
Reachability of Hybrid Systems in Space-Time

Goran Frehse
Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France

CNRS, VERIMAG, F-38000 Grenoble, France
goran.frehse@imag.fr

ABSTRACT
In set-based reachability, a cover of the reachable states of a
hybrid system is obtained by repeatedly computing one-step
successor states. It can be used to show safety or to ob-
tain quantitative information, e.g., for measuring the jitter
in an oscillator circuit. In general, one-step successors can
only be computed approximately and are difficult to scale
in the number of continuous variables. The approximation
error requires particular attention since it can accumulate
rapidly, leading to a coarse cover, prohibitive state explo-
sion, or preventing termination. In this paper, we propose
an approach with precise control over the balance between
approximation error and scalability. By lazy evaluation of
set representations, the precision can be increased in a tar-
geted manner, e.g., to show that a particular transition is
spurious. Each evaluation step scales well in the number of
continuous variables. The set representations are particu-
larly suited for clustering and containment checking, which
are essential for reducing the state explosion. This provides
the building blocks for refining the cover of the reachable set
just enough to show a property of interest. The approach is
illustrated on several examples.

CCS Concepts
•Computing methodologies→Model verification and
validation;

Keywords
Hybrid systems, verification, reachability, tools

1. INTRODUCTION
Hybrid systems describe the change of a set of continuous-

valued variables combined with discrete states. In continu-
ous time, the change is governed by a set of ordinary differen-
tial equations (ODEs) or, more generally, inclusions. Jumps
of the discrete state can modify the ODEs or the values of the
variables, and such changes can be state-dependent and non-
deterministic. Such systems are difficult to analyze, even
numerically simulate, as neighboring states, no matter how
close, may exhibit qualitatively different behaviors. Con-
ventional techniques from model-based design, such as sim-
ulation of corner cases or stochastic simulation, may fail to
detect critical behavior. Reachability analysis exhaustively
computes a cover of all behaviors and, if precise enough,
can show safety of the system as well as provide quantita-
tive measurements of key variables. Hybrid automata are

an extension of finite state machines with continuous vari-
ables and ODEs. Complex models are readily constructed by
composing automata that interact by sharing variables and
synchronizing events. Hybrid and cyber-physical systems
in a wide range of application domains have been analyzed
through reachability analysis, e.g., automotive control [14],
robotics [28], electronic circuits [16], and systems biology [8].

The set of solutions of ODEs is difficult to compute and
generally has no closed-form representation. Computing a
cover of the ODEs, called flowpipe approximation, is neces-
sarily done approximately, and balancing accuracy against
computational cost is nontrivial. A scalable algorithm has
been presented in [23], but as in all related approaches, in-
creasing the accuracy also increases the number of sets in
the cover. A way to cluster sets optimally, without com-
promising the approximation error, was proposed in [15].
A key element of that approach is adding time as an addi-
tional state variable, and operating on sets in this augmented
space, which we refer to as space-time. In addition to flow-
pipe approximation, this involves computing jump succes-
sors, containment checking, and emptiness checking. In this
paper, we present a reachability algorithm based on flow-
pipe approximation in space-time, which combines previ-
ously published work on flowpipe approximation [17], jump
successors [18, 13], clustering [15], and emptiness checking
[13]. It completes the picture with containment checking
and other details, tying those techniques together in a fixed-
point algorithm. The approach is implemented in the STC
scenario on the SpaceEx tool platform. The tool and exam-
ples are available for download [11].

Scalable flowpipe approximation algorithms for affine con-
tinuous systems are known for several set representations,
such as ellipsoids [22]. However, reachability with ellipsoids
does not easily extend to hybrid systems because ellipsoids
are not closed under important set operations such as Min-
kowski sum, convex hull, or intersection. Zonotopes are a
subclass of central-symmetric polytopes that is closed un-
der Minkowski sum, and for which good approximations
of the convex hull can be efficiently obtained. Zonotopes
have been used successfully for reachability analysis [21, 19,
2]. Zonotopes are not closed under intersection, which can
make the computation of jump successors problematic. In
special cases, continuization (interpolation between dynam-
ics of neighboring locations) can help to avoid the intersec-
tion operation [3]. Reachability algorithms for affine dy-
namics can be extended to nonlinear dynamics by piecewise
approximation, called phase potrtrait approximation [20] or
hybridization [5]. For polynomial dynamics, sets can be rep-



resented in polynomial form [9, 29]. Similarly, representing
sets as polynomial images of hyperboxes can lead to efficient
successor computations for nonlinear systems [6, 2]. While
such nonconvex set representations can be advantageous for
flowpipe approximation, they seem to be less suitable for
clustering, containment checking, and emptiness checking
(detecting overlap with guard sets and forbidden states).

The remainder of the paper is organized as follows. In
the next section, we informally define hybrid automata and
give a high-level description of a reachability algorithm. In
Sect. 3, we show how support functions can be used as a
lazy set representation, accommodating approximate com-
putations and directional refinement. In Sect. 4, we present
the components of our space-time reachability algorithm and
how they fit together. Experimental results to illustrate the
approach are shown in Sect. 5.

2. HYBRID AUTOMATA
We consider hybrid systems described by hybrid automata,

which are state-transition systems with ODEs associated to
the states and assignments associated to the transitions. An
approximation of the reachable states of a hybrid automa-
ton can be obtained by computing successor states with re-
spect to time elapse and jumps, repeating the process until
all successors have already been encountered in a previous
step. This procedure does not necessarily terminate, and
the problem is in general undecidable. We give a high-level
description of the reachability algorithm, whose operators
will be described in more detail in Sect. 4.

A hybrid automaton H = (Loc, Inv ,Flow ,Trans, Init) is
defined as follows [4]. It has a set of discrete states Loc called
locations. Each location l ∈ Loc is associated with a set of
differential inclusions Flow(l) that defines the time-driven
evolution of the continuous variables. A state s ∈ Loc ×
Rn consists of a location and values for the n continuous
variables. A set of discrete transitions Trans defines how
the state can jump between locations and instantaneously
modify the values of continuous variables. A jump can take
place when the state is inside the transition’s guard set, and
the target states are given by the transition’s assignment.
The system can remain in a location l while the state is
inside the invariant set Inv(l). All behavior originates from
the set of initial states Init .

In this paper, we consider Flow(l) to be ODEs of the form

ẋ(t) = Ax(t) + u(t), u(t) ∈ U , (1)

where x(t) ∈ Rn is an n-dimensional vector, A ∈ Rn×n and
U ⊆ Rn is a closed and bounded convex set. Transition
assignments are of the (deterministic) affine form

x′ = Rx+ w, (2)

where x′ ∈ Rn denotes the values after the transition, R ∈
Rn×n and w ∈ Rn.

