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Abstract

Driving is a complex task, as witnessed by millions of accidents each year which are mostly
caused by human error. Increasing traffic density might even aggravate the challenge for
the driver. Therefore, automotive industry and research strive to exploit recent advances
in sensor technology as well as information processing and communication technologies to
develop more and more driver assistance systems. While most of today’s assistance systems
still rely on purely reactive behavior or very simple short term planning, a more qualified
assistance that is able to handle driving in more complex situations and for more distant
planning horizons requires a detailed trajectory planning as a key ingredient.

This thesis contributes by devising a novel motion planning algorithm that could be used for
autonomously driving vehicles or as a basis for future driver assistance systems. The new
proposed motion planning approach is an integrated trajectory planning method that plans
both path and velocity profile simultaneously. It centers on a predictive force field trajectory
deformation algorithm which is combined with an A*-based trajectory initialization and
thus joins the advantages of predictive potential field methods and A*-based graph search
trajectory planning.

The most fundamental extension of the method compared to previous predictive potential
field methods lies in the integrated planning of a velocity profile by additional degrees of
freedom in the time dimension. Further, the dynamic state of the vehicle is now regarded
in the planning, and limitations to low curvatures stemming from very rough street approx-
imations have been lifted.

The initial solution is generated by an Anytime Weighted A* (AWA*) variant that has
been extended to plan trajectories for road traffic in five dimensions (longitudinal position,
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lateral position, time, orientation, and velocity). The search space is discretized by an
offline generated “state lattice” which allows an efficient coverage and provides a form of
resolution-completeness.

Finally, an autonomous test vehicle has been set up to demonstrate the applicability of
the devised motion planning approach in experimental tests. A BMW vehicle is equipped
with GPS and inertial sensors. A sensor data fusion provides an estimation of the vehicle’s
position and dynamic state. Steering, braking, and accelerating are automated by the
construction and implementation of appropriate actuation modules. The designed motion
control consists of several lower level control loops for the individual actuators and an
integrated lateral and longitudinal control approach based on the method of nonlinear
decoupling. Online trajectory planning and autonomous trajectory following have been
demonstrated successfully in test drives.



Kurzfassung

Autofahren ist eine komplexe und herausfordernde Aufgabe, wie die unzähligen - meist
auf menschliches Fehlverhalten zurückzuführenden - Unfälle Jahr für Jahr belegen. Daher
arbeiten Automobilindustrie und Forschung fieberhaft daran, die stetig wachsenden technis-
chen Möglichkeiten im Bereich der Sensorik, Datenverarbeitung und Kommunikation für
den Fahrer nutzbar machen. Um dem Fahrer in Zukunft aber auch in komplexen Situa-
tionen eine qualifizierte Assistenz oder Automatisierung bieten zu können, die den Fahrer
vorausschauend unterstützt oder gar selber handelt, ist eine detaillierte Trajektorienplanung
unabdingbar.

Der Beitrag dieser Arbeit besteht hauptsächlich in dem neu entwickelten Trajektorienpla-
nungsverfahren, das die Vorteile einer A*-basierten Graphensuche sowie die von vorauss-
chauenden Potentialfeldansätzen in einem Initialisierungs- und einem Optimierungsschritt
ausnutzt. Dabei werden Bahn und Geschwindigkeitsprofil simultan geplant.

Die grundlegende Weiterentwicklung der Trajektorienoptimierung liegt in einer Erweiterung,
die die simultane Planung bzw. Optimierung von Weg und Geschwindigkeitsprofil er-
möglicht. Im Unterschied zu früheren Entwicklungsständen der Methode wird hier der
dynamische Fahrzeugzustand berücksichtigt. Außerdem wurden durch die Verwendung
lokaler Koordinatensysteme viele vorherige Einschränkungen auf bestimmte Straßenverläufe
eliminiert.

Die stichprobenbasierte Trajektorieninitialisierung basiert auf der Weiterentwicklung eines
Anytime Weighted A* (AWA*) Verfahrens. Der Suchraum (Längsposition, Querposition,
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Zeit, Orientierung und Geschwindigkeit) wird hier durch einen offline generierten “State-
lattice” diskretisiert, was eine effiziente Suche und eine Art der Auflösungs-Vollständigkeit
gewährleistet.

