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Current Educational Activities

Design of UAVs for Data Gathering Tasks: Scaling 
wrt Perception, Actuation, and Computation

• The high school program grew to 250 
students, who spent 4 weeks at MIT in 
Summer of 2019.

• A new middle school program is 
launched is launched in Summer 2019. 

• A new program that targets girls and 
underrepresented backgrounds in Fall 
2019. 

Abstract: Designing software that can properly and 
safely interact with the physical world is an important 
cyber-physical systems design challenge. The proposed 
work includes the development of a novel approach to 
designing planning and control algorithms for high-
performance cyber physical systems. The new 
approach was inspired by statistical mechanics and 
stochastic geometry. It will (i) identify behavior such as 
phase transitions in cyber-physical systems and (ii) 
capitalize this behavior in order to design practical 
algorithms with provable correctness and performance 
guarantees. The algorithms developed through this 
research effort hold the potential for immediate 
industrial impact, particularly in the development of 
real-time robotic systems. These algorithms may 
strengthen the rapidly developing U.S. robotics 
industry. The proposed research activity will also 
vitalize the PI?s educational plans. Undergraduate and 
graduate courses that make substantial contributions 
to the embedded systems education at MIT will be 
developed. The classes will focus on provably-correct 
controller synthesis for cyber-physical systems, which 
is currently not thought at MIT. Undergraduate 
students will be involved in research activities.

Goal: Exploiting connections with  statistical 
mechanics for analysis and design of complex CPS:

• Geometric Complexity: Inherent in many robotics 
applications and beyond. For instance, configuration space 
describing the geometry of a robot and its environment.

• Differential Constraints: Nonlinear, non-holonomic
differential equations describing the physics.

• Stochastic Constructs: May arise in stochastic 
environments or in randomized algorithms.

1. Differential geometry, in particular sub-Riemannian 
geometry can characterize small-time reachable sets of 
complex dynamical systems.

2. Stochastic geometry, in particular percolation theory, 
characterizes the topology of random geometric shapes in 
the Euclidean space. 

The analysis reveals the asymptotic shape of the small-time reachable 
set, and algorithmic methods to constructs its approximations.

The analysis reveals phase transitions and describes a number of 
natural and engineered emergent behavior.

An overarching goal of the proposed research effort 
is to develop differential and stochastic geometry.

In particular, we aim to investigate:
• Percolation processes on sub-Riemannian 

manifolds.
• Dynamic stochastic growth processes on sub-

Riemannian manifolds.

1. High school course is grown to 250 students 
and extended to middle schools

2. MIT Aerospace Feedback Control Systems: 
Teaching with Mini Drones

• MIT’s Feedback Control Systems course is giving one mini drone to each 
student enrolled. The students can do the labs at home.

• Our toolbox was professionally implemented by Mathworks, and it is being 
used in tens of classes globally. 

Problem Setup: 
• Vehicle navigating in a sensor field.
• Measurement locations are available from a distance –

perception range. Vehicle has limited perception range.
• Vehicle has limited agility and limited computation power.
• How does sensing performance scale with the perception, 

actuation, and computation capabilities of the vehicle?
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vehicle, the existence of an infinite collision-free trajectory
through the environment exhibits a phase transition, i.e., there
is an infinite obstacle-free trajectory almost surely when the
speed is below a threshold and it will collide with some tree
eventually otherwise. In [54], they further show that a planning
algorithm based on state lattices can navigate the robot with
limited sensing range. A similar problem is also studied in
[55]. Even though the problems are dual in some sense, the
mathematical tools that we utilize for the maximum reward
problem differs from the analysis presented in these references.