We compute the reachable states by recursively computing
the image of the initial states with respect to time elapse and
discrete transitions until a fixed-point is reached. The stan-
dard method to compute the reachable states is to iterate
the following one-step successor operators for discrete and
continuous transitions. Given a set of states S, let PostC(S)
be the set of states reachable by letting time elapse from any
state in S, and let PostD(S) be the set of states resulting
from a jump from any state in S. Starting from the initial

states, PostC(S) and PostD(S) are computed and recorded
in alternation, as in the following sequence:

R0 = PostC(Init),

Ri+1 = Ri ∪ PostC(PostD(Ri)).

If the sequence reaches a fixed-point, i.e., when Ri+1 = Ri,
then Ri is the set of reachable states.

A set of states S is typically represented by a set of sym-
bolic states (`,X ), with location ` and continuous set X ⊆
Rn. The operators PostC(S) and PostD(S) then realized by
enumerating over the symbolic states (`,X ) in S, and com-
puting the set of successors of X . The time elapse successors
of X are called its flowpipe. Computing the jump successors
may generate more than one symbolic successor state per
transition. This can quickly lead to an explosion in the
number of symbolic states in Ri. Detecting a fixed-point re-
quires checking containment between continuous sets. Note
that containment checking can also be used to remove re-
dundant states in Ri, which lessens the state explosion.

The system is called safe if a given set of unsafe states F is
not reachable. This is true if Ri ∩ F = ∅, which can be ver-
ified pairwise through intersection and emptiness-checking
on the symbolic states in Ri and F .

3. LAZY SET REPRESENTATION
Our goal is to compute a sequence of sets that cover the

solutions of a set of ordinary differential equations (ODEs).
This requires solving the ODEs in some form, and we pro-
ceed similarly as in numerical simulation, but computing
with sets instead of numbers. Starting from an initial set,
each successor set is constructed from the predecessor with
geometric set operations that arise from the dynamic equa-
tions. These set operations need to be accurate and scalable,
and the choice of set representation turns out to be vital. We
use support functions, as proposed by Le Guernic and Gi-
rard [23], since several operations with typically exponential
cost are only of constant or linear complexity when applied
to support functions.

3.1 Support Functions
We now introduce our notation, give definitions for poly-

hedra and support functions, and recall some fundamental
properties. A halfspace H ⊆ Rn is the set of points satisfying
a linear constraint, H =

{
x | aTx ≤ b

}
, with normal vector

a = (a1 · · · an) ∈ Rn and b ∈ R. A polyhedron P ⊆ Rn is the
intersection of a finite number of halfspaces, written as

P =
{∧m

i=1
aT
ix ≤ bi

}
,

where ai ∈ Rn and bi ∈ R. A polytope is a bounded polyhe-
dron. Any convex set can be represented by its support func-
tion. The support function of a compact set X attributes to
a direction ` ∈ Rn the scalar value

ρX (`) = max
{
`Tx

∣∣ x ∈ X}.
For a given direction `, it defines the position of a halfspace

H` =
{
`Tx ≤ ρX (`)

}
,

which touches and contains X . If ` is of unit length, then
ρX (`) is the signed distance of H` to the origin, see Fig. 1(a)
for an illustration. Evaluating the support function for a set



`
ρX (`)

X

0

(a) support function

`3

`4

`1

`2

dXeL

X

(b) outer approximation

Figure 1: Evaluating the support function in a set of
directions gives a polyhedral outer approximation

of directions L ⊆ Rn gives an outer approximation

dXeL =
⋂
`∈L

{
`Tx ≤ ρX (`)

}
, (3)

i.e., X ⊆ dXeL. If L = Rn, then X = dXeL, so the support
function represents X exactly. If L is a finite set of directions
L = {`1, . . . , `m}, then dXeL is a polyhedron, as shown in
Fig. 1(b). This also referred to as a template polyhedron with
L being the template directions. The difference between us-
ing support functions and traditional methods for template
polyhedra, e.g., [30], lies in the fact that the outer approxi-
mation dXeL can be refined at any time, and incrementally,
by adding more directions to L. One can interpret evaluat-
ing support functions as the lazy, on-demand, construction
of a template polyhedron.

3.2 Geometric Operations
The following set operations are required by our reacha-

bility algorithm, and are extremely efficient on support func-
tions. Consider non-empty compact convex sets X ,Y ⊆ Rn.
The linear map with a matrix M ∈ Rm×n is MX = {Mx |
x ∈ X}. If X is a polyhedron and M is singular, then com-
puting the constraint form of MX requires existential quan-
tification of complexity O (exp(n)). Using support func-
tions, the linear map simplifies to

ρMX (`) = ρX (MT`), (4)

which is O (mn). The convex hull of as set Z ⊆ Rn is

CH(Z) =

{
m∑
i=1

λivi

∣∣∣∣∣ vi ∈ Z, λi ∈ R≥0,

m∑
i=1

λi = 1

}
.

Using support functions, the convex hull of X and Y is

ρCH(X∪Y)(`) = max{ρX (`), ρY(`)},

which is O (1). The Minkowski sum is X ⊕Y = {x+ y | x ∈
X , y ∈ Y}, which translates to the O (1) operation

ρX⊕Y(`) = ρX (`) + ρY(`).

In the following example, a sequence of linear mapping and
Minkowski sums leads to a convex set that is prohibitively
complex for polyhedral operations, but that is easy to ap-
proximate with support functions.

Example 3.1. We consider dynamics of the form (1),
i.e., ẋ = Ax + u, with u(t) ∈ U and x(0) ∈ X0. At a

time instant t, the states reachable with theses dynamics are

Xt = eAtX0 ⊕
∫ t

0

eAsUds = eAtX0 ⊕ lim
δ→0

bt/δc⊕
k=0

eAδkδU .

The matrix eAδk is different for each k, so the Minkowski
sum leads to infinitely many vertices and constraints as δ →
0. Even if X0 and U are polyhedra, Xt can be a smooth set
[31]. An outer approximation of Xt is obtained by bloating
δU by a sufficient amount. Let the bloating factor be

εδ =

∞∑
i=1

‖A‖iδi+1

(i+ 1)!
= (e‖A‖δ − 1− ‖A‖δ)/‖A‖,

B the unit ball of the norm, and t a multiple of δ. The set

Ωδt = eAtX0 ⊕
t/δ−1⊕
k=0

eAδk
(
δU ⊕ εδ‖U‖B

)
,

is an outer approximation of Xt within distance 2εδ [23]. Us-
ing polyhedra in constraint form, Ωδt is prohibitively expen-
sive to compute, since the number of constraints may grow
exponentially. Using support functions, we get

ρΩδt
(`) = ρX0(eAt

T
`) +

t/δ−1∑
k=0

δρU (eAδk
T
`) + εδ‖U‖‖eAδk

T
`‖.

