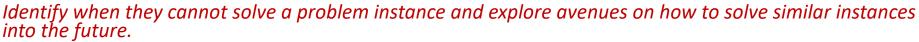

Fundamental Challenges in Robotics Workshop Organizers: Holly Yanco, Henrik Christensen, and Ann Schwartz

What will it take to go through the same transformation that NLP has experienced?

... in other words, Dorsa Sadigh, **what do foundation models mean for robotics?** Stanford

Foundation Models


How to build one for robotics?
How to use existing ones for robotics?
What should we be careful about?

The Vision of Robot Understanding

Achieving "robot understanding" means that robots should be able to:

Effectively explain their reasoning and why they are making a choice. This is critical for:

- The humans interacting with the robots to trust them;
- More productive development of robot AI by human developers of the technology, and
- Assisting legal resolutions related to attribution of error in the case of accidents.

- When robots today fail on a task, they often give up, not even asking for human intervention when needed.
- Robots that understand their tasks and contexts, should know that they cannot solve a challenge and work around the failure, including identifying the type of data or reasoning that will assist in addressing similar conditions in consecutive attempts.

Better adapt to a dynamically changing environment, which includes evolving human desires and needs.

- Most robotic systems today have a very static view of the target domain either given the prespecified models encoded by engineers or given the set of data that an ML model has been trained over.
- Robots can benefit from more open-ended, evolving models of their domain that allows them to identify changes in the underlying conditions and objectives.

Challenges for the next X year

- Algorithms for verifying robots "in the wild" a priori verification (identifying possible failures before deployment) and runtime monitoring (identifying upcoming failures) for realistic full systems interacting with their environment
- Specifications formal languages that capture desired robot behavior and that can be used for computation (verification, synthesis). Especially specifications for human-robot interaction
- Algorithms for "explainable robotics" using specifications, formal methods, and HRI to enable robots to communicate their abilities, limitations, and possible failures to non-experts

Big, Open Problems in Manipulation, Medical Robots and Haptics

- How to perform dexterous noncontact manipulation of unknown objects, potentially using multiphysics solutions
- How to manipulate swarms of simple agents, in a probabilistic sense, within the human body
- How to make patient-specific robots that are optimized for specific anatomy, disease presentation, and/or treatment plan
- How to provide rich haptic experiences in which users may interact with a virtual world as they would with the real world, (relatively) unencumbered

Jake Abbott, Utah Challenge 1: The Unexpected Challenge 2: Representations And Metrics For Success

Challenge 3: Competence Awareness

How can a robot:

- <u>Detect</u> unforeseen errors?
- <u>Overcome/Recover from</u> such errors?
- Avoid such errors?
- Account for the *likelihood of making errors* when planning?
- Convey a *well-calibrated competence assessment* to operators?

Challenge 4: It's a Socio-Technical Problem!

UT Austin

We need robots to reason about both **explicit** and **implicit** communication under a **Theory of Mind**.

Marynel Vázquez, Yale

We need computational abstractions for **social context**.

We need **continual learning** over longer-term and rich, social interactions.

Physics-Informed AI

- Data-driven AI requires a large amount of data to develop a complex model
 - Experimentally generating large amount of data is not feasible
- Manufacturing processes have a large amount of process knowledge
 - Using physics-informed AI will reduce data requirement by constraining the model
 - Using physics-informed AI will enable reducing the effect of experimental errors

[Some of] Today's Manufacturing Challenges

SK Gupta, USC

Human Interfaces

- Robots should effectively communicate with humans
- Models of humans interacting with each other may not be the best model for human robot interaction
 - Robots "thinks" differently from humans
 - Statistical machine learning will lead robots to process information in a different way from humans

Trustworthy Systems

- Unambiguous Communication
- Ability to Explain Decision Making Rationale
- Consistency
- Predictability

Next Roadmap Update

Date	Activity
June 2023	Call for White Papers
July 2023	Submission Deadline
Sep – Nov 2023	Three workshops (East, Mid, West)
Jan 2024	Synthesis Workshop (~15 people)
Mar 2024	Initial Draft
Jun 2024	Roadmap Published

Please contribute white papers, attend workshops, It is YOUR roadmap