b) Contributions: A preliminary version of this paper
appeared in the Workshop on Algorithmic Foundations of
Robotics [56], where we introduced some of the analysis for
the discrete lattices presented in Section III. However, the other
results in this paper, including all results in Section IV, are
new. The contribution of this paper is three-fold. Firstly, we
formulate the maximum-reward motion problem, which serves
as a novel mathematical formulation for the analysis of a class
of robotics problems such as data gathering. Secondly, we
provide a rigorous analysis of the robot performance, given
its sensing, actuation and computation capabilities. This is
achieved by establishing connections with the last-passage
percolation problem in statistical mechanics. Thirdly, we apply
our theoretical results to provide insights for the design of UAV
systems.

c) Organization: We formalize the problem of the
maximum-reward motion and its special case in two dimen-
sional space in Section II. We introduce and analyze a discrete
version of the problem in Section III. With the help of the re-
sults for the discrete case, we study the continuous problem in
Section IV. In Section V, we provide the results of simulations
that support our theoretical results. Finally in Section VI, we
present applications of maximum-reward motions to a sensor
selection problem and a design problem involving UAVs and
unattended ground sensors.

II. PROBLEM DEFINITION

This section is devoted to a formal definition of the problem.
For this purpose, we first define the problem of collecting
maximum reward in a stochastic reward field, in its most
general form. Second, we introduce an important special case,
which this paper focuses on. Finally, as an instance of this
problem, we introduce an inference problem involving mobile
robotic vehicles tasked with data gathering.

A. Maximum-reward Motion in a Stochastic Environment
Consider a robotic vehicle navigating in a stochastic envi-

ronment, where the locations of targets are distributed ran-
domly and each target location is associated with a random
reward value. The precise locations of all of the targets are
unknown to the robot a priori. Instead, the vehicle discovers
the target locations and the rewards associated with the targets
on the fly. To model this phenomenon, we consider a target-
detection region attached to the vehicle. When the targets get
inside the detection region of the robot, the locations of the
targets and the rewards associated with them become known to

Fig. 1. An illustration of the vehicle navigating in a stochastic reward field.
The blue cylinders represent the target locations. The yellow region represents
the target-detection region attached to the vehicle. The locations of all targets
in this range are known to the vehicle. By visiting these target locations, the
vehicle can collect the reward assigned them, as illustrated by the trajectory
of the vehicle, which is shown in red in the figure.

the robot. The vehicle can then choose which locations to visit
and collect the rewards associated with these visited targets.

Note that, when subject to differential constraints involving
substantial drift, the vehicle must visit the most valuable targets
in the direction of drift selectively, in order to maximize the
total reward it collects. This often comes at the expense of
skipping some of the target locations, for instance, those that
are orthogonal to the drift direction. See Figure 1.

In this scenario, we are interested in understanding the
fundamental limits of the vehicle’s performance with respect
to its perception abilities (e.g., the size of its target-detection
region) and its differential constraints (e.g., its agility).

In this section, we present the reward collection problem in
a general form. In the next section, we introduce a special case
that captures all key aspects of the problem. This special case
is also analytically tractable. In particular, we can derive the
aforementioned fundamental limits for this special case.

The online motion planning problem is formalized as fol-
lows in its most general form:

Dynamics: Consider a mobile robotic vehicle that is gov-
erned by the following equations:

ẋ(t) = f(x(t), u(t)),
y(t) = g(x(t)) (1)

where x(t) 2 X ⇢ Rn represents the state, u(t) 2 U ⇢ Rm

represents the control input, y(t) 2 R2 is the position of the
robot on the plane where the targets lie, X is called the state
space, and U is called the control space. A state trajectory
x : [0, T ] ! X is said to be a dynamically-feasible state
trajectory and y : [0, T ] ! R2 is said to be a dynamically-
feasible output trajectory, if there exists u : [0, T ] ! U such
that u, y, and x satisfy Equation (1) for all t 2 [0, T ].

Major results: Perception Range
• Performance increases exponentially with increasing 

perception range, when the reward distribution is bounded.
• Equivalently, only log perception range is enough to perform 

optimally, i.e., as if the vehicle has infinite perception range.
• We conjecture this result extends to when the distribution is 

light tailed. 
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IV. ANALYSIS

In this section, we return to the original maximum-reward
motion problem in continuous space R2 defined in Sec-
tion II-B. We will show that maximum-reward motion in
continuous space is a natural extension of the discrete problem
on regular lattice Ld. Specifically, the continuous problem is
the limiting case of the lattice-based motion in Section III
when discretization of space goes to the finest.