(5)

The directions eAδk
T
` can be computed with the sequence

`0 = `, `k+1 = eAδ
T
`k, up to k = t/δ. Note that eAt

T
` is the

last element in the sequence. Let L(X ) be the cost of comput-
ing the support function of X , in our case solving a linear
program. Computing ρΩδt

(`) is O
(
L(X0) + n2 t

δ
+ L(U) t

δ

)
.

If the goal is to compute an approximation of ρΩt(`) for a se-
quence of time instants t = 0, δ, . . . , (N−1)δ, the summands
can be reused. The computation of the entire sequence is of
complexity O

(
NL(X0) +Nn2 +NL(U)

)
[23].

Evidently, support functions do not enable us to avoid the
curse of dimensionality in general: An n-dimensional ap-
proximation with a distance of ε to the real set requires
O
(
1/εn−1

)
evaluations of the support function [24]. But

many problems do not require precise knowledge of the whole
set; with the support function the approximation can be tar-
geted to where it matters. A simple example shall illustrate
this point.

Example 3.2. Consider the halfspace H = {aTx ≥ b}.
Then X ∩ H 6= ∅ if and only if ρX (a) ≥ b. Furthermore,
X ⊆ H if and only if −ρX (−a) ≥ b. Each problem can be
decided with a single evaluation of the support function.

The problem of whether two convex sets intersect is known
as the separation problem, and it can be addressed by com-
puting the support function in a sequence of directions. Let

h(`) = ρX⊕(−Y)(`) = ρX (`) + ρY(−`),

which is a convex function. Then X ∩ H = ∅ if and only if
min`∈Rn h(`) < 0. Any converging convex minimization al-
gorithm applied to h(·) will produce a sequence of directions
that converges to a separating direction if it exists. Sepa-
ration algorithms adapted to the context of approximate
reachability have been proposed in [13].

Two more operations of our reachability algorithm, inter-
section and containment, turn out to be difficult for support



functions. The intersection X ∩Y requires solving a convex
optimization problem:

ρX∩Y(`) = inf
ν∈Rn

ρX (`− ν) + ρY(ν).

Containment checking with support functions generally in-
volves an uncountable number of directions: X ⊆ Y if and
only if ρX (`) ≤ ρY(`) for all ` ∈ Rn. We circumvent these
problems by switching to polyhedra as set representation
at corresponding points in the algorithm; for details see
Sect. 4. Intersection of polyhedra is cheap since it amounts
to taking the union of their constraints. Containment check-
ing is simple if the right hand side is a polyhedron. Let

P =
{∧m

i=1a
T
ix ≤ bi

}
, then X ⊆ P if and only if ρX (ai) ≤ bi

for i = 1, . . . ,m.

3.3 Lower Bounds and Inner Approximation
Support functions are generally known for their capacity

to cheaply produce tight outer approximations. Having eval-
uated the support function in some directions gives a lower
bound on the support function in all other directions [15].
A lower bound on the support function can be more pow-
erful than conventional under-approximations, since it may
decide properties like intersection even before any point in
the set is known to actually be in the set.

Example 3.3. Assume we evaluated the support function
of X ⊆ R2 in three directions and obtained an outer approx-
imation in the form of a triangle with nonempty interior.
Any of the facets of the triangle would give the same outer
approximation, so X could be any of the facets. If we could
deduce any point in X based on the outer approximation, it
would therefore need to be in all three facets. But their in-
tersection is empty if the interior is nonempty, which is a
contradiction. Nonetheless, the lower bound on the support
function given in [15] can show that X overlaps with any
halfspace that contains one of the facets.

When evaluated for sufficiently distributed directions, the
lower bound also defines an inner approximation, i.e., a set
of points that are guaranteed to be inside the set [13]. In
Sect. 4.2, we will exploit lower bounds on the support func-
tions for obtaining convex cover of the nonconvex flowpipe.

3.4 Approximate Evaluation
In general, support functions can only be computed with

finite precision, e.g., due to rounding errors, and comput-
ing them with low precision may be desirable to reduce the
computation costs. To formalize this notion, we consider a
function support that, given a direction ` and an accuracy
ε > 0, produces both an upper and a lower bound on the
support function:

support(X , `, ε)− ε ≤ ρX (`) ≤ support(X , `, ε).

Example 3.4. Consider the computation of the support
function of the reachable states in Ex. 3.1. The exact support
function is the limit of an infinite series, and the approxi-
mation given in (5) is an upper bound. The approximation
is within distance 2εδ‖U‖ of the real solution, so the error
on the support function is bounded by 2εδ‖U‖‖`‖. This gives
the lower and upper bound on the support function

ρΩδt
(`)− 2εδ‖U‖‖`‖ ≤ ρXt(`) ≤ ρΩδt

(`).

The error above is a result of the time step δ. To meet the re-
quired error bound, δ can be adapted, e.g., through bisection.
A parameter of the ODE solving method is thus replaced with
a parameter with geometric significance in the state space,
which can be exploited, e.g., in testing containment and in-
tersection.

The set operations and approximations from the previous
sections readily extend to approximate evaluations, leading
to a conservative overapproximation

dXe+L =
⋂
`k∈L

{
`Tkx ≤ support(X , `k, ε)

}
.

However, this introduces an additional degree of freedom
when the approximation needs to be refined: Should we
evaluate the support function in more directions, or increase
the precision? The lower bound on the support function can
help make this call, as illustrated by the following example.

Example 3.5. Consider the halfspace H = {aTx ≥ b} and
its intersection with the reachable set Xt for a given value
of t. Assume we evaluate s = support(Xt, a, ε) for some ar-
bitrarily chosen accuracy ε. If s < b, then Xt and H are
disjoint. If s − ε ≥ b, then Xt intersects with H. Other-
wise, we must refine our approximation of Xt. Evaluating
sk = support(Xt, a, εk) with εk = 2−k will eventually lead
to a value sk < b or sk ≥ b except in the pathological case
where ρXt(a) = b. If instead of reducing ε we had chosen
additional directions `k and evaluated support(Xt, `k, ε), the
outer approximation dXte+L would increase in accuracy but
could remain intersecting with H for any choice of L.

