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Abstract— This paper introduces an approach to synthesizing
optimal decentralized controllers for distributed discrete event
systems with a linear structure. Any subsystem (except of the
last in the structure) demands a sequence of outputs from the
next adjacent subsystem, in order to realize its own path into
a goal state. This dependency is considered in the synthesis
procedure for obtaining a local state-feedback controllerfor any
subsystem. These local controllers for discrete-event systems
resemble the typical state-feedback control structure of linear
discrete-time continuous-valued systems. Any local controller
is computed by algebraic computations, it communicates with
controllers of adjacent subsystems, and it aims at transferring
the corresponding subsystem into the goal with a minimal
sum of transition costs. As is shown also for an example, the
computational effort can be significantly reduced comparedto
the synthesis of a centralized controller.

I. I NTRODUCTION

The motivation for the class of distributed discrete event
systems (DES) addressed in this paper stems from the
structure observed, e.g., in industrial production processes
with uni-directional supply schemes. Consider the example
of an assembly process consisting of two machines, where
the first machine assembles parts which are produced by the
second machine. When designing a discrete event controller
to establish the assembly procedure for the first machine,
the second one must deliver the required parts at appropriate
instances of time. The behavior and control objectives of the
second machine must thus be aligned to the control strategy
for the first. This also means that the controller of the first
machine is entitled to define (and communicate) sequences of
goal states to the controller of the second machine. One can
easily imagine dependency schemes of similar type which
involve more than two production units. The objective of
algorithmically synthesizing discrete event controllerswhich
make explicit use of the specific dependency structure is the
subject of this work.

With respect to existing work on control synthesis for
DES, it seems fair to tag thesupervisory control theory
(SCT) according to [1] as the most established approach.
In a language-based setting, algorithms based on the SCT
generate controllers to formulate the set of behaviors which is
permissible according to a given specification. A large num-
ber of extensions of the SCT exists, including approaches
to decentralized control [2], [3], [4], hierarchical structures
[5], [6], [7] including consistency [8], communication aspects
[9], [10], [11], concurrency [12], modularity and abstraction
[13], and the transformation in PLC programs [14].
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A second important class of techniques for obtaining
decentralized controlles for DES start from models specified
as Petri-nets. For example, the work reported in [15], [16],
[17], [18] proposes different means to consider distributed
structures of the plant, and/or to produce controllers which
adhere to principles of decentralization where local con-
trollers are assigned to modules or subsystems of the plant.

In contrast to the afore-mentioned classes of approaches,
this paper follows the lines of algebraic controller computa-
tion as proposed in [19]. The main idea there is to transfer
principles of discrete-time linear time-invariant (LTI) systems
to the domain of DES, and in particular to model distributed
and hierarchical structures of DES by algebraic descriptions.
These ideas were used in [20] to obtain online-reconfigured
feedback controllers that account for the occurrence of
failures or changing goal specifications. As in [21], the work
in [20] employs DES models with a notion of transition
costs to enable an ordering of feasible solutions and thus the
computation of cost-optimal controllers. Both approaches,
however, were formulated for monolithic systems only, but
not for distributed setting of DES.

In this paper, the algebraic computation of optimal state
feedback controllers for distributed systems is addressed, and
in particular for the linear dependency structures mentioned
above. These structures allow computing local controllers
of subsystems separately, what may considerably reduce the
overall computational effort, compared to the synthesis of
centralized controllers. In addition, the scheme naturally
leads to a set of local controllers to be implemented on
separate hardware. Thus, the outcome of the procedure
is compatible to the typical hardware structure of larger
processes, i.e. it does not require an aditional step of splitting
a large (centralized) controller into local instances assigned
to the plant subsystems. Of course, the decentralized con-
trollers have to account for the dependencies among the
subsystems, such that appropriate communication between
the local controllers has be established.

