s for all 58 trajectories, with 291,877
evaluations of the support vectors of the initial states and the
input set that account for 17% of the runtime. The maximizer
sequences have a length between 1 and 47.

For comparison, Fig. 4 also shows a conservative approxi-
mation of the reachable states computed using the approach
in [11] for the same template directions. It consists of
the outer polyhedral approximations of a piecewise linear
approximation of the support function. An error bound ε =
0.05 in each template direction was chosen to give the same
number of support evaluations, and the construction takes
14 s for approximating the support functions and 3 s for
constructing the convex polyhedra.

C. Maximizers for Mapped Sets

Assume we wish to compute a maximizer trajectory in
direction `(t) for a set P that is the result of a linear map,
i.e., P = MQ. If M is not invertible, computing P involves
a potentially costly projection operation, which may in
addition produce degenerate vertices. We can avoid explicitly
mapping Q to P by first finding a maximizer trajectory z∗(t)
of Q in direction MT`(t), and then mapping the sequence
with (4) to y∗(t) = Mz∗(t). This may be useful, e.g., when
the dynamics are of the form ẋ = Ax + BV , such that in
(8) we have U = BV .

More generally, if we have a set P that can be obtained
through any combination of linear map, Minkowski sum,
and convex hull from sets Qi, we can compute maximizer
trajectories for the Qi and then derive the maximizer tra-
jectory for P by pointwise applying the rules in (4). As an
example, a zonotope is the affine image of a hypercube, for
which computing with (17) is particularly simple. Applying
the affine map we obtain a maximizer sequence for the
zonotope. As another example, let P be symmetric to yc,
i.e., −P ⊕ {yc} = P ⊕ {−yc}, and let y∗(t) maximize P
in direction `(t). Then z∗(t) = 2yc − y∗(t) maximizes P in
direction −`(t).

A’ C’

B’
A

l

l’

CB

Fig. 5. A given direction ` with maximizer x(0) defines a direction `(t)
with maximizer x(t). The trajectory of state x(t) with x(0) = A (bold
grey) is a maximizer of ABC in the evolving direction `(t). E.g., at time
t′, x(t′) = A′ and `(t′) = `′. The normal cone NP (x(t)) (shown in light
grey) is the set of all directions for which x(t) is a maximizer

A

CB

A’

C’

B’

Fig. 6. A flowpipe approximation constructed from dynamic-direction
maximizer trajectories starting with the axis directions. At every time instant
t, the approximation is the bounding box of the reachable set Xt, rotated to
match the rotation of Xt. The maximizer trajectories are x(t) with x(0) =
A and x(t) with x(0) = B as illustrated in Fig. 5

IV. DYNAMIC-DIRECTION MAXIMIZER TRAJECTORIES

A dynamic-direction maximizer trajectory for a direction
` and any x0 ∈ σX0

(`) is given by [7], [4]:

ẋ∗(t) = Ax∗(t) + u∗(t), x∗(0) = x0, (20)
˙̀∗(t) = −AT`∗(t), `∗(0) = `, (21)
u∗(t) ∈ σU (`∗(t)). (22)

An example maximizer trajectory is shown in Fig. 5. Figure 6
shows a flowpipe approximation constructed from dynamic-
direction maximizers, starting at t = 0 with the axis direc-
tions (bounding box). Note that for a given direction ` one
is free to choose any maximizer of ` as x0. The difficulty
in solving (20)–(22) lies with the last equation: We need to
find a function u∗(t) that satisfies (22). With (21), we have

`∗(t) = e−A
Tt`0 = `−t.

We must therefore find for each t a point u∗(t) in a poly-
hedron U that is a maximizer in direction `−t. Again, this
is the problem discussed in Sect. III-A, but going backwards
in time, or, equivalently, substituting A by −A. This points
towards a potential problem: If A is stable, then −A is un-
stable, and computing `−t may be numerically challenging.
Since the length of `−t is irrelevant for computing σU (`−t),
we could instead use ν = `−t/‖`−t‖. It can be obtained by
solving the nonlinear ODE,

ν̇ = −ATν + (νTATν)ν, ν(0) = `/‖`‖. (23)

As with fixed-direction maximizers, a suboptimal function
u∗(t) voids the use of x∗(t) for constructing an overapprox-
imation of Xt, but it is nonetheless a valid underapproxima-
tion. Contrary to a fixed-direction maximizer, the maximizer
trajectory x∗(t) is continuous and an actual behavior of the
system.

A. Dynamic-Direction Maximizer Algorithm

The following algorithm ODEMDDA(X0, tf , `, ε, δ) takes
as arguments a set of initial states X0, a final time tf , a
direction `, a threshold ε > 0, a maximum time step δ > 0
and returns the dynamic-direction maximizer x∗dd = x∗(tf):

1) autonomous maximizer: x0 = σ̂X0(`),
xaut = ODEA(x0, 0, tf).

2) maximizing input sequence:
(uk, tk)k=0,...,K = MSEQ−A(U , 0, tf , ε, δ)

3) nonautonomous maximizer:
xinp := 0. Let tK+1 = tf . For k = 0, . . . ,K, let
xinp := ODEA(xinp, uk, tk+1).

4) x∗dd = xaut + xinp.
As in Sect. III-B, the procedure can be made incremental.
For the autonomous part, the computation is easier, since for
a given ` we need to find x0 ∈ σX0

(`) only once, not for
every value of tf .