4. SPACE-TIME REACHABILITY
We first present our reachability algorithm and then dis-

cuss its components in separate subsections: flowpipe ap-
proximation, convexification, computing jump successors,
containment checking, and emptiness checking. Let L be
a given set of template directions and ε a given accuracy.
In our algorithm, we represent the reachable states with a
passed list P of symbolic states, which initially empty, and
keep a waiting list W , which initially contains the initial
states Init . We start by computing the time successors. We
pop a symbolic state (q,X0) from W , where X0 is a non-
empty, compact and convex set represented by its support
function (in our implementation, a function object). The
time successors of X0 are computed as follows:

1. Determine a time horizon T for the flowpipe by find-
ing the smallest t such that the flowpipe no longer in-
tersects with the invariant (timed flowpipe separation
from Sect. 4.5).

2. For each template direction `i ∈ L, compute a bound
on the support function over the time domain [0, T ]
(flowpipe approximation from Sect. 4.1).

3. The flowpipe approximation Ω̄0,T , as defined in (6), is
added to the passed list P .

Note that at this point convexification is not yet necessary.
For each of the outgoing transitions τ in location q, we com-
pute the jump successors of Ω̄0,T as follows:

4. Determine a cover I1, I2, . . . of the time domain in
which the flowpipe intersects the guard (timed flow-
pipe separation from Sect. 4.5)



5. For each interval Ik, remove from Ik the subintervals
for which Ω̄t is contained in one of the previously com-
puted flowpipe approximations on the passed or the
waiting list (containment from Sect. 4.4). Discard in-
tervals that have become empty.

6. For each interval Ik, compute a convex cover Ω̄1, Ω̄2, . . .
of Ω̄Ik (convexification from Sect. 4.2).

7. For each Ω̄j in the convex cover of Ω̄Ik , compute the
intersection with G∗ and discard if empty. Otherwise,
instantiate the set X ′ = postτ (Ω̄j) as a support func-
tion object and add the symbolic state (q′,X ′) to the
waiting list W (jump successors from Sect. 4.3).

The time successor and jump successor computations in
steps 1.-7. are repeated until the waiting list is empty. If
the process terminates, the symbolic states on the passed
list contain the set of reachable states of the system.

Note that convexification and containment checking are
only carried out on segments of the flowpipe that intersect
with a guard. Furthermore, containment checking is carried
out before the convexification step, so that approximation
errors from the convexification step do not impact the con-
tainment checking.

4.1 Flowpipe Approximation
In a given location of the hybrid automaton, we refer to

the states reachable from an initial set X0 by time elapse as
the flowpipe of X0. We assume that X0 is convex. Given
an initial set X0, the reachable states at time t is the set of
values of the solutions of (1) with initial condition x(0) ∈ X0.
We denote this set with

Xt = eAtX0 ⊕
∫ t

0

eAsUds.

For affine dynamics, Xt is convex for any given t, so Xt can be
represented by its support function. The flowpipe segment
over the time interval [tb, te] is the set Xtb,te =

⋃
tb≤t≤te

Xt.
We extend the results from Sect. 3 to flowpipes by ap-

plying them pointwise over time: since the flowpipe is a
convex set at each point in time, the entire flowpipe can be
described by a support function that is parameterized over
time. Put formally, let the support function over time be
s`(t) = ρXt(`). As a straightforward consequence of (3), the
functions s`(t) describe the flowpipe exactly, i.e.,

Xtb,te =
⋃

tb≤t≤te

⋂
`∈Rn

{
`Tx ≤ s`(t)

}
.

We now describe how approximations of s`(t) can be used to
derive an approximation of Xtb,te . Given an interval [tb, te],
a direction `, and an accuracy bound ε > 0, we construct a
piecewise linear function s+

`,ε : [tb, te]→ R with

s+
`,ε(t)− ε ≤ ρXt(`) ≤ s

+
`,ε(t) for all t ∈ [tb, te].

A method to effectively compute s+
`,ε(t) is described in [15].

Briefly summarized, the support function is computed at dis-
crete time points, similar to Ex. 3.1. The continuous bound
is then obtained from a linear interpolation between the dis-
crete points, augmenting (bloating) it enough to be con-
servative between the sampling points. The details of the
construction are omitted since they are somewhat technical
and the remainder of this paper applies to any s+

`,ε(t) as long
as it is piecewise linear.

A

CB

A’

C’

B’

Figure 2: A flowpipe approximation constructed
with the axis directions as templates, starting from
the initial set X0 = ABC. At time t′, the approx-
imation is the bounding box of the reachable set
Xt′ = A′B′C′

Assume we have computed s+
`i,ε

(t) for a set of directions

L = {`1, . . . , `m}. These functions define a flowpipe approx-
imation as follows. For all t, the outer approximation

Ωt = dXte+L =
⋂
`i∈L

{
`Tix ≤ s+

`i,ε
(t)
}

(6)

satisfies Xt ⊆ Ωt. Taking the union over the time interval
[tb, te], an outer approximation of the flowpipe segment is

Ωtb,te =
⋃

tb≤t≤te

Ωt, with Xtb,te ⊆ Ωtb,te .

This flowpipe approximation is defined as the union of in-
finitely many convex polyhedra, see Fig. 2. But for our
reachability algorithm the flowpipe approximation needs to
produce finitely many convex sets. To transform this in-
finite union into a finite one, we consider the problem in
space-time, which will be described in the following section.

So far, we have ignored the invariant of the location. Since
the solution of the ODEs under constraints is a difficult prob-
lem, we follow a frequently used heuristic and intersect the
flowpipe approximation a posteriori with the invariant – this
will be discussed as part of the jump successor computation
in Sect. 4.3. In addition, we cut off the flowpipe approxima-
tion when Ωt lies completely outside of the invariant. This is
a timed flowpipe separation problem, which will be discussed
in Sect. 4.5. A more precise approximation of the flowpipe
under invariant constraints is described in [23], and is based
on intersecting the flowpipe approximation with states that
are backwards-reachable from the invariant.

4.2 Convexification
We now turn to the problem of transforming a given flow-

pipe approximation Ωtb,te into a finite number of convex
sets, ideally as few as possible. We call this step convexifica-
tion. So far we have considered operations in the continuous
state space Rn. In the following, we operate in space-time
Rn+1, with t as an additional variable. This will allow us to
show that Ωtb,te is a finite union of polyhedra, and further-
more to overapproximate and simplify Ωtb,te within given
error bounds. For the sake of clarity, we will denote sets in
space-time with a bar, as in X̄ . In space-time, we associate
the sets Xt and Ωt with the time instant t at which they
are defined. The flowpipe segment and its approximation



u0
X0

XT

`T1x ≤ `T1u0T + b1

`T1x ≤ b1

`T1x ≤ `T1u0t+ b1

Figure 3: Projected from space-time onto the state-
space, the flowpipe approximation has facet normals
that are not part of the template directions. This
reduces the approximation error compared to a tem-
plate approximation in the state-space (dashed)

become

X̄tb,te =
⋃

tb≤t≤te

Xt × t and Ω̄tb,te =
⋃

tb≤t≤te

Ωt × t.

