

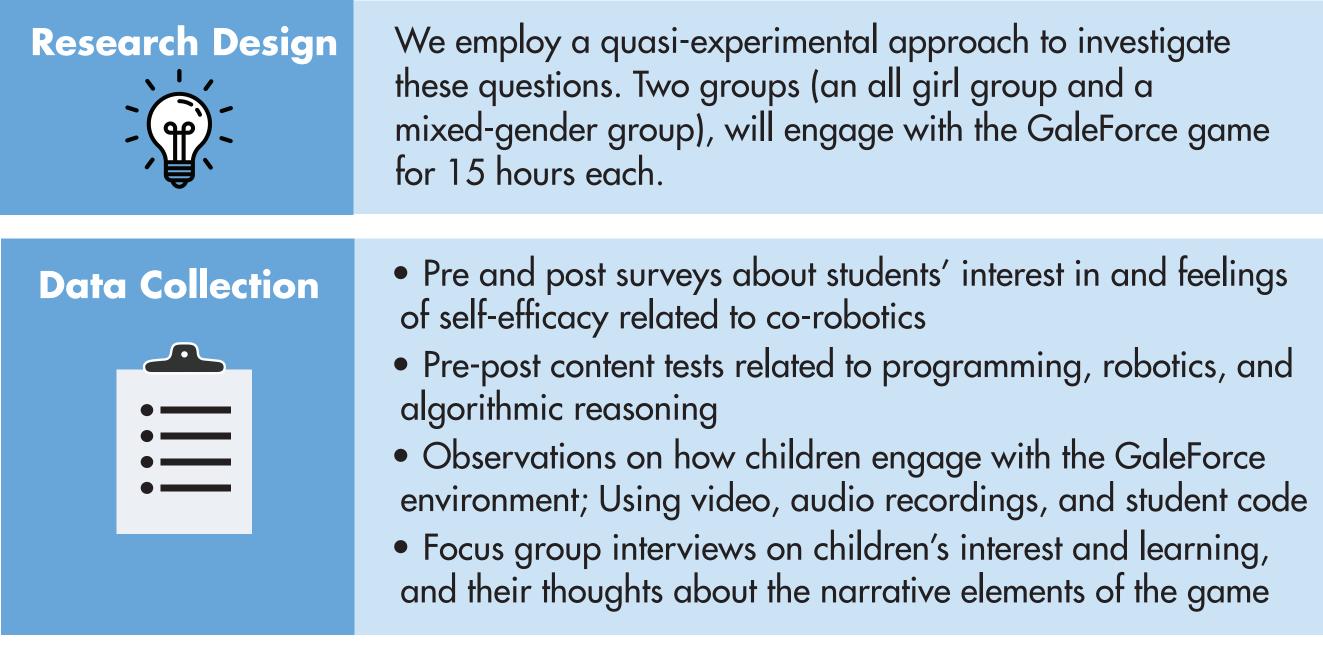
INTRODUCTION

Project GIRLS' goal is to broaden the participation of middle school Latina girls in computer science and robotics with an immersive narrative of helping people affected by a hurricane.

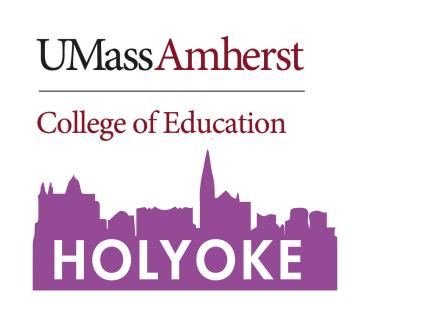
BROADER IMPACTS

- Broaden participation of girls and Latinx students in robotics and computer science.
- Build a virtual robotics environment within a hurricane narrative.

RESEARCH QUESTIONS


Do immersive experiences improve girls' learning and interest in computer science and robotics?