The paper is organized as follows: after introducing the
distributed system structure, the algebraic system represen-
tation is described in Sec. II. In Section III, the considered
control problem is formulated and the structure of the local
control laws is introduced. As a main contribution, Sec. IV
proposes an algorithm for separate and sequential synthesis
of the subsystem controllers. This part also discusses compu-
tational complexity and sketches different extensions. Section
V illustrates the procedure by an example from the domain
of assembly processes, followed by some conclusions.
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Fig. 1. Distributed system structure consisting ofz feedback loops(Pi ,Ci )
and with linear dependency:a© any subsystemPi (i 6= z) depends on outputs
of Pi+1, b© any controllerCi (i ∈ {2, . . . ,z− 1}) communicates with the
neighboring controllersCi−1 andCi+1; c© any pair(Pi ,Ci ) exchanges local
state and input information.

II. SYSTEM MODELING

The subject of this investigation are distributed processes
which are suitably modeled by discrete event dynamics
and which consist ofz subsystems according toP =
{P1, . . . ,Pi , . . . ,Pz}. Figure 1 clarifies the interconnection
structure of the subsystems: each subsystemPi forms a
control loop together with a local controllerCi in the typical
understanding that the current state ofPi triggers a control
input of the controllerCi such that a transition ofPi leads to
a desired next state. The dependency structure considered
here adds the following: (1.) a transition ofPi (for i ∈
{1, . . . ,z−1}) may depend on a particular output provided
by Pi+1, and (2) the controllerCi (for i ∈ {2, . . . ,z− 1})
communicates withCi−1 and Ci+1. This communication is
necessary to obtain the information which output has to be
sent fromPi to Pi−1, and which outputPi requires from
Pi+1 for further execution. The upcoming sections describe
in detail how the subsystems are modelled, how costs are
introduced, and how the interconnection and communication
between subsystems are taken into account during controller
synthesis (offline) and controller execution (online).

A. Definition of Subsystems

The discrete event dynamics of any subsystemPi ∈ P is
defined as follows:

Def. 1: The plant modelPi =(T,Xi ,U i ,Yi ,Wi , f i ,gi) con-
sists of an ordered domainT = {0,1,2, ...} with an in-
dex k ∈ T referring to an event time, the finite set of
discrete statesξ i

k ∈ Xi = {1, ...,ni} ⊂ N, the finite set of
discrete inputsν i

k ∈ U i = {1, ...,mi} ⊂ N, the finite set of
discrete outputsyi

k ∈Yi = {1, ...,qi}⊂N, a deterministic state
transition function f i : Xi ×U i → Xi , a dependency matrix
Wi ∈ {0,1, ...,qi+1}

mi×ni betweenPi andPi+1, and an output
function gi : X →Yi (often referred to asMoore-type).

For i = z, the dependency matrix is set to a zero matrix
Wi = {0}mi×ni . �

To simplify notation, the setsXi , U i, andYi are introduced
as ordered index sets (which may, of course, enumerate e.g
symbolic identifiers). An elementWi(a,b) = yi+1

> 0 of the
dependency matrixWi encodes that the subsystemPi+1 must
provide the outputyi+1 ∈ Yi+1 to enable inPi the discrete
transition from the stateb∈ Xi under the effect of the input
a ∈ U i. An entry Wi(a,b) = 0 means, however, that the

transition from the stateb ∈ Xi upon the inputa ∈ U i is
independent of the output of the subsystemPi+1.

Def. 2: For an initial stateξ i
0 ∈ Xi and an input sequence

φ i
u := {ν i

0,ν
i
1, ...} with ν i

k ∈U i andk∈ T, the elements of an
admissible runφ i

x := {ξ i
0,ξ

i
1, ...} and a corresponding output

sequenceφ i
y := {yi

0,y
i
1, ...} of Pi according to Def. 1 follow

from:

ξ i
k+1 =

{

f i(ξ i
k,ν

i
k), if Wi(ν i

k,ξ
i
k) ∈ {0,ξ i+1

k }

ξ i
k, else

(1)

yk+1 = gi(ξ i
k+1) (2)

�

The else-statement in the first assignment refers to the case
that no input triggers a state transition.

Since Sec. IV proposes a method for synthesizing state
feedback controllers and in order to simplify notation, the
outputs are ommitted in the sequel according to the following
assumption.