Now consider a subinterval [t′b, t
′
e] of [tb, te] such that the

bounds on the support functions are all linear, i.e., for i =
1, . . . ,m and t′b ≤ t ≤ t′e we have s+

`i,ε
(t) = αit + βi. Then

the flowpipe approximation is

Ω̄t′
b
,t′e

=
⋃

t′
b
≤t≤t′e

⋂
`i∈L

{
`Tix ≤ αit+ βi

}
× t,

which can be shown to be equivalent to

Ω̄t′
b
,t′e

=
⋂
`i∈L

{
`Tix− αit ≤ βi

}
∩ {t′b ≤ t ≤ t′e}. (7)

This is a convex polyhedron in space-time that approximates
the flowpipe segment, i.e., X̄t′

b
,t′e
⊆ Ω̄t′

b
,t′e

. It is remarkable

that this approximation of the flowpipe — valid over an
entire interval of time — requires just m + 2 constraints
over n+ 1 variables. Its complexity is similar to that of an
outer approximation of the initial states, which would give
m constraints over n variables.

The space-time set Ω̄t′
b
,t′e

can be projected into the state-

space by eliminating t. Fourier-Motzkin elimination leads to
O
(
m2
)

constraints of the form

(αi`j − αj`i)Tx ≤ βjαi − βiαj ,

defined by all combinations of αi > 0 and αj < 0. This
means we obtain facet normals that are not necessarily part
of the template directions. The space-time constraints in
(7) can be seen as a special case of the template general-
izations in [7]. The non-template facets created by working
in space-time can significantly decrease the approximation
error compared to state-space templates, and even produce
the exact reachable set for certain dynamics and choice of
template directions.

Example 4.1. Consider a system with constant dynam-
ics ẋ = u0 (a linear hybrid automaton), and let the tem-
plate directions be the facet normals of the initial states, i.e.,
X0 =

⋂
`i∈L

{
`Tix ≤ bi

}
. For these dynamics, the flowpipe is

Xt = X0 ⊕ tU = X0 ⊕ tu0 =
⋂
`i∈L

{
`Tix− `Tiu0t ≤ bi

}
.

For the time domain [0, T ], the flowpipe approximation al-
gorithm in [15] computes the bounds on the support func-
tions as the linear interpolation between the support at t = 0
and t = T , plus appropriate bloating. Because A = 0, the
bloating factor is zero and the exact bounds are returned:
s+
`i,ε

(t) = (1−t/T )ρX0(`i)+t/TρXT (`i) = (1−t/T )ρX0(`i)+

t/TρX0(`i) + t/TρTu0(`i) = ρX0(`i) + tρu0(`i) = bi + t`Tiu0.
Since these bounds are concave, the space-time approxima-
tion (7) consists of a single polyhedron

Ω̄0,T =
⋂
`i∈L

{
`Tix− `Tiu0t ≤ bi

}
∩ {0 ≤ t ≤ T},

whose projection onto the state-space is identical to X0,T , as
illustrated in Fig. 3.

Quantifier elimination on the space-time constraints would
significantly increase the complexity. Using support func-
tions, projection onto the state space comes practically for
free, since with (4) we have

ρΩtb,te
(`) = ρΩ̄tb,te

(`× 0).

Assuming each of the m piecewise linear functions s+
`i,ε

(t)

has K pieces, the time interval [tb, te] can be cut into no
more than Km pieces, inside which all functions are linear.
Consequently, Ω̄tb,te can be described as the union of Km
convex polyhedra, each of which defined as in (7). To avoid
the state explosion problem it is essential to obtain as few
sets as possible. In the following, we describe a method to
divide Ω̄tb,te into the smallest number N of convex sets for
a given bound on the total approximation error.

We now show that Ω̄t′
b
,t′e

is a convex polyhedron over any

interval [t′b, t
′
e] where the bounds on the support function

are concave. Assume that all s+
`i,ε

(t) are concave in [t′b, t
′
e]

with K pieces, the j-th piece of s+
`i,ε

(t) being αi,jt + βi,j .

Because the functions are concave, s+
`i,ε

(t) ≤ αi,jt+ βi,j for

all t ∈ [t′b, t
′
e] and for all j we have with (7) that

X̄t′
b
,t′e
⊆
⋂
`i∈L

{
`Tix− αi,jt ≤ βi,j

}
∩ {t′b ≤ t ≤ t′e}.

Intersecting the right hand side over all values of j gives the
flowpipe approximation

Ω̄t′
b
,t′e

=
⋂
`i∈L

⋂
1≤j≤K

{
`Tix−αi,jt ≤ βi,j

}
∩{t′b ≤ t ≤ t′e}. (8)

We can therefore convexify Ω̄tb,te by identifying the largest
subintervals where all s+

`i,ε
(t) are concave, and obtain a con-

vex polyhedron (8) for each of those subintervals.

Example 4.2. Figure 4 shows different flowpipe approxi-
mations of the ODE ẍ = −10, with initial condition 9.9 ≤
x ≤ 10.1, ẋ = 0, axis directions as template directions and
directional error bound ε = 0.1. In Fig. 4(a), the flowpipe
approximation is constructed by identifying the subintervals
in which all s+

`i,ε
(t) are concave. Each subinterval defines a

convex polyhedron, giving a total of 8 polyhedra. For compar-
ison, the figure also shows the 7 boxes produces by the state-
space template approximation from [17], using the same pa-
rameters.

The number of polyhedra in Ω̄tb,te can be further reduced
by taking the convex hull over the entire time domain or
parts of it. The convex hull of states corresponds to the



0 1 2 3 4 5
0

2

4

6

8

10

12

t [s]

x 
[m

]

(a) state-space templates from [17] (blue) and space-time
approximation (red) with error ε = 0.1 gives 8 convex sets

0 1 2 3 4 5
0

2

4

6

8

10

12

t [s]

x 
[m

]

(b) optimal convexification from [15] for a total error of
ε = 1 reduces the number of convex sets to 2

Figure 4: Flowpipe approximations with axis direc-
tions as template directions, using different convex-
ification schemes

concave hull of the support functions. The terminology is
reversed since a function is called convex if its epigraph (the
points above) is a convex set, while the support functions
relate to states via their hypograph (the points below). The
concave hull of s+

`i,ε
(t) on a time interval [t′b, t

′
e] can be com-

puted using the Graham scan in O (K), where K is the num-
ber of linear pieces. Importantly, the convexification error is
measurable in this approach. Let ci(t) be the concave hull
of s+

`i,ε
(t). Recalling that s+

`i,ε
(t) was constructed with an

accuracy of ε, we have that

s+
`i,ε

(t)− ε ≤ ρXt(`i) ≤ ci(t),

which means that the approximation error in direction `i is
smaller than maxtb≤t≤te ci(t)−s

+
`i,ε

(t)+ε. The convexifica-

tion can be taken one step further. As described in [15], it is
possible to construct for a given total approximation error
a relaxation of Ω̄tb,te with the minimum number of convex
pieces.