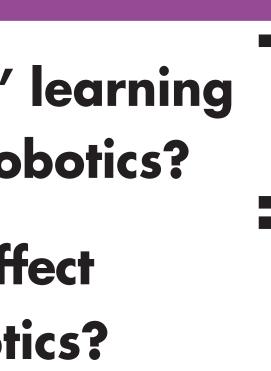
Do all girl vs. mixed gender groups affect girls' learning and interactions in robotics?

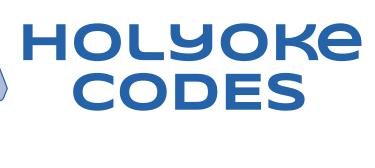

RESEARCH METHODS

The primary purpose of this research study is to examine if and how engagement with an immersive, first responders, natural disaster co-robotics curriculum affects the following:

- Girls' interest in the field of computer science
- Girls' feelings about their own ability to succeed in computer science
- Students' ability to program
- Students' knowledge of co-robotics
- Knowledge of the role of emergency managers in hurricane disaster

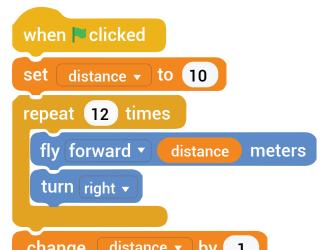
PROJECT PARTNERS





BOYS & GIRLS CLUB

immersiverobotics **Girls Immersed in Robotics Learning Simulations**


GALEFOTRCE 3D ROBOTICS ADVENTURE GAME

Gameplay

Students train in the control center and then prepare for the next big hurricane and help afterwards working together with the GaleForce team and a fleet of robots and drones.

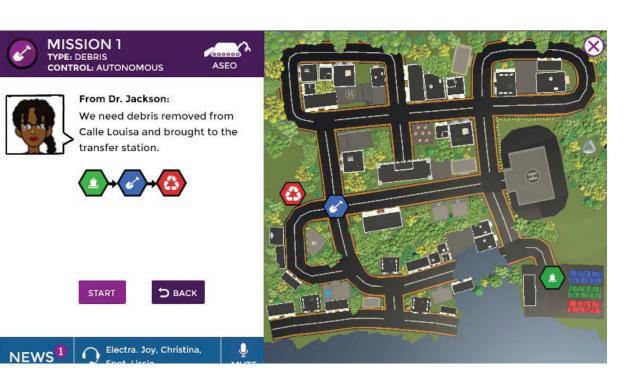
CONTROL ROBOTS **AND DRONES** WITH CODE.

change distance - by 1

Motivated by Helping

Players complete missions to prepare for the storm and respond after the hurricane hits. The missions involve tasks such as delivering supplies, evacuation, search and rescue of people and pets, and clear roads of debris.

	E
	•



SAMPLE MISSIONS						
Mission	Co-robotics Activity	CS and Robotics Concepts				
Medical Delivery	Program robot movement	Sequential coding				
	Program robots for line following and delivery	Sensors, conditionals, loops				
	Learn about Machine Learning	Artificial Intelligence				
Drone Mapping	Fly drones with controllers and video feeds	Flight and video concepts				
	Program drone grid pattern for mapping	Conditionals, loops, mapping concepts				

FLORENCE SULLIVAN: FSULLIVAN@EDUC.UMASS.EDU

Students from the Boys and Girls Club in Holyoke, MA code virtual robots and drones, in a narrative of hurricane disaster first responders of the GaleForce in San Juan, Puerto Rico.