A. Motion Planning Algorithm

Similar to the planning algorithm on discrete lattices, in
the continuous space the planning algorithm proceeds in a
receding-horizon manner. Suppose the robot starts at an initial
state zinit. The best feasible trajectory xe : [0, Te]! X within
the “visible” region of the lattice is computed, and the robot
follows this dynamically-feasible trajectory. After the robot
executes this trajectory, the same procedure is repeated. This
algorithm is formalized in Algorithm 2.

More specifically, PerceiveEnvironment() (Line 3) is a
procedure that returns z(t), which contains positions of targets
and amounts of rewards associated with them within the
current sensing distance of the robot. The robot then computes
the optimal path within the set of trajectories Paths(z(t))
to maximize the rewards collected (Line 4). In this problem,
Paths = {⇡ : ẋ1 = v, |ẋ2|  w}. The procedure Execute(⇡)
(Line 5) commands the robot to move along the planned path
⇡ : [0,m/v] ! X . After completion of this command, the
entire procedure is repeated until time distancex is greater
than mission length L (Lines 2-7).

Algorithm 2 Receding-horizon online motion planning
1: distancex  0
2: while distancex < L do

3: z(t) PerceiveEnvironment()
4: ⇡N  argmax{R(Trajectory(⇡) : ⇡ 2

Paths(z(t))}
5: Ri  Execute(⇡N )
6: Q Q+Ri

7: distancex  distancex +m

B. On Infinite-Horizon Mean Rewards

Let’s Let ⇧(L) be the set of all feasible paths that start
from the origin and travels a distance of L in the longitudinal
direction, i.e., the x1 axis.

Recall the assumption that the reward locations {pi} are
generated by a Poisson point process with intensity �. The
amount of rewards at each target are i.i.d. random variables
r(pi) that follow a common reward distribution. Let R(L)
denote the maximal total reward collected by following some
path in ⇧(L), i.e.,

R(L) := max
⇡2⇧(L)

X

pi2⇡

r(pi).

The first result for the continuous problem is an extension
of Proposition 1, Proposition 2, and Theorem 1 for the discrete
problem.

Theorem 4 (Mean Maximal Reward). Suppose the reward
locations are generated by a Poisson point process with
intensity � on R2. The robot dynamics satisfies the following
ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). If we define R
⇤
2 =

supL
E[R(L)]

L , then

lim
L!1

R(L)

L
= R

⇤
2 almost surely.

Moreover, if the reward distribution is either exponential or
geometric, then

R
⇤
2 �

p
�E[r2].

The proof for Theorem 4 is given in Appendix E. Note
that here the robot agility is fixed at 1, and more discussion
regarding agility is presented in Section IV-D.

C. Performance with respect to Sensing Distance
Let the sensing distance m be a positive number. Ri is

the amount of rewards collected during the i
th iteration of

Algorithm 2, and Q(L;m) denotes the total rewards collected
with Algorithm 2 throughout the entire mission, i.e.,

Q(L;m) :=

L/mX

i=1

Ri.

The following result extends Theorem 2 and shows that the
receding horizon algorithm still has near-optimal performance
even in the continuous problem, when the sensing distance m

is at the order of logL.

Theorem 5. Suppose the reward locations are generated by
a Poisson point process with intensity � on R2. Suppose
that these rewards r(pi) are uniformly almost-surely bounded
random variables, i.e., there exists some b such that

P(|r(pi)|  b) = 1 for all i 2 N
and that R⇤

2 is finite. The robot dynamics satisfies the following
ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). Then, for any � > 0,
there exists some constant c such that

lim
m!1

P
⇣ ���

Q(L(m),m)

L(m)
�R

⇤
2

��� � �

⌘
= 0.

where L(m) = e
cm for some constant c that is independent

of m (but depends on �).