Example 4.3. The flowpipe approximation in Fig. 4(b)
was constructed by first computing the same support function
bounds s+

`i,ε
(t) as in Ex. 4.2, and then applying the optimal

convexification approach from [15]. For a given total error
(flowpipe approximation plus convexification) of ε = 1, the
relaxation, the support function bounds can be approximated
with just 2 concave pieces in all template directions, giving
an flowpipe approximation with 2 polyhedra.

The template directions together with the approximation
error therefore determine the number of convex sets with

which one can cover the flowpipe. Note this number is not
necessarily minimal in the state space: A flowpipe that is
convex in the state space may be nonconvex in space-time.
But automatic convexification for a given error bound can
be tremendously helpful in that it takes care of the addi-
tional degree of freedom, i.e., the number of convex sets in
the cover: As with convex sets, the approximation accuracy
is determined by the choice of template directions and the
directional error.

After the convexification step, each concave piece of s+
`i,ε

(t)
can be further simplified, i.e., overapproximated with a piece-
wise linear function with fewer pieces. Since each linear piece
of s+

`i,ε
(t) contributes a linear constraint to the flowpipe ap-

proximation (8), reducing the number of pieces also reduces
the number of constraints in the convex polyhedra and there-
fore the computational effort required downstream.

4.3 Jump Approximation
The successor states of a transition are computed as fol-

lows. Let G be the guard set of the transition, I− the in-
variant of the source location, I+ the invariant of the target
location, and let the transition assignment be deterministic
and affine as in (2). We consider G, I−, I+ to be polyhedra
and assume that the set of template directions L contains
the normal vectors of the constraints of these polyhedra. Let
the target invariant be

I+ =
{
x
∣∣∣ ∧m

i=1
āT
ix ≤ b̄i

}
.

The image of a set X with respect to a transition τ is

postτ (X ) =
(
R
(
X ∩ G ∩ I−

)
⊕ w

)
∩ I+.

Let G∗ be the intersection of the guard, the source invariant,
and the back-transformed target invariant,

G∗ = G ∩ I− ∩
{
x
∣∣∣ ∧m

i=1
āT
iRx ≤ b̄i − wTāi

}
. (9)

Using G∗, the image operator can be simplified so that it
involves a single intersection operation [18]:

postτ (X ) = R
(
X ∩ G∗

)
⊕ w. (10)

In our reachability algorithm, the jump approximation (10)
is applied to the outer approximation of a flowpipe segment.
More precisely, we apply it to each convex piece Ω̄t′

b
,t′e

of the

approximation, which is defined in space-time. Interpreting
the constraints of G∗ as space-time constraints (leaving t
unconstrained), the intersection is easily carried out without
eliminating t. The projection to the state space and the
affine map are straightforward using support functions:

ρpostτ (Ω̄t′
b
,t′e

)(`) = ρΩ̄t′
b
,t′e
∩G∗(M

T`× 0) + `Tw.

4.4 Containment checking
In our reachability algorithm, containment is checked be-

tween flowpipe approximations. We apply the comparison

Ωtb,te ⊆ Ω′t′
b
,t′e

to nonconvex Ω (before convexification) and convex Ω′ (after
convexification). Recall that both are defined over sets of
template directions, which are not necessarily the same. For
the containment, we only need the directions of Ω̄′, and any
directions that are missing in Ω are added to it, computing



support function bounds on-demand if necessary. In general,
checking containment between a convex set and a union of
convex sets is expensive to compute. A classic heuristic is to
only use pairwise comparisons between convex sets. In the
case of affine dynamics, it seems that containment could fail
indefinitely, if the points of overlap vary.

We obtain an efficient check by exploiting the template
properties in space-time. We extend the containment of
convex sets, see Sect. 3.2, pointwise over time and detect
the time intervals where containment holds. For each tem-
plate direction `i of Ω′, we construct a set-valued map Ci :
[tb, te] → [t′b, t

′
e]

2, where Ci(t) = [t′, t′′] signifies that in di-
rection `i, Ωt is contained Ωt′,t′′ . Formally, Ci(t) = [t′, t′′]

implies for all z ∈ [t′, t′′], s+
`i,ε

(t) ≤ s′
+
`i,ε

(z). Because Ω′ is
convex, its support function bound is a unimodal function,
so the matching intervals can usually be found quickly (the
points to the left and the right of the maximum are ordered
in value). Finally, we combine the results for all directions
to the set-valued map C(t) =

⋂
Ci(t). Then Ωt ⊆ Ω′z for all

z ∈ C(t). If C(t) 6= ∅ for all t ∈ [tb, te], then Ωtb,te ⊆ Ω′t′
b
,t′e

.

Otherwise, we trim Ωtb,te to the subdomains that are not
contained, possibly splitting it into several flowpipe approx-
imations, each of which is treated separately. Note that
the Ci(t) and C(t) can be represented with piecewise linear
functions.

The containment check is degraded by the approximation
error. Consider that overapproximations of the same flow-
pipe may differ even for the same error bound. Recomputing
the left hand side with higher precision may lead to contain-
ment, but how much more precision is useful? This can be
decided by repeating the containment check using a lower
bound on the support function, here s+

`i,ε
(t)− ε ≤ s′+`i,ε(z).

For time points where the lower bound is not contained,
refinement with higher precision is useless.

4.5 Emptiness checking
The computation of jump successors in Sect. 4.3 involves

only one intersection operation. We can therefore eliminate
spurious transitions by deciding whether the flowpipe inter-
sects with G∗. Futhermore, the reachability of an unsafe set
of states F can be cast as intersection of the flowpipe with
F , so it reduces to the same problem.

Deciding whether the flowpipe intersects with a convex set
G∗ is called flowpipe separation, and it can be addressed by
synthesizing suitable template directions as proposed in [13].
Since this intersection is the only operation in the reacha-
bility algorithm that can lead to an empty set of states, all
emptiness checking in the reachability algorithm of Sect. 2
reduces to flowpipe separation.

