Societal and Ethical Dimensions of Emerging Technologies

David J. Hess Magdalena N. Sudibjo

Sociology Department Vanderbilt University

Outline

- 1. Overview of the project and the idea of societal dimensions (ELSI: ethical, legal, and social implications)
- 2. Overview of Connected Vehicles: Benefits and Societal Concerns
- 3. Overview of UAVs: Benefits and Societal Concerns
- 4. Overview of Transaction Energy: Benefits and Concerns
- 5. Summary of Hess Research of Smart Meter Opposition (as an example of how the public can mobilize)

1. ELSI Dimensions

• Benefits: how to maximize

- Concerns and risks: how to minimize
 - Privacy
 - Security
 - Health and environment
 - Equity

Privacy: Background

- No right to privacy in the U.S Constitution
 - It is a derived right (from other provisions)
 - Legislation (e.g., Health Insurance Portability and Privacy Act)
- Primary issue in the context of Internet
 - Data gathering by corporations
 - Data gathering by government

Security: Background

- Focus here: threats to personal and public safety (hacking)
 - Criminal
 - Terrorist
- Scale matters for this dimension more than for privacy (individual level)
 - Collective level security
 - Personal security (safety, crime)

Health & Environment: Background

- Health risk types
 - Pollution (air, water, soil)
 - Accidents
- Environmental risks
 - Natural environment
 - Built environment

Social Equity: Background

 Social structure: race, gender, class, ethnicity, geographical location

Other kinds not discussed here

24 categories	Privacy	Security	HealthEnv	Equity
C Vehicles US				
T Energy US				
UAV Traffic US				
C Vehicles EU				
T Energy EU				
UAV Traffic EU				

2. Connected Vehicles

Definitions

- Connected vehicles can recognize their location and their status and can communicate with each other and the surrounding Intelligent Transportation System (ITS) infrastructure.
- Includes autonomous vehicles but not limited to that category (could include apps on phones or in the vehicle)

Benefits: Connected Vehicles

- Improved safety & accident prevention
 - Potential to save thousands of lives each year
- Improved access (for those who cannot drive)
- Reduced congestion
 - Better commute times
 - Savings on vehicle miles driven (fuel savings)
 - Air quality (health) and greenhouse-gas emissions benefits
- Long-term potential: better built environment
 - Reduced need for parking, new highways

Privacy: Connected Vehicles

- Both transit-related apps and connected vehicles
 - Tracking of transit modes
 - Tracking of trips and locations
 - Routines
- Ex. Legal implications (Restraining orders)
 - Vehicles that go through areas subjected to court restraining orders
 - Could require programming in restraining order information

Security: Connected Vehicles

- Collective level hacking risks:
 - creation of congestion, accidents
- Personal level hacking risks:
 - Data on trip records: knowing when people are not at home

Health & Env.: Connected Vehicles

- Health 1: Traffic shifting from high to low congestion pathways
 - Shift in air quality and accident risk in residential neighborhoods
 - Litigation potential: neighborhood right to low traffic
- Health 2: Accidents and autonomous vehicles
 - Unknown risks of interactions of autonomous and humandriver vehicles
 - Trolley problem revisited
- Built Environment
 - Potential need to reshape transportation systems
 - Separate systems for autonomous vehicles?
 - Potential end of peak-car phenomenon (new levels of demand)

Social Equity: Connected Vehicles

- Transit types
 - Do connected vehicles weaken support for public transit?
- Apps and equity:
 - Premium app—fastest pathway
 - Free app—more congestion.
- Costs
 - Increased cost of owning a connected vehicle
 - Increased insurance for human drivers
- Job security: employment disruptions (trucking industry)

3. Unmanned Aerial Vehicle Management

Definitions

 UAV management governs the rules and traffic of unmanned and remotely-controlled aerial vehicles (drones)

Benefits: UAVs

- Efficient delivery of materials
 - Potential reduction of ground traffic congestion
 - Potential reduction of greenhouse-gas emissions
- Risk reduction benefits
 - Monitor public gatherings for security threats
 - Monitor natural and technological sites for disaster threats (volcanoes, nuclear reactors)
- Disaster relief
 - Search and recovery, emergency supply delivery
- Business uses
 - Monitoring of sites (agriculture, construction)
 - Aerial spraying

Privacy: UAVs

- Camera-bearing UAVs can gather personal data even if above the 200-foot altitude
 - New level of exposure of private persons in formerly private spaces (backyards)
 - Potential to record private conversations
- Can vary by level of detail of photography and frequency of recording

Security: UAVs

- Attacks at public events
- Risks to airplanes landing and taking off
- Crime and Delivery
 - Threat of porch theft
 - Knowing schedules and when people are at home
 - Potential hacking an entrance to homes and buildings
- Corporate espionage
- Smuggling

Health & Environment: UAVs

- Health 1: Noise concerns as the population of UAVs increases
- Health 2: Accidents
 - Failure of individual drones
 - Interactions with pets
- Environment 1: Built Environment
 - Where to locate drone highways
- Environment 2: Natural Environment
 - Interactions with wildlife (birds)

Social Equity: UAVs

- Types of delivery and price premiums
 - Drone delivery—accessible to all residential building types?
- Use of drones in surveillance of low-income groups and ethnic minority groups