With a simple change of variable, we obtain the following
Corollary 3. 10

Corollary 3. Suppose the assumptions of Theorem 5 hold.
Then, for any � > 0, there exists some constant c such that

lim
L!1

P
⇣ ���

Q(L, c logL)

L
�R

⇤
2

��� � �

⌘
= 0.

The proof for Theorem 5 can be found in Appendix F. We
also show simulation results in Section V.

We can further show that Theorem 3 also extends to the
continuous space.

Theorem 6. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. Suppose that
these rewards r(pi) follow a Pareto distribution with parameter
↵ 2 (1, 2). The robot dynamics satisfies the following ordinary
differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). Then there exists a
probability space (⌦,F , P ) such that as m goes to infinity,

E

Q(L;m)

L

�
= c ·m(2/↵)�1

, 8L > m,

for some positive constant c.

D. Performance with respect to the Robot’s Agility
In this section, we examine how agility impacts the perfor-

mance of the robot, measured by the total reward collected.
Recall that the agility of the robot is defined in Section II-B
as

↵ =
w

v
,

where w is the bound on ẋ2(t) = u(t), i.e., the velocity in the
lateral direction (x2-axis). v is the constant speed along the
longitudinal direction (x1-axis).

Theorem 7. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. The robot
dynamics satisfies the following ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  w. Then for any finite L > 0, there exists a
constant c > 0 such that

E[R(L)] = c
p
↵ = c

p
w/v.

The proof can be found in Appendix G. Theorem 7 shows
that the mean maximal rewards grow proportionally with the
square root of robot agility. With this result, the maximal
reward for a robot with any agility ↵ other than 1 can also
be derived accordingly.

E. Computational Workload
In this section, we assess the amount of computational

operations carried out onboard during the persistent monitoring
example discussed in Section I. The computational workload is
due to two different tasks, including both the motion planning
and the inference for each sensor data collected.

a) On motion planning: For the motion planning task,
dynamic programming (Algorithm 2) will be applied to com-
pute the optimal path. The time complexity of Algorithm 2 is
Tplanning = O(N2), where N is the number of targets within
the target-detection region.

The area of the target-detection region is ↵m
2, and by the

property of Poisson point process we know that the expected
number of targets in the target-detection region is

E[N ] = �↵m
2
.

Therefore, the asymptotic time complexity for motion plan-
ning increases quadruply with the sensing distance of the robot
and quadratically with robot agility, i.e.,

Tplanning = O(↵2
m

4).

b) On inference task: The inference task generally in-
duces significantly heavier workload than motion planning. For
example, consider a UAV-UGS system designed for wildlife
detection and tracking in a forest. The ground sensors are
capable of intermittent capture of images, storage of data,
and upload of data to the UAV when the vehicle is within
distance of communication. The UAV needs to process the
downloaded images onboard with real-time object detection
(whether a target animal is found) and localization (where the
animal is in the forest) using state-of-the-art computer vision
techniques. These computations usually exhaust all the compu-
tational resource of processors carried onboard. Therefore, it is
important to evaluate the number of inference tasks executed
over the mission, i.e., the number of sensors/targets the vehicle
visits.

From Theorem 4, we learn that the unit-distance mean
rewards collected converges to R

⇤
2 with increasing sensing

distance. Therefore, by assuming r(v) = 1 for all targets,
we readily conclude that the unit-distance average number of
targets visited also converges to some finite constant. This
implies that as the sensing distance m approaches infinity, the
expected computational requirement Tinference is a constant (and
thus independent of m).

Based on Theorem 7, we know that the number of expected
targets visited grows proportionally with

p
↵, where ↵ is the

robot agility. Therefore, the expected number of inference tasks
is also a linear function of

p
↵, i.e.,

Tinference = O(↵1/2
m

0) = O(
p
↵).

V. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of simulations to verify
our theoretical analysis.