Assumption 1:Any event ofPi , i ∈ {1, . . . ,z} is assumed
to be observable, the stateξ i

k to be fully measurable, and the
output functiongi to be defined as identity function. �

In consequence, we haveXi =Yi , i.e. any occurence ofyi
k

in Def.s 1 and 2 can be expressed in terms ofxi
k. In particular,

the dependency ofPi from Pi+1 as modeled byWi can be
understood now such that a transition ofPi requiresPi+1 to
be in a specific statexi+1

k . In context of the manufacturing
process mentioned in the beginning, it seems justifiable to
assume that a part being required for assembly is eventually
available.

Assumption 2:In addition, we assume that the dynamics
of all Pi , i ∈ {1, . . . ,z} operate on the same time domain
(k∈ T), and that allPi iterate their states synchronously.�

Given the typical cycle time of control hardware and the
order of magnitudes larger average time between events, this
assumption is certainly justifiable. (The understanding isthat
k enumerates the actual state transitions, not the hardware
cycles.)

B. Algebraic Formulation

The control synthesis to be described below is structurally
similar to that of (optimal) state feedback controllers for
linear discrete-time continuous-valued systems. It thus makes
sense to represent the dynamics ofPi in a format amenable to
algebraic matrix operations, compare to the scheme proposed
in [20] for monolithic DES.

Def. 3: For Pi with state setXi as introduced in Def. 1,
let the state vectorxi

k ∈ {0,1}ni×1 identify the plant state
according to:xi

k, j = 1 if ξ i
k = j is the active state ink, and

xi
k, j = 0 otherwise. For any inputl ∈ U i , a state transition

matrix F i
l ∈ {0,1}ni×ni is defined such that for any pair

h, j ∈ Xi applies:F i
l ( j,h) = 1 if j = f i(h, l), andF i

l ( j,h) = 0
otherwise. It is required thatF i

l ( j, j) = 1 if Fl(p, j) = 0 for
all p 6= j, p∈ {1, . . . ,ni} (meaning that the state with indexj
has a self-loop, if no outgoing transition exists for the input
l ∈U i). �



The interpretation ofF i
l ( j,h) = 1 obviously is thatPi can

transition from stateξ i
k = h into stateξ i

k = j upon eventl ,
if in addition the dependency condition encoded byWi is
satisfied. A run ofPi is now defined in algebraic form as
follows:

Def. 4: For Pi , let F i = {F i
1, . . . ,F

i
mi
} denote the set of

state transition matrices as introduced before. Given an
initial vector xi

k ∈ {0,1}ni×1 with ∑ni
j=1xi

k, j = 1 and an input
sequenceφu = (ν i

0,ν
i
1,ν

i
2, . . .) as in Def. 2, an admissible run

φ i
x = (xi

0,x
i
1,x

i
2, . . .) of Pi over T satisfies:

xi
k+1 =

{

F i
j ·x

i
k, if ν i

k = j andWi(ν i
k,ξ

i
k) ∈ {0,ξ i+1

k }

xi
k, else

(3)
�

For the computation of the control law forPi , it is
necessary thatPi+1 can indeed deliver the output signals to
Pi that are encoded inWi . Thus, we require that any discrete
stateξ i ∈ Xi can be transferred into any other stateξ̂ i ∈ Xi

by at least one finite input sequence. As a preparation for
stating this assumption formally, areachability matrix Ri , is
introduced as:

Ri :=
ni

∑
p=1

( mi

∑
l=1

F i
l

)p
. (4)

It encodes (for the case that the dependency conditions
are satisfied) that for any pair of states taken fromXi , a
sequence of inputs exists which transfers the plant from
the first into the second state. Similarly as introduced in
[20] for monolithic systems, a subsystemPi can then be
classified ascompletely controllable, if R(q,s) > 0 for any
pair q,s∈ {1, ...,ni}.

Assumption 3:Any subsystemPi ∈P is completely con-
trollable. �

This assumption is justifiable in the sense that a process
in which a unit cannot deliver the output required in another
depending unit has to be characterized as not properly
engineered.

C. Local transition costs

The control task to be precisely defined in the next section
considers a performance measure in the sense that any
subsystem should be transferred into a goal state with min-
imum costs. For this reason, local costsπ(ξ i

k,ξ
i
k+1,ν

i
k) are

assigned to any transitionf i(ξ i
k,ν

i
k) = ξ i

k+1. While different
interpretations of such costs may be reasonable for a given
application, the most obvious ones are the time or the control
effort in terms of energy (or a different consumed resource)
which is necessary to transfer the system fromξ i

k to ξ i
k+1 by

the use of the inputν i
k.