In-Game Coding Environment

Students learn coding concepts such as conditionals and loops using a blockbased programming language as they control virtual robots and drones

COMPLETE MISSIONS

RFMOVAI

SERVICE

Educational Features

- Narrative to Support Learning
- In-Game Scaffolds
- Collaboration and Pair Programming

Florence Sullivan, University of Massachusetts, Amherst, Beryl Hoffman, Elms College

Personnel: Lissie Fein, Andrew Pasquale, Holyoke Codes

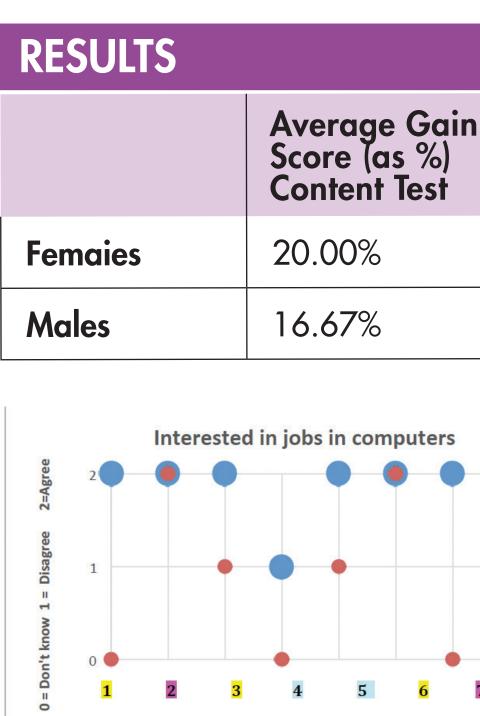
Research Assistants: Isabel Castellanos, Ali Söken, Özkan Yildiz

PILOT STUDY METHODS

Mixed Methods Research Study

- Qualitative analysis of student collaborative interactions.
- Descriptive analysis of completed programs.
- Quantitative analysis of pre-post content test.
- Quantitative analysis of self-efficacy/interest survey.

Participants and Setting


- Eleven 8-9 year old students from the Holyoke Boys and Girls Club (6[']girls).
- Five day vacation camp, three contact hours per day.
- Students worked in pairs to solve co-robotics challenges.
- Only 8 students completed content and survey pre-post.

Data Collection

- Audio of students collaboring while solving missions.
- Completed programs.
- Pre-post robotics content test.
- Pre-post self-efficacy/interest survey.

Data Analysis

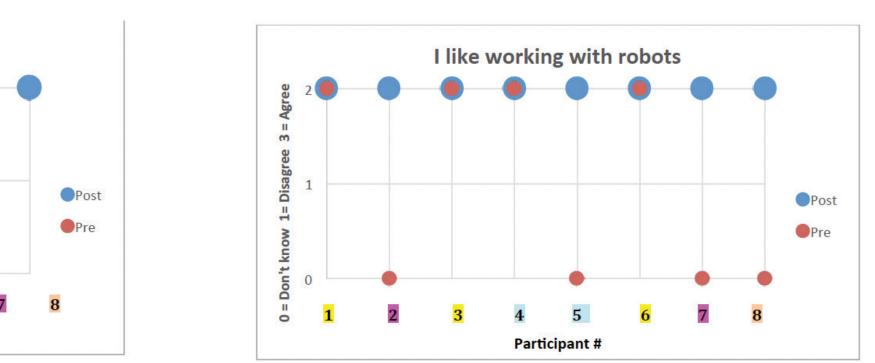
- Codebook for analysis of collaborative discussions.
- Gain score pre-post content test.
- Gain score self-efficacy/interest survey.
- Descriptive analysis of completed programs.

• Descriptive analysis of coding showed little use of the grid scaffold and sophisticated code blocks, and reliance on concrete referents to reason about writing their programs. • Collaborative data analysis preliminary results:

Participant #

- E: Drive forward 80.
- T: No, we need to follow the curve for 20
- T: Don't change it.
- E: Good, we're almost done.

BERYL HOFFMAN: HOFFMANB@ELMS.EDU



S.D. (as %) Content Test	Average Gain Score (as %) Interest Survey	S.D. (as %) Interest Survey
8.43%	29.75%	13.79%
16.67%	14.25%	14.63%

Over 40% of discussions were about algorithmic operations and variables.

19% of comments were knowledge reflections. Indicate students aware of solutions.