The flowpipe separation problem is known in several forms.
It is equivalent to showing safety of linear time-invariant sys-
tem, which has been addressed for deterministic dynamics
(U is a singleton) in [10]. It is also equivalent to showing
the existence of a controller: does there exist a sequence of
control inputs such that the system reaches the guard set?
The constructive solution of such control inputs is known as
the falsification or counter-example generation and is gener-
ally more difficult than verification of safety properties; for
recent approaches see [1, 32].

The intersection of our flowpipe approximation with G∗
may contain states that are not actually reachable. Judi-
ciously shrinking the time interval of the flowpipe segment

can help to reduce this error. Instead of Ω̄tb,te ∩ G
∗, we can

use Ω̄t′
b
,t′e
∩G∗ if we show that the flowpipe does not intersect

with G for tb ≤ t < t′b and t′e < t ≤ te. The timed flowpipe
separation problem for a given set G∗ consists of covering the
time intervals for which the flowpipe overlaps with G∗, i.e.,
Xt ∩ G∗ 6= ∅. The jump successors can be computed flow-
pipe segments of those intervals instead of the entire time
horizon. Similarly, the time horizon of the flowpipe can be
reduced by timed separation of the flowpipe from the invari-
ant I: Let t∗ be the smallest t such that Xt ∩ I = ∅. Then
Xtb,te ∩ I ⊆ Ω̄tb,t∗ ∩ I. Using the approach in [13], this
involves computing support function bounds s+

`i,εi
(t) for a

sequence of directions `i, in which the error bound εi is pro-
gressively reduced until a given threshold is reached. The
following examples shall illustrate the principle.

Example 4.4. Let I be the halfspace I = {aTx ≤ b}.
According to Ex. 3.2, Xt ∩ I = ∅ if and only if −ρXt(−a) >
b. We start with an arbitrary time horizon T0 and large
initial accuracy ε0, and determine a time horizon T with
the following sequence starting from k = 0. In iteration k,
we compute the support function bound s+

−a,εk (t) over the

time domain [0, Tk]. If for all 0 ≤ t ≤ Tk, s+
−a,εk (t) ≤ b, the

flowpipe does not fully leave the invariant and we may choose
to stop with T = Tk (obtaining a non-exhaustive flowpipe
approximation), or choose to increase the horizon to Tk+1 =
2Tk. Otherwise, we continue the sequence with

Tk+1 = min{ t | s+
−a,εk (t) > b },

εk+1 = εk/10, and k ← k + 1. If εk is smaller than a given
threshold εmin, we stop and use the time horizon T = Tk for
the flowpipe approximation. If I is a polyhedron, we detect
the time horizon for each constraint separately and choose
the smallest one.

5. EXPERIMENTAL RESULTS
The space-time reachability algorithm is implemented as

the STC scenario in the SpaceEx tool platform [17] and
available for download [11]. We now give experimental re-
sults for several examples, some of which have been pre-
sented in [26]. The experiments were run using a virtual
machine on a standard laptop.

5.1 Filtered Oscillator
This example from [17] consists of a switched oscillator

system with signal x in series with M first-order filters that
produce the output z. The system hasM+2 continuous vari-
ables. Figure 5 shows the reachable states computed by the
state-space template approach in [17], called LGG scenario,
with that of the space-time approach in the STC scenario
for M = 32. Template directions were chosen to be box
directions (positive and negative axes) as well as the guard
normals. The bound on the total error was given as ε = 0.01
for the STC, and for the LGG we chose an error tolerance
that results in a similar discretization per template direction
(in LGG, the error tolerance does not imply a hard bound on
the error). LGG uses template clustering, in which the flow-
pipe segment intersecting the guard is approximated with a
single template polyhedron. The optimal clustering of STC
is of higher precision compared to LGG. Table 1 shows the
performance of a full fixed-point computation for varying M .
It indicates the # of continuous variables, the # of template



−0.5 0 0.5
−0.1

0

0.1

0.2

x

z

(a) state-space reachability

−0.5 0 0.5
−0.1

0

0.1

0.2

x

z

(b) space-time reachability

Figure 5: Projection of the reachable states of a
filtered oscillator with 34 continuous variables

Table 1: Performance results for the filtered oscilla-
tor benchmark, varying the number of variables

LGG STC

Var. Dir. T. [s] #Post T/#P T. [s] #Post T/#P

6 12 0.1 6 0.02 0.1 6 0.03
18 36 1.0 10 0.10 1.8 21 0.09
34 68 4.3 15 0.29 5.4 27 0.20
66 132 27.2 24 1.13 45.6 53 0.86

130 260 388.0 92 4.22 182.2 43 4.24

directions, the runtime, the # of post operations on symbolic
states, and the time per post. The table shows that the time
per post operation is comparable between LGG and STC.
Because STC takes the convexification error into account,
it may choose a higher precision for certain directions and
therefore results in an overall better accuracy. The higher
precision combined with better containment checking leads
to the STC algorithm terminating after fewer iterations, and
therefore to a lower runtime. LGG constructs 6453 hyper-
boxes (since box directions were used), while STC produces
210 polyhedra (not necessarily boxes). The STC algorithm
simplifies the support function after convexification, as dis-
cussed at the end of Sect. 4.2. Without simplification, it
takes about twice as long.

5.2 DC-DC Converter
This example is a model of a DC-to-DC switched-mode

power converter described in [27], with continuous dynam-
ics specified by linear ODEs. A DC-to-DC converter trans-
forms a DC source voltage from one voltage level to another
by switching at a high frequency between low and high volt-

(a) simulation with Simulink

(b) reachable set

Figure 6: Simulation and reachable set for the volt-
age of the DC-DC converter

age levels. The 4 continuous variables are the current and
voltage in the circuit, a timer for the switching frequency,
and a global clock. The system is subjected to significant
additive noise.

Figure 6(a) shows a simulation trace, computed with Mat-
lab/Simulink, of the voltage level over a time horizon of
0.004 s. The additive noise is modeled in Simulink with a
Gaussian random signal. In SpaceEx, we start from a sin-
gle initial state and take the noise to be nondeterministic
within a given interval. Figure 6(b) shows the reachable
states obtained with error bound 0.01 and octagonal tem-
plate directions (coefficients ±1 in at most two of the vari-
ables). This benchmark is challenging for the STC algo-
rithm since it switches frequently, every 25µs, compared to
the continuous dynamics, whose time constants are on the
order of milliseconds. The computation involves 1000 one-
step successors and takes about 900 s. In this example, the
approximation error incurred during jumps tends to quickly
accumulate. The LGG algorithm diverges for this system
within 50 steps, i.e., within 1/20th of the time horizon.