Def. 5: Given Pi , a local cost matrix Πi
j ∈ R

ni×ni
≥0 is

defined for anyj ∈ U i , such that (i)Πi
j(q, p) = π(p,q, j),

(ii) Πi
j(q, p) = ∞, if the transition fromξ i

k = p to ξ i
k+1 = q is

infeasible withν i = j (i.e. F i
j (q, p) = 0), and (iii) Πi

j(p, p) =
0 for all p∈ Xi, j ∈U i (i.e. self-loops do not incur costs).
Furthermore, the matrixΠi

opt denotes theminimal local

transition costsfor Pi , where the entryΠi
opt(q, p) encodes

the minimally possible local costs for the transfer ofPi from
stateξ i = p to ξ i = q. �

As will become apparent in the next section, the realization
of paths with the costs in the matrixΠi

opt is the very objective
of the feedback controller.

III. C ONTROL TASK

Given the dependency structure ofP as defined before,
the transitions of subsystemPi are only affected by the
current plant state ofPi+1, but not any subsystem with higher
index. To considerably simplify the notation, we thus focus
in the following on just two subsystems indicated byi ≡ A
andi+1≡B. The section IV-C will later show, however, that
the extension to larger dependency chains is straightforward.

Problem 1: Given a pair(ξ A
F ,ξ B

F ) of goal states of the two
subsystemsPA andPB, the control task is to compute for both
subsystems local feedback control laws which generate for
any initializationξ A

0 ∈XA andξ B
0 ∈XB input sequencesφA

u =
(νA

0 , . . . ,νdA−1) andφB
u = (νB

0 , . . . ,νdB−1) which lead to runs
φA

x = (ξ A
0 , . . . ,ξ

A
dA) with ξ A

dA = ξ A
F and φB

x = (ξ B
0 , . . . ,ξ

B
dB)

with ξ B
dB = ξ B

F such that the global path costs:

Jglobal =
dA

∑
i=1

ΠνA
i−1

(ξ A
i ,ξ A

i−1)+
dB

∑
i=1

ΠνB
i−1

(ξ B
i ,ξ B

i−1) (5)

are minimal. �

Intuitively speaking, the objective is to equip both sub-
systemsPA andPB with local controllersCA andCB, which
establish the transfer from an arbitrarily chosen local initial
state into the respective local goal state such that the sum of
the transfer costs forPA andPB is as small as possible.

Before the particular structure of the local controllers is
introduced, it is shown that the combination of goal states
ξ A

F andξ B
F is reachable from an arbitrary pair of initial states

of the two subsystems.
Theorem 1:The systemP = {PA,PB} with dependency

structure as introduced before is completely controllable
if both of the subsystemsPA and PB on their own are
completely controllable according to Assumption 3. �

Proof 1: Since the transitions of subsystemB are inde-
pendent of the current state of subsystemPA and subsystem
PB is completely controllable, a sequenceφB

u of inputs exists
to transferB from an arbitrary initial stateξ B

0 into ξ B
F . This

also means thatPB can deliver any arbitrary output sequence
φB

y (and thus runφB
x ) to subsystemPA, i.e. any condition

formulated forPA in terms of the dependency matrixWA can
be satisfied byPB. SincePA itself is completely controllable
as well, a sequence of inputsφA

u exists which transfersPA

into an arbitrary goal stateξ A
F . �

The type of state feedback control law to be determined
within this paper is chosen to be:

νA
k = uA ·KA(ξ B

k ) ·x
A
k ∈ UA (6)

νB
k = uB ·KB ·xB

k ∈ UB (7)
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Fig. 2. Online-execution for one state transition ofPA including the
provision of ξ B

k by PB. The numbers indicate the order of information
processing.