Zusätzlich zu der Entwicklung des beschriebenen Trajektorienplanungsverfahrens wurde
ein Versuchsfahrzeug aufgebaut, um die Anwendbarkeit des entwickelten Verfahrens für au-
tonomes Fahren zu demonstrieren. Dazu wurde ein BMW mit der notwendigen Aktorik,
Sensorik und Informationsverarbeitung ausgestattet. Die Zustandsbestimmung basiert auf
der Datenfusion aus GPS und Inertialsensorik. Durch die Konstruktion geeigneter Adapter
wurden Lenkung, Bremssystem und Antriebsstrang automatisiert und sind über einen
PC steuerbar. Die Fahrzeugregelung besteht aus einer Reihe unterlagerter Regelkreise
sowie einem Regleransatz zur integrierten Längs- und Querführung nach dem Prinzip
der nichtlinearen Entkopplung. Die Anwendbarkeit des Planungsverfahrens zur Online-
Trajektorienplanung, sowie die Funktionsfähigkeit der implementierten Hard- und Software
zur Fahrzeugregelung wurden in Fahrversuchen erfolgreich demonstriert.
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Notation Principles and Abbreviations

Notation Principles

Here, some general notation principles for this thesis are introduced to simplify reading.
The meaning of all variables and symbols is explained wherever they are introduced in this
thesis.

Objects and Constraints

T planned trajectory,
O obstacles,
R road,
V ego vehicle,
C dynamic constraints

Spaces

WT augmented workspace 〈x, y, t〉,
CT augmented configuration space 〈x, y, ψ, t〉,
XT augmented phase space 〈x, y, ψ, v, a, ay, ȧ, ȧy, t〉

Sets, Lists

Γ goal set for trajectory initialization,
Λ set of motion primitives for trajectory initialization,
OPEN list of nodes to explore in trajectory initialization
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Figure 0.1.: Street representation and relevant reference frames. The reference frame 6-CL
is only used in the appendix and illustrated there.

Reference Frames

6-E Earth fixed reference frame
{E∗, Eex, Eey, Eet}

6-R Road fixed reference frame fixed at planning time t0
{R∗, Rex, Rey, Ret}

6 -R̃ (s̃) Road centerline reference frame, shifted with the arclength s̃{
R̃∗, R̃ex, R̃ey, R̃et

}
6-̃R
i Road centerline reference frame for point Pi{

R̃i∗, R̃iex, R̃iey, R̃iet
}

6-R̂
k Road segment fixed reference frame of segment R̂k{

R̂k∗, R̂kex, R̂key, R̂ket
}

6-CL Clothoid fixed auxiliary reference frame
{CL∗, CLex, CLey, CLet}

6-V Vehicle fixed reference frame of ego-vehicle
{V ∗, V ex, V ey, V et}

6-Oj Obstacle fixed reference frame of obstacle Oj{
O∗j , Ojex, Ojey, Ojet

}

The reference frames are illustrated in Figure 0.1.
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Vector Notation Principles

V rA,B vector from A to B, represented in 6-V,
E
VvA velocity of A relative to E, represented in 6-V,
E
V v

A
x x-component in 6-V of velocity of point A relative to E,

E
V aA acceleration of A relative to E, represented in 6-V,
E
V a

A
x x-component in 6-V of acceleration of A relative to E,

E
Vω

V yawrate of V in E, represented in 6-V,
VFA Force at A, represented in 6-V,
VF

A
x x-component in 6-V of force at A
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Abbreviations

