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Background & Goals

DNN Adversarial Attack: Backdoor Attack: Our motivations:
: ~ * As DNN gets more and more popular,

"Ben” : adversarial attacks become critical.
* Allthe existing defenses are defeated by
clever attacks or countermeasures.
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DNN : ‘ Backd d : .
: f. aCDNOI\? e "Thanos” : * Detect different kinds of DNN adversarial

Find a small 4 such that: - g i attacks with high accuracy.
F(x +6) # F(x) s i« Induce minimal false positive rate and cost.

Various attacks to find & Design a small § such that: Robust against various forms of
(CW, ElasticNet, FGSM, PDG...) F(x+6)# F(x)forvx e X countermeasures.

Defense Intuition

e Choose Label(s) to Defend Create Trapdoored Model
Intuition:
Defended label (y):

o | njeCt tra pd OO0rsS (bade o]0 rS) Into the : 20 km speed limit Trapdoor Trapdoored model ¢) Deploy the Model, .
: p Instances Train m % Compute Trapdoor Signatures

protected models. The trapdoors serve as Label y's trapdoor: \'

optima for attacker’s objective. Iiffﬁfﬁs .

Catch attackers by checking whether there : 2 Check for trapdoor similarity:
. . . . E ACCEPT /REJECT INPUT
IS trapdoors in the input images. : Adversarial Atiack Against Label (3) White-box Attack
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Loss(yt x) Defense workflow:

ﬁiﬁi?"md < valuc * Inject trapdoors (backdoor attack) into the target model as optima for attackers.
' c : « Attacks perform adversarial attack and it converges to the embedded trapdoors.
: + We catch attackers by checking whether an input image is similar to our

trapdoors (neuron signature matching).
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Defense Performance

Table 1: Detection performance when defending a single la-
bel: adversarial image detection success rate at 5% false pos-
itive rate.

Task CW EN PGD BPDA | SPSA | FGSM
GTSRB 96.30% | 100% 100% 100% | 93.75% | 100%

CIFAR10 100% | 97.00% | 100% 100% 100% | 96.36%
YouTube Face | 100% 100% | 98.73% | 97.92% | 100% 100%

Cosine Similarity

COSIne Slmllarlty Of normal Images and adversarlal Images to E Table 4: A Comparison of the Detection AUC of Feature Squeezing (FS), LID, and Trapdoor.

trapdoored inputs in a trapdoored model : Detector CW  EN  PGD BPDA SPSA FGSM Average ROC-AUC
: FS 9% 9% 69%  78%  100%  73% 71%

» Attack images on trapdoored models have high similarity to ! GTSRB D 9% 93% 8% 91%  100%  89% 93%
our pre-embedded trapdoors. : Trapdoor  93%  93% 98%  97%  94%  96% 95%

. H . . FS 100% 100%  74% 69 % 98% 71% 68%
We can L_Jse the similarity to trapdoors to detect the P CIFARIO (b 03 02 800 889 1009  91% 00
adversarial attacks. : Trapdoor 91%  95% 100% 100% 100%  100% 98%

. FS 91% 94% 68%  15% 97%  66% 67%

YoutubeFace LID 92% 91% 87 % 87 % 96% 92% 91%

e | | | : Trapdoor 89% 100% 92% 100% 87%  100% 95%
I .

* QOur detection performs well on different attacks and datasets.

CW (AUC 0. _
: « We out-performed two of the state of the art detection algorithms.
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More results in the paper:
: » Successfully defends against black box attacks.
: » Performs consistently across different trapdoor designs.
Detection ROC against various attacks in CIFAR10 model i « Results on embedding multiple trapdoors.
 We used the cosine similarity as a threshold to detect Robust against four potential countermeasures.

adversarial attacks. THE UNIVERSITY OF
* We plot the ROC curve of detection success rate against
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false positive rate when choosing different thresholds. . el L SN el e ﬁﬁ@ C H IC AG O