where ui is the row vector of all local input indices in
U i (in ascending order) andK i ∈ {0,1}mi×ni is a local
controller matrix, compare to [20]. The interpretation of
these laws is (identically to state feedback in continuous
systems) that the multiplication of a feedback matrixui ·K i

with the current statexi
k selects the input value from the

set U i. The multiplication is thus equivalent to choosing
one of the possible events inU i to trigger the desired
transition. It is important to note here that, in general, the
input generated by the control law of a certain subsystem
(except of the one with highest index) depends on the
current plant state of the own subsystem and the current
plant state of the subsystem with the next higher index.
For the specific case ofPA und PB, this means that the
controller matrix KA(ξ B

k ) depends on the current plant
state ξ B

k of subsystemB, while KB is independent of the
state of another subsystem. For this reason,KA actually
consists ofnB single controller matrices. For simplifying
notation, the set of all of these matrices are referenced by
the expressionKA, while the one specific controller matrix
in KA corresponding to a particularξ B is denoted byKA(ξ B).

The online-execution of the decentrally controlled dis-
tributed system takes place as visualized in Fig. 2: When
CA receives the information frompA that stateξ A

k is reached
1©, CA sends therequestto CB that PB has to reachξ B

F (as
temporary goal state ofPB) 2©. This state is encoded inKA

in order to realize a cost-optimal path ofPA into its goal state
xA

F . Then,CB realizes a path ofPB into ξ B
F (possibly several

steps in 3©). The controllerCB communicates toCA the
information that the requested state is reached4©. Eventually,
the control inputνA

k supplied byCA together withξ B
F send

by PB triggers the state transition inPA 5©.
Figure 3 illustrates the flow of information for the offline-

computation of the control laws. In the first step1©, the
matrix KB of controllerCB is synthesized, andΠB

opt contains

CA CB

PA PB

ΠB
opt

νA
kξ A

k
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kξ B
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1©2©

Fig. 3. Information flow within the offline synthesis ofKA andKB.

the optimal transfer costs (according to Def. 5) for any pairof
initial and goal state inXB. Since the synthesis ofKB does
not depend on any other subsystem, the online-procedure
presented in [20] can be used for the transfer in a temporary
goal stateξ B

F . The more intricate task of synthesizingKA,
see step2© in Fig. 3, which builds upon the matrixΠB

opt, is
subject of the next section.

IV. CONTROLLER SYNTHESIS

This section describes the algorithm to compute the con-
troller matrices by which a subsystem reaches a goal state
with minimal costs. In addition, it is shown that the controller
matrices can be computed separately if the matrix of optimal
transition costs from the adjacent subsystem with the next
higher index is available, i.e. ifΠB

opt is known for computing
KA. The positive effect on the computational effort necessary
for decentralized controller synthesis is discussed in thelast
part of the section.

A. Synthesis algorithm for two subsystems

Algorithm 1 for computing the controller matrixKA fol-
lows the dynamic programming principle [22]. It can be
interpreted as a version of the Bellman-Ford algorithm (see
[23]) with reversed transition through the graph ofPA with
additional consideration of the dependency on the state of
the subsystemPB.

As input data, Alg. 1 requires the transition cost matrices
ΠA

ν of PA for all ν ∈ UA, the dependency matrixWA, the
matrix ΠB

opt of optimal path costs of subsystemB, and a
pair of goal statesξ A

F and ξ B
F . The algorithm starts with

initializing the entries of the controller matricesKA(ξ B) to
0 for all ξ B ∈ XB, and the cost matrixH0 is initialized to∞
for any entry. In the course of the algorithm, the matrixHi ∈
R

nA×nB
≥0 is iteratively updated to contain upon termination in

the elementHi( j, l) the minimized costs for transferringP
from the state pairj ∈ XA and l ∈ XB to the specified pair of
goal states. The transfer requires at mosti ·nB steps since, in
the worst case,PA has to wait fornB steps until the relevant
dependency condition of the respective step is satisfied. This
is due to the fact that the number of transitions to transfer the
completely controllable subsystemPB between two arbitrary
states is at mostnB. The initialization of the cost matrixH0

is modified to zero for the element which refers to the pair
of goal states(ξ A

F ,ξ B
F ).

In the first step of the main while-loop of Alg. 1, the
cost matrix Hi is initialized to the result of the previous
iteration. In any iteration, the objective is to check if a cost
reduction inHi is possible for any combination of discrete
states{1, ...,nA} ∈ XA, discrete inputs{1, ...,mA} ∈UA, and
discrete states{1, ...,nB} ∈ XB. In detail, the costs for a
transition ofPA from statek to statej triggered by the input
m are computed and compared to the best costs computed
so far. For this transition, two cases have to be considered:
PA requires thatPB is currently in a specific discrete state
(WA(m,k) > 0), or the transition fromk to j by input m is
independent of the current state ofPB (WA(m,k) = 0).