A. Mean Reward on Discrete Lattices
This first set of experiments aims to verify Proposition 1,

which states that the optimal mean reward converges to some
(possibly infinite) value.

Figure 3 shows the experiment where rewards r(v) at each
vertex are Bernoulli random variables. The mean rewards
collected by the robot, shown by the blue curve, quickly
converge, as predicted by Theorem 1.

• However, the perception range required to navigate optimally 
is almost linear, when the reward distribution is Pareto.  

• We conjecture this generalizes to all heavy-tailed distributions
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Corollary 3. Suppose the assumptions of Theorem 5 hold.
Then, for any � > 0, there exists some constant c such that

lim
L!1

P
⇣ ���

Q(L, c logL)

L
�R

⇤
2

��� � �

⌘
= 0.

The proof for Theorem 5 can be found in Appendix F. We
also show simulation results in Section V.

We can further show that Theorem 3 also extends to the
continuous space.

Theorem 6. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. Suppose that
these rewards r(pi) follow a Pareto distribution with parameter
↵ 2 (1, 2). The robot dynamics satisfies the following ordinary
differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). Then there exists a
probability space (⌦,F , P ) such that as m goes to infinity,

E

Q(L;m)

L

�
= c ·m(2/↵)�1

, 8L > m,

for some positive constant c.

D. Performance with respect to the Robot’s Agility
In this section, we examine how agility impacts the perfor-

mance of the robot, measured by the total reward collected.
Recall that the agility of the robot is defined in Section II-B
as

↵ =
w

v
,

where w is the bound on ẋ2(t) = u(t), i.e., the velocity in the
lateral direction (x2-axis). v is the constant speed along the
longitudinal direction (x1-axis).

Theorem 7. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. The robot
dynamics satisfies the following ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  w. Then for any finite L > 0, there exists a
constant c > 0 such that

E[R(L)] = c
p
↵ = c

p
w/v.

The proof can be found in Appendix G. Theorem 7 shows
that the mean maximal rewards grow proportionally with the
square root of robot agility. With this result, the maximal
reward for a robot with any agility ↵ other than 1 can also
be derived accordingly.

E. Computational Workload
In this section, we assess the amount of computational

operations carried out onboard during the persistent monitoring
example discussed in Section I. The computational workload is
due to two different tasks, including both the motion planning
and the inference for each sensor data collected.

a) On motion planning: For the motion planning task,
dynamic programming (Algorithm 2) will be applied to com-
pute the optimal path. The time complexity of Algorithm 2 is
Tplanning = O(N2), where N is the number of targets within
the target-detection region.

The area of the target-detection region is ↵m
2, and by the

property of Poisson point process we know that the expected
number of targets in the target-detection region is

E[N ] = �↵m
2
.

Therefore, the asymptotic time complexity for motion plan-
ning increases quadruply with the sensing distance of the robot
and quadratically with robot agility, i.e.,

Tplanning = O(↵2
m

4).

b) On inference task: The inference task generally in-
duces significantly heavier workload than motion planning. For
example, consider a UAV-UGS system designed for wildlife
detection and tracking in a forest. The ground sensors are
capable of intermittent capture of images, storage of data,
and upload of data to the UAV when the vehicle is within
distance of communication. The UAV needs to process the
downloaded images onboard with real-time object detection
(whether a target animal is found) and localization (where the
animal is in the forest) using state-of-the-art computer vision
techniques. These computations usually exhaust all the compu-
tational resource of processors carried onboard. Therefore, it is
important to evaluate the number of inference tasks executed
over the mission, i.e., the number of sensors/targets the vehicle
visits.

From Theorem 4, we learn that the unit-distance mean
rewards collected converges to R

⇤
2 with increasing sensing

distance. Therefore, by assuming r(v) = 1 for all targets,
we readily conclude that the unit-distance average number of
targets visited also converges to some finite constant. This
implies that as the sensing distance m approaches infinity, the
expected computational requirement Tinference is a constant (and
thus independent of m).