In the special case where X0 is a polytope with constraints∧m
i=1 p

T
i x ≤ qi and U is a singleton set U = {u0},

computing dynamic-direction maximizers in directions `1 =
p1, . . . , `

m = pm produces the exact reachable set Xt:

Xt =

m⋂
i=1

{
x
∣∣∣ `itTx ≤ `itTx∗(t)}.

In this case, each x0 is a witness for at least n directions
(the normal vectors of constraints active in x0), so at most
m/n maximizer trajectories need to be computed. If U is
not a singleton, the dynamic-direction maximizers define a
tight outer approximation of the reachable set, just like fixed-
direction maximizers.

B. Maximizers and Backwards Reachability

Starting from a set of of initial states X0, the backwards
reachable set consist of the solutions

ẋ(t) = −Ax(t)− u(t), x(0) ∈ X0, u(t) ∈ U . (24)

To perform backwards instead of forwards reachability, it
therefore suffices to substitute −A for A and −U for U .
Applying this substitution to (20)–(22), we obtain a con-
nection between forward and backward reachability: Having
computed a maximizing input function u∗(t) for a fixed-
direction maximizer trajectory in direction `, a dynamic-
direction maximizer trajectory going backwards in time can
be obtained using the same u∗(t) by solving

ẋ∗(t) = −Ax∗(t)− u∗(t).

Similarly, a maximizing input for a dynamic-direction max-
imizer can be used to obtain a fixed-direction maximizer
trajectory going backwards in time.

REFERENCES

[1] C. Le Guernic and A. Girard, “Reachability analysis of linear systems
using support functions,” Nonlinear Analysis: Hybrid Systems, vol. 4,
no. 2, pp. 250 – 262, 2010, iFAC World Congress 2008.

[2] G. Frehse, S. Bogomolov, M. Greitschus, T. Strump, and A. Podelski,
“Eliminating spurious transitions in reachability with support func-
tions,” in HSCC’15. ACM, 2015, pp. 149–158.

[3] G. Frehse, A. Hamann, S. Quinton, and M. Woehrle, “Formal analysis
of timing effects on closed-loop properties of control software,” in
Real-Time Systems Symposium (RTSS). IEEE, 2014, pp. 53–62.

[4] A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive Deci-
sion Maps, ser. Applied Optimization. Kluwer Academic Publishers,
Boston, 2004, vol. 89.

[5] G. Van Den Bergen, Collision detection in interactive 3D environ-
ments. Elsevier, 2004.

[6] E. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg,
and M. Theobald, “Abstraction and counterexample-guided refinement
in model checking of hybrid systems,” International Journal of Foun-
dations of Computer Science, vol. 14, no. 04, pp. 583–604, 2003.

[7] P. Varaiya, “Reach set computation using optimal control,” in Proc.
KIT Workshop, 1997, pp. 377–383.

[8] A. Girard and C. Le Guernic, “Efficient reachability analysis for linear
systems using support functions,” in IFAC World Congress, 2008.

[9] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reach-
ability analysis of piecewise-linear dynamical systems,” in Hybrid
Systems: Computation and Control. Springer, 2000, pp. 20–31.

[10] M. Egerstedt, Y. Wardi, and F. Delmotte, “Optimal control of switching
times in switched dynamical systems,” in Decision and Control, 2003.
Proceedings. 42nd IEEE Conference on, vol. 3. IEEE, 2003, pp.
2138–2143.

[11] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable
verification of hybrid systems,” in CAV, ser. Lecture Notes in Computer
Science, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer,
2011, pp. 379–395.

[12] G. Frehse, R. Kateja, and C. Le Guernic, “Flowpipe approximation and
clustering in space-time,” in HSCC’13. ACM, 2013, pp. 203–212.

[13] S. Sankaranarayanan, T. Dang, and F. Ivančić, “Symbolic model
checking of hybrid systems using template polyhedra,” in Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 188–202.

[14] E. Asarin, T. Dang, O. Maler, and R. Testylier, “Using redundant
constraints for refinement,” in Automated Technology for Verification
and Analysis. Springer, 2010, pp. 37–51.

[15] M. A. B. Sassi, R. Testylier, T. Dang, and A. Girard, “Reachability
analysis of polynomial systems using linear programming relaxations,”
in Automated Technology for Verification and Analysis. Springer,
2012, pp. 137–151.

[16] G. Frehse, “Computing maximizer trajectories of affine dynamics for
reachability,” Verimag, Tech. Rep. TR-2015-10, September 2015.

[17] N. T. B. Kim and D. T. Luc, “Normal cones to a polyhedral convex set
and generating efficient faces in linear multiobjective programming,”
Acta Mathematica Vietnamica, vol. 25, pp. 101–124, 2000.

[18] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban,
D. E. Shumaker, and C. S. Woodward, “Sundials: Suite of nonlinear
and differential/algebraic equation solvers,” ACM Transactions on
Mathematical Software (TOMS), vol. 31, no. 3, pp. 363–396, 2005.

[19] A. Makhorin, “GNU Linear Programming Kit, v.4.37,” 2009, http:
//www.gnu.org/software/glpk.

[20] A. Holder, “Parametric LP analysis,” in Wiley Encyclopedia of Op-
erations Research and Management Science. John Wiley & Sons,
2010.

[21] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control:
Analysis and Design. John Wiley & Sons, 2005.