Data: Transition cost matricesΠA
ν , dependency matrixWA,

the matrixΠB
opt, goal statesξ A

F and ξ B
F

Result: Control matricesKA(ξ B) to transferPA andPB to the
goal states with minimized total costs

KA(ξ B) = 0mA×nA for all ξ B = 1, ...,nB;
H0 = ∞nA×nB;
H0(ξ A

F ,ξ B
F ) = 0;

control= 0 ;
i = 1 ;
while control= 0 do

Hi = Hi−1;
for k= 1 : nA do

for m= 1 : mA do
for l = 1 : nB do

j = (1 : nA) ·FA
m(:,k);

if WA(m,k)> 0 then
r =WA(m,k);
if Hi−1( j , r)+ΠA

m( j ,k)+ΠB
opt(r, l)<

Hi(k, l) then
Hi(k, l) =
Hi−1( j , r)+ΠA

m( j ,k)+ΠB
opt(r, l);

KA(l)(:,k) = 0;
KA(l)(m,k) = 1;

end
else

if Hi−1( j , l)+ΠA
m( j ,k)< Hi(k, l) then

Hi(k, l) = Hi−1( j , l)+ΠA
m( j ,k);

KA(l)(:,k) = 0;
KA(l)(m,k) = 1;

end
end

end
end

end
if Hi = Hi−1 then

control= 1;
else

i = i+1;
end

end
Algorithm 1: Computation ofKA(ξ B

k ).

For the first case, the discrete stater = WA(m,k) ∈ XB

of PB (as required for the transition ofPA) is determined.
Then, the costs for the considered transition are computed
by ΠA

m( j,k)+ΠB
opt(r, l). This value is composed of the local

transition costsΠA
m( j,k) and the optimal transition costs

ΠB
opt(r, l) assigned to a transition necessary to satisfy the

dependency condition of the considered transition ofPA. If
this transition leads to a cost reduction for the momentarily
investigated combination of stateskA and lB, i.e. if:

Hi−1( j, r)+ΠA
m( j,k)+ΠB

opt(r, l)< Hi(k, l) (8)

applies, the value ofHi(k, l) is updated to the lower value.
In this case, the entries of the controller matrix are updated
by replacing a possibly existing non-zero entry ofKA for
the currently investigated state by zero, and by setting the
entry KA(l)(m,k), which corresponds to the momentarily
investigated pair of state and input, to 1.

The procedure for the case ofWA(m,k) = 0 is very similar:

sinceWA(m,k) = 0 encodes that the currently investigated
transition of PA is independent of the current state ofPB,
only the local transition costs ofPA are determined, andHi

is checked for a cost reduction. If the costs are lowered, the
controller matrix is updated.

The algorithm terminates at the end of a while-iteration
if Hi = Hi−1 applies, i.e. if no further cost reduction can be
determined. Since the longest path (without cycles) between
two arbitrary states ofPA does at most containnA states, the
number of iterations of the while-loop is also limited tonA.

The controller matricesKB for the subsystemPB can be
computed by a simplified variant of Alg. 1: since no depen-
dencies to another subsystem are present, the dependency
matrix WB is a zero-matrix andHi is one-dimensional. This
means that the caseWB(m,k) > 0 never occurs, and only
those for-loops are required, which correspond to the state
and input sets of the subsystemPB. This variant of Alg. 1
leads to the simplified synthesis procedure presented in [20].

The local controller matricesKA and KB determined by
these algorithms transfer the system fromarbitrary initial
statesξ A

0 and ξ B
0 into the specified pair of goal statesξ A

F
andξ B

F with minimal global costsJglobal according to (5).