Based on Theorem 7, we know that the number of expected
targets visited grows proportionally with

p
↵, where ↵ is the

robot agility. Therefore, the expected number of inference tasks
is also a linear function of

p
↵, i.e.,

Tinference = O(↵1/2
m

0) = O(
p
↵).

V. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of simulations to verify
our theoretical analysis.

A. Mean Reward on Discrete Lattices
This first set of experiments aims to verify Proposition 1,

which states that the optimal mean reward converges to some
(possibly infinite) value.

Figure 3 shows the experiment where rewards r(v) at each
vertex are Bernoulli random variables. The mean rewards
collected by the robot, shown by the blue curve, quickly
converge, as predicted by Theorem 1.

Major results: Agility
• The performance curve with respect to agility can be 

characterized exactly: 
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Corollary 3. Suppose the assumptions of Theorem 5 hold.
Then, for any � > 0, there exists some constant c such that

lim
L!1

P
⇣ ���

Q(L, c logL)

L
�R

⇤
2

��� � �

⌘
= 0.

The proof for Theorem 5 can be found in Appendix F. We
also show simulation results in Section V.

We can further show that Theorem 3 also extends to the
continuous space.

Theorem 6. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. Suppose that
these rewards r(pi) follow a Pareto distribution with parameter
↵ 2 (1, 2). The robot dynamics satisfies the following ordinary
differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). Then there exists a
probability space (⌦,F , P ) such that as m goes to infinity,

E

Q(L;m)

L

�
= c ·m(2/↵)�1

, 8L > m,

for some positive constant c.

D. Performance with respect to the Robot’s Agility
In this section, we examine how agility impacts the perfor-

mance of the robot, measured by the total reward collected.
Recall that the agility of the robot is defined in Section II-B
as

↵ =
w

v
,

where w is the bound on ẋ2(t) = u(t), i.e., the velocity in the
lateral direction (x2-axis). v is the constant speed along the
longitudinal direction (x1-axis).

Theorem 7. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. The robot
dynamics satisfies the following ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  w. Then for any finite L > 0, there exists a
constant c > 0 such that

E[R(L)] = c
p
↵ = c

p
w/v.

The proof can be found in Appendix G. Theorem 7 shows
that the mean maximal rewards grow proportionally with the
square root of robot agility. With this result, the maximal
reward for a robot with any agility ↵ other than 1 can also
be derived accordingly.

E. Computational Workload
In this section, we assess the amount of computational

operations carried out onboard during the persistent monitoring
example discussed in Section I. The computational workload is
due to two different tasks, including both the motion planning
and the inference for each sensor data collected.

a) On motion planning: For the motion planning task,
dynamic programming (Algorithm 2) will be applied to com-
pute the optimal path. The time complexity of Algorithm 2 is
Tplanning = O(N2), where N is the number of targets within
the target-detection region.

The area of the target-detection region is ↵m
2, and by the

property of Poisson point process we know that the expected
number of targets in the target-detection region is

E[N ] = �↵m
2
.

Therefore, the asymptotic time complexity for motion plan-
ning increases quadruply with the sensing distance of the robot
and quadratically with robot agility, i.e.,

Tplanning = O(↵2
m

4).

b) On inference task: The inference task generally in-
duces significantly heavier workload than motion planning. For
example, consider a UAV-UGS system designed for wildlife
detection and tracking in a forest. The ground sensors are
capable of intermittent capture of images, storage of data,
and upload of data to the UAV when the vehicle is within
distance of communication. The UAV needs to process the
downloaded images onboard with real-time object detection
(whether a target animal is found) and localization (where the
animal is in the forest) using state-of-the-art computer vision
techniques. These computations usually exhaust all the compu-
tational resource of processors carried onboard. Therefore, it is
important to evaluate the number of inference tasks executed
over the mission, i.e., the number of sensors/targets the vehicle
visits.

