
HW Componentizing Kernel: A New Approach to address

the Mega Complexity of Future Automotive CPS

Jong-Chan Kim, Kyoung-Soo We, and Chang-Gun Lee ∗

1 Introduction

Automobile is an important application of CPS (Cyber Physical System). However, current
software development process in the automotive industry is not adequate to solve the unique
problems of CPS. This paper pinpoints the limitations of the current automotive software devel-
opment process in the perspective of CPS and proposes a new kernel-based approach called HW

componentizing kernel as a solution.

2 Background, Motivations, and Challenges

Due to the distributed nature of automotive systems, automakers are forced to integrate soft-
ware components independently-developed by different suppliers. Therefore, the design phase,
in which overall architectures and requirements are fixed and verified, has become the most
important part of overall system development process.

In the design phase, automakers define the architecture and requirements, especially for the
timings, as follows: First, the overall system design is described as a chain of software components.
Then, a delay requirement bound as well as functional requirements is defined for each software
component. To ensure that the design safely meets the system’s timing requirements, the sum of
delay bound requirements of software components in the component chain is kept smaller than
the end-to-end delay requirement of the component chain.

Then, tier-1 suppliers develop softwares conforming to the functional requirements and the
delay bound requirement. After the development and the unit test phase, outputs are delivered to
automakers in the form of ECUs, not in the form of independent softwares. Finally, automakers
actually integrate ECUs. During the integration phase, the execution time of each software
component does not change since each software component is physically isolated and does not
interfere with each other. Therefore the final system behaves exactly the same as intended by
the system designer.

∗J.-C. Kim, K.-S. We, and C.-G. Lee ({jongchank, we123456, cglee}@snu.ac.kr) are with the School of Com-
puter Science and Engineering, Seoul National University, Seoul. The corresponding author is C.-G. Lee. The
authors can be contacted by phone at 949-302-8105.



Current design process stated above is well suited to today’s vehicle architectures where each
ECU is designed to serve only a single function. However, automakers now seek for a new
design and integration method to provide more advanced features in less ECUs for at least four
reasons: (1) Manufacturing cost is an important competitiveness factor; (2) To provide more
space to passengers; (3) Wire harness which connects ECUs, sensors, and actuators is becoming
too complex with increasing number of ECUs; and (4) Safety features are combining to form
advanced safety systems rather than working separately. Consequently, each ECU should perform
multiple dependent/independent functions concurrently in the future vehicles.

Unfortunately, however, today’s RTOS does not guarantee that each software component in the
execution environment behaves exactly the same as intended by the system designer because of
the delays caused by higher-priority components. This makes it very difficult to adopt RTOS in
safety-critical parts such as chassis controls and safety systems. Therefore, a new design method
and an execution architecture other than RTOS are required.

3 HW Componentizing Kernel Approach

In this section, we propose a HW componentizing kernel approach as a solution to the challenges
described in Section 2. We start with the design principles of our approach which follows:
(1) The kernel transparently translates the high-level component-based designs into execution
environments; (2) The integration phase does not involve additional mappings between logical
design entities (i.e., software components) and physical execution entities such as tasks and
threads; (3) The functional and non-functional properties of each software component do not
change during the integration phase; and (4) The integrated system behaves exactly the same as
the system designer’s intention.

To satisfy the design principles of the HW componentizing kernel stated above, the high-level
component-based design specifications are passed to the kernel through a newly defined set of
APIs called componentizing API. Then, the componentizing scheduler actually partitions and
componentizes hardware resources such as CPU and RAM into smaller ones called hardware

components that provide guaranteed performance or capacity to fulfill the delay bound require-
ments of the software components. As a result, the HW componentizing kernel guarantees that
each software component bundled with a hardware component behaves as the system designer’s
intention ensuring the integrated system’s timing requirements. The rest of this section briefly
introduces the componentizing API and the componentizing scheduler.

Componentizing API: Our kernel is aware of the high-level component-based design speci-
fications through the componentizing API. Componentizing API gathers information including:
(1) Per-component properties (i.e., execution time, delay bound requirements, program codes to
execute, and the hardware resource to be run on); (2) Inter-component interfaces which connect
components’ input ports and output ports; and (3) Component relation graphs which describe
the precedence relations among software components. Then, the program codes are loaded to
create each component. The input ports and output ports of each component are connected to
form the component chain.

2



Componentizing Scheduler: Componentizing scheduler, which is aware of each component’s
timing requirements through the componentizing API, provides a dedicated hardware compo-
nent with an appropriate proportional performance or capacity to each software component.
A proportional-share algorithm actually partitions a hardware resource into multiple hardware
components. As a result, each software component feels that it is executing on a dedicated
hardware resource (i.e., hardware component) which is slower than the real hardware resource
but able to meet the timing requirement of the software component.

4 Conclusion

This paper presents challenges of future automotive software development in the perspective
of CPS and proposes a HW componentizing kernel approach as a solution. In our HW com-
ponentizing kernel approach, the high-level component-based design is transparently translated
into execution environments by dedicating componentized hardware resources to each software
component. Thus, non-functional properties such as timings of software components as well as
functional properties are preserved during their integration.

Our componentizing kernel approach eventually provides physical compositionality 1 and com-

posability 2 of functional and non-functional properties of software components. To overcome
the mega complexity of future automotive CPS, a physical composition technology as well as a
logical composition methodology is essential.

Biographies

Jong-Chan Kim is a Ph.D. candidate in the School of Computer Science and Engineering at
Seoul National University, Korea and is currently working as a visiting researcher at Hyundai
Mobis, Korea. His current research is focused on the software development process of future
automotive CPS. Kyoung-Soo We is a Ph.D. student in the School of Computer Science and
Engineering at Seoul National University, Korea and is currently working as a visiting researcher
at Hyundai Mobis, Korea. He is currently working on a new software integration method for
automotive softwares. Chang-Gun Lee is currently an Associate Professor in the School of
Computer Science and Engineering, Seoul National University, Korea and also a Visiting Profes-
sor at University of California, Irvine. Previously, he was an Assistant Professor in the Depart-
ment of Electrical and Computer Engineering, The Ohio State University, Columbus from 2002
to 2006, a Research Scientist in the Department of Computer Science, University of Illinois at
Urbana-Champaign from 2000 to 2002, and a Research Engineer in the Advanced Telecomm. Re-
search Lab., LG Information and Communications, Ltd. from 1998 to 2000. His current research
interests include real-time embedded systems, cyber-physical systems, ubiquitous systems, QoS
management, wireless ad-hoc networks, and flash memory systems.

1System-level properties can be computed from local properties of components.
2Component properties are not changing as a result of interactions with other components.

3