B. Effort estimation of the controller synthesis procedure

The computation of the controller matricesKA andKB by
the method introduced in this paper consists of two parts.
The first part includes to computeΠB

opt andKB. The compu-
tational effort for this task is of the orderO(n2

BmB+n3
B). The

computation ofKA represents the second part, and its com-
putational effort grows withO(n2

AmAnB). Hence, the overall
computational effort is of the orderO(n2

BmB+n2
AmAnB+n3

B).
A natural algorithmic competitor of the procedure

proposed here is a centralized design, i.e. to compute
the parallel composition ofPA and PB, and to apply the
procedure as mentioned above forPB to the composition.
The computation of local control laws for the composed
system consists of 4 steps: First, the composition and
the corresponding transition cost matricesΠP

i have to be
determined, leading to an effort of the orderO(nAnBmAmB).
This step is followed by the determination of the matrices
of optimal one-step transition costs withO(n2

An2
BmAmB).

The third step computes the controller matrixK for the
composed system with an effort ofO(n2

An2
B) (according to

the procedure in [20]). Finally, the controller matricesKA

andKB have to extracted fromK, what incurs computational
costs ofO(nAnB). In total, the effort for this alternative to
compute the local control laws can be summarized to be of
orderO(n2

An2
BmAmB).

C. Extensions of Algorithm 1

The algorithm 1 is formulated for the case of one specified
pair of goal statesξ A

F and ξ B
F . However, the algorithm

succeeds also in computing the controller matrixKA for
arbitrary sets of goal states by setting the value 0 to all
entries ofH0. For the example of a pairξ A

F,1 and ξ B
F,1 of

goal states as well as a pairξ A
F,2 and ξ B

F,2 respectively, the



entriesH0(ξ A
F,1,ξ B

F,1) andH0(ξ A
F,2,ξ B

F,2) have to be set to zero,
while the rest remains the same.

As already mentioned, the proposed synthesis procedure
is also applicable for systemsP with more thanz= 2 sub-
systems, but the computations require slight modifications:
While for z= 2, the computation ofKA requires the matrix
ΠB

opt, the case forz= 3 with P = {PA,PB,PC} requires a
matrix ΠB,C

opt when determiningKA. The matrixΠB,C
opt contains

the optimal path costs for any combination of initial states
ξ B

0 , ξC
0 and goal statesξ B

F , ξC
F with ξ B

0 ,ξC
F ∈XB andξC

0 ,ξ
C
F ∈

XC. In addition, the controller matrixKA depends on the
current stateξ B

k of PB and the current stateξC
k of PC. Thus,

the matrixH0 ∈ R
nA×nB×nC has three dimensions, such that

the algorithm has to comprise a further for-loop over the
states inXC = {1C, ...,nC

C}.

V. I LLUSTRATIVE EXAMPLE

The method introduced before is now illustrated by appli-
cation to a relatively small section of a larger manufacturing
process. It consists of two linearly dependent machines,
wherePB represents a bending machine which can produce
parts of two different shapes. Fig. 4 shows the transition
graph of PB containing the discrete states, discrete inputs,
and costs of the transitions representing the bending process.
Starting from an initial stateξ B = 1B, two different shapes
(represented byξ = 2B respectivelyξ = 3B) can be produced.
The notation of the transition fromξ B = 1B to ξ B = 2B

encodes that this transition is triggered by the local input
νB = 1B and entails costs of 2. Note that after the first
bending process, it is possible to reshape the two types to
the respective other type with additional effort. Subsequently,
a varnishing process withinPB leads to the final products:
ξ B = 4B represents a red product, andξ B = 5B represents a
blue product.

The other machine (modeled asPA and supplied by
PB) mounts the bent parts and a base plate to one new
product according to two different specifications: The first
end product consists of two blue components, while the
second one consists of two blue components and one red
component. Fig. 5 shows the transition graph corresponding
to PA, containing the discrete states, discrete inputs, costs
of transitions, and the dependency conditions. The mounting
process can be understood as follows: From the initial state

1B,2

2B,3 3B,1 4B,3

5B,3

6B,4

7B
,1

7B
,1

1B

2B

3B

4B

5B

Fig. 4. Graph of the bending machinePB. The transitions are labelled
by the discrete inputνB

k , and the local transition costsπ(ξ B
k ,ξ

B
k+1,ν

B
k ). No

self-loop transitions are shown.