From Theorem 4, we learn that the unit-distance mean
rewards collected converges to R

⇤
2 with increasing sensing

distance. Therefore, by assuming r(v) = 1 for all targets,
we readily conclude that the unit-distance average number of
targets visited also converges to some finite constant. This
implies that as the sensing distance m approaches infinity, the
expected computational requirement Tinference is a constant (and
thus independent of m).

Based on Theorem 7, we know that the number of expected
targets visited grows proportionally with

p
↵, where ↵ is the

robot agility. Therefore, the expected number of inference tasks
is also a linear function of

p
↵, i.e.,

Tinference = O(↵1/2
m

0) = O(
p
↵).

V. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of simulations to verify
our theoretical analysis.

A. Mean Reward on Discrete Lattices
This first set of experiments aims to verify Proposition 1,

which states that the optimal mean reward converges to some
(possibly infinite) value.

Figure 3 shows the experiment where rewards r(v) at each
vertex are Bernoulli random variables. The mean rewards
collected by the robot, shown by the blue curve, quickly
converge, as predicted by Theorem 1.

Major results: Computation
• The scaling of computation can also be characterized exactly: 
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Corollary 3. Suppose the assumptions of Theorem 5 hold.
Then, for any � > 0, there exists some constant c such that

lim
L!1

P
⇣ ���

Q(L, c logL)

L
�R

⇤
2

��� � �

⌘
= 0.

The proof for Theorem 5 can be found in Appendix F. We
also show simulation results in Section V.

We can further show that Theorem 3 also extends to the
continuous space.

Theorem 6. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. Suppose that
these rewards r(pi) follow a Pareto distribution with parameter
↵ 2 (1, 2). The robot dynamics satisfies the following ordinary
differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  v (i.e., robot agility is 1). Then there exists a
probability space (⌦,F , P ) such that as m goes to infinity,

E

Q(L;m)

L

�
= c ·m(2/↵)�1

, 8L > m,

for some positive constant c.

D. Performance with respect to the Robot’s Agility
In this section, we examine how agility impacts the perfor-

mance of the robot, measured by the total reward collected.
Recall that the agility of the robot is defined in Section II-B
as

↵ =
w

v
,

where w is the bound on ẋ2(t) = u(t), i.e., the velocity in the
lateral direction (x2-axis). v is the constant speed along the
longitudinal direction (x1-axis).

Theorem 7. Suppose the reward locations are generated by
a Poisson point process with intensity � on Rd. The robot
dynamics satisfies the following ordinary differential equation:

ẋ1(t) = v, ẋ2(t) = u(t),

where |u(t)|  w. Then for any finite L > 0, there exists a
constant c > 0 such that

E[R(L)] = c
p
↵ = c

p
w/v.

The proof can be found in Appendix G. Theorem 7 shows
that the mean maximal rewards grow proportionally with the
square root of robot agility. With this result, the maximal
reward for a robot with any agility ↵ other than 1 can also
be derived accordingly.

E. Computational Workload
In this section, we assess the amount of computational

operations carried out onboard during the persistent monitoring
example discussed in Section I. The computational workload is
due to two different tasks, including both the motion planning
and the inference for each sensor data collected.

a) On motion planning: For the motion planning task,
dynamic programming (Algorithm 2) will be applied to com-
pute the optimal path. The time complexity of Algorithm 2 is
Tplanning = O(N2), where N is the number of targets within
the target-detection region.

The area of the target-detection region is ↵m
2, and by the

property of Poisson point process we know that the expected
number of targets in the target-detection region is

E[N ] = �↵m
2
.