5.3 Networked Platoon
This benchmark consists of a platoon of three controlled

vehicles with a manually driven leader vehicle, which can
break and accelerate within a given range [25]. The vehi-
cles exchange information via a communication network that
may be subjected to total loss of communication after c1 s,
with communication being restored after c2 s. The ith vehi-
cle is modeled by the deviation ei between the distance to its
predecessor and a fixed reference, and its velocity and accel-
eration relative to its predecessor. The resulting model has
ten continuous variables. The goal is to determine the min-
imum allowable safe gaps among the vehicles. We consider
the case with possible failure and parameters c1 = c2 = 20 s.
The reachable set, shown in Fig. 7, was computed in 182 s
with the STC algorithm, using error bound ε = 0.1 and box
directions.

6. ACKNOWLEDGMENTS
This work was partly supported by the European Commis-

sion under grant 643921 (UnCoVerCPS) and by the Institut
Carnot–Logiciels et Systémes Intelligents.



(a) e1 ≥ −35.442m (b) e2 ≥ −32.759m (c) e3 ≥ −19.078m

Figure 7: Reachable states of the distance deviations e1, e2, and e3 in the platoon benchmark, over time

7. REFERENCES
[1] H. Abbas and G. Fainekos. Linear hybrid system

falsification through local search. In ATVA’11.
Springer, 2011.

[2] M. Althoff. Reachability analysis of nonlinear systems
using conservative polynomialization and non-convex
sets. In HSCC’13, pages 173–182. ACM, 2013.

[3] M. Althoff and B. H. Krogh. Avoiding geometric
intersection operations in reachability analysis of
hybrid systems. In Hybrid Systems: Computation and
Control (HSCC’12), pages 45–54. ACM, 2012.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, T. A.
Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138(1):3–34, 1995.

[5] E. Asarin, T. Dang, and A. Girard. Hybridization
methods for the analysis of nonlinear systems. Acta
Informatica, 43(7):451–476, 2007.

[6] X. Chen, E. Ábrahám, and S. Sankaranarayanan.
Taylor model flowpipe construction for non-linear
hybrid systems. In RTSS, pages 183–192. IEEE
Computer Society, 2012.

[7] M. A. Colón and S. Sankaranarayanan. Generalizing
the template polyhedral domain. In Programming
Languages and Systems. Springer, 2011.

[8] T. Dang, T. Dreossi, and C. Piazza. Parameter
synthesis using parallelotopic enclosure and
applications to epidemic models. In Int. Ws. Hybrid
Systems and Biology HSB’14, LNBI. Springer, 2014.

[9] T. Dang and R. Testylier. Reachability analysis for
polynomial dynamical systems using the bernstein
expansion. Reliable Computing, 17(2):128–152, 2012.

[10] P. S. Duggirala and A. Tiwari. Safety verification for
linear systems. In EMSOFT’13. IEEE, 2013.

[11] G. Frehse. SpaceEx – State Space Explorer. Univ.
Grenoble Alpes – Verimag, http://spaceex.imag.fr,
2015.

[12] G. Frehse and M. Althoff, editors. 1st Workshop on
Applied Verification for Continuous and Hybrid
Systems (ARCH).
http://cps-vo.org/group/ARCH/benchmarks, 2014.

[13] G. Frehse, S. Bogomolov, M. Greitschus, T. Strump,
and A. Podelski. Eliminating spurious transitions in
reachability with support functions. In Hybrid
Systems: Computation and Control (HSCC’15), pages
149–158. ACM, 2015.

[14] G. Frehse, A. Hamann, S. Quinton, and M. Wöhrle.
Formal Analysis of Timing Effects on Closed-loop
Properties of Control Software. In 35th IEEE
Real-Time Systems Symposium 2014 (RTSS), Rome,
Italy, Dec. 2014.

[15] G. Frehse, R. Kateja, and C. Le Guernic. Flowpipe
approximation and clustering in space-time. In
HSCC’13, pages 203–212. ACM, 2013.

[16] G. Frehse, B. H. Krogh, and R. A. Rutenbar. Verifying
analog oscillator circuits using forward/backward
abstraction refinement. In Design, Automation and
Test in Europe (DATE’06), pages 257–262, 2006.

[17] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton,
R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang,
and O. Maler. SpaceEx: Scalable verification of hybrid
systems. In CAV, pages 379–395, 2011.

[18] G. Frehse and R. Ray. Flowpipe-guard intersection for
reachability computations with support functions. In
IFAC ADHS, pages 94–101, 2012.

[19] A. Girard. Reachability of uncertain linear systems
using zonotopes. In M. Morari and L. Thiele, editors,
HSCC, volume 3414 of LNCS, pages 291–305.
Springer, 2005.

[20] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi.
Algorithmic analysis of nonlinear hybrid systems.
IEEE Trans. Automatic Control, 43:540–554, 1998.

[21] W. Kühn. Rigorously computed orbits of dynamical
systems without the wrapping effect. Computing,
61:47–67, September 1998.

[22] A. B. Kurzhanski and P. Varaiya. Dynamics and
Control of Trajectory Tubes. Springer, 2014.

[23] C. Le Guernic and A. Girard. Reachability analysis of
hybrid systems using support functions. In
A. Bouajjani and O. Maler, editors, CAV, volume
5643 of LNCS, pages 540–554. Springer, 2009.

[24] A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev.
Interactive Decision Maps, volume 89 of Applied
Optimization. Kluwer, 2004.

[25] I. B. Makhlouf and S. Kowalewski. Networked
cooperative platoon of vehicles for testing methods
and verification tools. In Frehse and Althoff [12].

[26] S. Minopoli and G. Frehse. Running spaceex on the
ARCH14 benchmarks. In ARCH’15, 2015.

[27] L. V. Nguyen and T. T. Johnson. Dc-to-dc
switched-mode power converters. In Frehse and
Althoff [12].

[28] A. Pereira and M. Althoff. Safety control of robots
under computed torque control using reachable sets.
In IEEE Int. Conf. Robotics and Automation, 2015.

[29] P. Prabhakar and M. Viswanathan. A dynamic
algorithm for approximate flow computations. In
HSCC’11, 2011.

[30] S. Sankaranarayanan, T. Dang, and F. Ivančić.
Symbolic model checking of hybrid systems using
template polyhedra. In TACAS’08, pages 188–202.
Springer, 2008.

[31] P. Varaiya. Reach set computation using optimal
control. In Proc. KIT Workshop, pages 377–383, 1997.

[32] A. Zutshi, J. V. Deshmukh, S. Sankaranarayanan, and
J. Kapinski. Multiple shooting, cegar-based
falsification for hybrid systems. In EMSOFT’14,
page 5. ACM, 2014.