1A,2,5B

2A,3,4B

1A,2,5B

4A,9,4B

3A,3,5B

4A,9,4B

3A
,3,5B

1A,2,5B

1A

2A

3A

4A

5A

6A

7A

Fig. 5. Graph of the mounting machinePA. The transition labeling includes
the discrete inputνA

k , the transition costsπ(ξ A
k ,ξ

A
k+1,ν

A
k ), and the entry of

the dependency matrixWA. For the sake of clarity, self-loop transitions are
not shown.

ξ A = 1A, a bent blue product (ξ A = 2A) or a bent red product
(ξ A = 3A) is mounted to the base plate.

Since no buffer is present in between the machinesPA

andPB, it is important that machineB produces a part only
if this is required currently by machinePA. The transitions
are here denoted such that, e.g., the transition fromξ A = 1A

to ξ A = 2A encodes that this transition is triggered by the
local input νA = 1A, entails costs of 2, and requires that
machinePB is currently in state 5B. All other transitions in
this graph either correspond to mounting a red product or
a blue product. It is important to note that mounting a red
product requires another tool than for a blue product. As the
tool change entails additional costs, the transition costsfrom
6A to 7A (which is structurally identical to the transition from
5A to 7A) are higher. Note that all inputs which do not change
the discrete state have zero costs.

Based on the transition graphs, the dependency matrixWA

and the matrixΠB
opt of optimal path costs are computed:

WA =









5 5 0 0 0 5 0
4 0 0 0 0 0 0
0 0 5 0 5 0 0
0 4 0 4 0 0 0









, ΠB
opt=













0 4 5 1 1
2 0 1 3 3
3 3 0 4 4
5 3 4 0 6
7 7 4 8 0













The controller matrices of machinePB are computed, and
obtained for the example of a goal stateξ B

F = ξ B
4 to:

KB =





















1 0 0 1 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 1





















.

Subsequently, Alg. 1 can be used to compute the controller
matricesKA(ξ B

k ) for the pair of reference statesξ A
F = 7A and



ξ B
F = 1B. For the example ofξ B

k = 2B, the result is

KA(2B) =













0 0 0 0 0 1 1
1 0 0 0 0 0 0
0 0 1 0 1 0 0
0 1 0 1 0 0 0
0 0 0 0 0 0 0













.

Now consider that the current states areξ A
k = 2A andξ B

k =2B.
The path with minimal local costs forPA is 2A → 4A → 7A.
Nevertheless, the controllerCA chooses the inputνA

k = 4A,
which corresponds to the path 2A → 5A(→ 7A). The reason
for this choice is that the incurred local costs for the
corresponding path ofPB are lower as the contribution for
the path 2A → 5A → 7A of subsystemPA.

The time for the computation of this control law with an
implementation of Algorithm 1 in Matlab is 5 milliseconds
(Intel R© CoreTM i5 CPU @ 2.67 GHz x 4). For comparison,
the solution with parallel composition ofPA andPB and sub-
sequent computation of a centralized controller (as sketched
in Sec. IV-B) requires 0.31 seconds for the same example,
i.e. the effort is by a factor of 60 higher already for this small
example when using a centralized design.

VI. CONCLUSION

The paper has proposed a method for computing local
controller matrices for DES with linear dependency structure.
The local controller matrices generate discrete inputs such
that a global cost criterion is minimized. The sequential com-
putation of the local conrollers enabled by the dependency
structure leads to a significant reduction of the computational
effort compared to parallel composition and computation of
a centralized control law (which may be implemented in
decentralized fashion afterwards). This is shown exemplarily
for the computation of a control law for a structure consisting
of two subsystemsPA andPB. The reason for the significant
effort reduction is the separation of tasks, since the controller
KB can be determined independently ofPA. As a further
result of the computation of the local controller matrix for
PB, the matrix ΠB

opt is generated. This matrix enables the
controller ofPA to compute local controller matrices without
explicitely considering the dynamical processes ofPB. The
main advantage is that the numbermB of possible discrete
input values ofPB is only relevant for the local synthesis
of KB. For Alg. 1, the numbermB is not relevant, i.e. the
algorithms for computingKA andKB are less dependent on
each other as in centralized computation.

Topics of current investigations are the extensions to
tree-like dependency structures as well as the use for bi-
directional interconnections of subsystems.
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