Therefore, the asymptotic time complexity for motion plan-
ning increases quadruply with the sensing distance of the robot
and quadratically with robot agility, i.e.,

Tplanning = O(↵2
m

4).

b) On inference task: The inference task generally in-
duces significantly heavier workload than motion planning. For
example, consider a UAV-UGS system designed for wildlife
detection and tracking in a forest. The ground sensors are
capable of intermittent capture of images, storage of data,
and upload of data to the UAV when the vehicle is within
distance of communication. The UAV needs to process the
downloaded images onboard with real-time object detection
(whether a target animal is found) and localization (where the
animal is in the forest) using state-of-the-art computer vision
techniques. These computations usually exhaust all the compu-
tational resource of processors carried onboard. Therefore, it is
important to evaluate the number of inference tasks executed
over the mission, i.e., the number of sensors/targets the vehicle
visits.

From Theorem 4, we learn that the unit-distance mean
rewards collected converges to R

⇤
2 with increasing sensing

distance. Therefore, by assuming r(v) = 1 for all targets,
we readily conclude that the unit-distance average number of
targets visited also converges to some finite constant. This
implies that as the sensing distance m approaches infinity, the
expected computational requirement Tinference is a constant (and
thus independent of m).

Based on Theorem 7, we know that the number of expected
targets visited grows proportionally with

p
↵, where ↵ is the

robot agility. Therefore, the expected number of inference tasks
is also a linear function of

p
↵, i.e.,

Tinference = O(↵1/2
m

0) = O(
p
↵).

V. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of simulations to verify
our theoretical analysis.

A. Mean Reward on Discrete Lattices
This first set of experiments aims to verify Proposition 1,

which states that the optimal mean reward converges to some
(possibly infinite) value.

Figure 3 shows the experiment where rewards r(v) at each
vertex are Bernoulli random variables. The mean rewards
collected by the robot, shown by the blue curve, quickly
converge, as predicted by Theorem 1.
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Corollary 3. Suppose the assumptions of Theorem 5 hold.
Then, for any � > 0, there exists some constant c such that

lim
L!1

P
⇣ ���

Q(L, c logL)

L
�R

⇤
2

��� � �

⌘
= 0.
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Tplanning = O(N2), where N is the number of targets within
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The area of the target-detection region is ↵m
2, and by the

property of Poisson point process we know that the expected
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.
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m

4).

b) On inference task: The inference task generally in-
duces significantly heavier workload than motion planning. For
example, consider a UAV-UGS system designed for wildlife
detection and tracking in a forest. The ground sensors are
capable of intermittent capture of images, storage of data,
and upload of data to the UAV when the vehicle is within
distance of communication. The UAV needs to process the
downloaded images onboard with real-time object detection
(whether a target animal is found) and localization (where the
animal is in the forest) using state-of-the-art computer vision
techniques. These computations usually exhaust all the compu-
tational resource of processors carried onboard. Therefore, it is
important to evaluate the number of inference tasks executed
over the mission, i.e., the number of sensors/targets the vehicle
visits.

From Theorem 4, we learn that the unit-distance mean
rewards collected converges to R
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2 with increasing sensing

distance. Therefore, by assuming r(v) = 1 for all targets,
we readily conclude that the unit-distance average number of
targets visited also converges to some finite constant. This
implies that as the sensing distance m approaches infinity, the
expected computational requirement Tinference is a constant (and
thus independent of m).

Based on Theorem 7, we know that the number of expected
targets visited grows proportionally with
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is also a linear function of
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↵, i.e.,
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V. COMPUTATIONAL EXPERIMENTS

In this section, we present the results of simulations to verify
our theoretical analysis.

A. Mean Reward on Discrete Lattices
This first set of experiments aims to verify Proposition 1,

which states that the optimal mean reward converges to some
(possibly infinite) value.

Figure 3 shows the experiment where rewards r(v) at each
vertex are Bernoulli random variables. The mean rewards
collected by the robot, shown by the blue curve, quickly
converge, as predicted by Theorem 1.

The new simulation platform and the game

Motivation:
- Develop a multi-agent game to help understand how well 

human performance compares with fundamental limits

Results:
- We are building a game in Unity3D that will be made 

available open source to the public. Player data will be 
open sourced automatically with permission from player.

- For this purpose, we developed a realistic version of MIT’s 
Stata Center. The preliminary renderings are shown below.
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