Abbreviation Meaning

ABC Active Body Control
ABS Anti-Lock Braking System
ACC Adaptive Cruise Control
AD* Anytime-Dynamic-A*
ADMA Automative Dynamic Motion Analyzer
AFS Active Front Steering
AHW Automation HardWare
ARA* Anytime Repairing A*
AWA* Anytime Weighted A*
BkRRT Best of k-nearest neighbor RRT
CA Collision Avoidance
CAN Controller Area Network
CEP Circle of Equal Probability
CMS Collision Mitigation System
CVM Curvature Velocity Method
D* Dynamic A*
D/A Digital-to-Analog
DARPA Defense Advanced Research Projects Agency
DGPS Differential Global Positioning System
DRRT Dynamic RRT
DSC Dynamic Stability Control System
DUC DARPA Urban Challenge
DWA Dynamic Window Approach
EBD Electronic Brakeforce Distribution
EKF Extended Kalman Filter
ERRT Extended RRT
ESP Electronic Stability Program
ETC Electronic Traction Control
FSA* Fringe Saving A*
FSM Finite State Machine
GA Genetic Algorithm
GCC Global Chassis Control
GDWA Global Dynamic Window Approach
GND Global Nearness Diagram
GPS Global Positioning System
GSM Global System for Mobile Communications
HC Heading Control
HIDS Honda Intelligent Driver Support System
HMI Human-Machine Interaction
hRRT heuristically-guided RRT
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Abbreviation Meaning

HW HardWare
IkRRT Iterative k-nearest neighbor RRT
IMU Inertial Measurement Unit
LADAR LAser RADAR
LCM Lane Curvature Method
LIDAR LIght Detection And Ranging
LDW Lane Departure Warning
LKA Lane Keeping Assistance
LKS Lane Keeping Support
LPA* Lifelong Planning A*
LPM Local Planning Method
LQR Linear Quadratic Regulator
MPRRT MultiPartite RRT
ND Nearness Diagram
NF Navigation Function
NLVO NonLinear Velocity Obstacles
NTG Nonlinear Trajectory Generation
OBB Oriented Bounding Boxes
PID Propotional Integral Derivative
PRM Probabilistic RoadMap
RADAR RAdiation Detection And Ranging
RAS Richtlinien für die Anlage von Straßen
RDT Rapidly Exploring Dense Trees
RNDF Road Network Definition File
RRT Rapidly Exploring Random Trees
RSC Roll Stability Control
RTK RealTime Kinematics
SbW Steer by Wire
SMPL Straightforward Modular Prototyping Library
SOR Successive Over Relaxation
TCC Torque Converter Clutch
UKF Unscented Kalman Filter
VCD Vertial Cell Decomposition
VD Voronoi Diagram
VDM Vehicle Dynamics Management
VFH Vector Field Histogram
VO Velocity Obstacles
VR Voronoi Region





CHAPTER 1

Introduction and State of the Art

Statistics show that the number of motor vehicles in Germany has increased by over 150%
from 20.8 to 52.3 million from 1970 to 2010 and the traffic volume has multiplied even
more tremendously over the last decades, thus probably increasing the average complexity
of traffic situations, [Destatis, 2011b]. Improvements in infrastructure, better education
of young drivers, enhanced emergency services, and many passive safety systems such as
headrests, seatbelts, or airbags have tremendously decreased fatalities in accidents by almost
83% from 1970 to 2010, see Figure 1.1. At the same time the total number of accidents
has even increased from less than 1.4 million in 1970 to over 2.4 million in 2010 [Destatis,
2011a]. Further, the general cause for accidents largely remains the same: Still about 84%
of all traffic accidents are caused by human failure of the driver, [Destatis, 2011b], whereas
technical failures are mentioned in only 0.9% of the accidents in the statistic.

Therefore, it seems obvious that traffic safety might be improved by actively assisting the
driver with his task of driving, thereby helping him to cope with increasingly difficult
traffic situations and aiding to actively prevent accidents rather than just mitigating their
consequences. These systems are called active safety systems. [Thurner et al., 1998] already
expected in 1998 the remaining safety potential of these accident avoiding active safety
systems to be much higher than the almost fully exploited potential of passive safety systems,
see Figure 1.2.
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Figure 1.1.: Development of road traffic and accidents, [Destatis, 2011a,b]
While the traffic volume has multiplied, the number of casualties has decreased due to passive
safety systems, regulations and improved infrastructure. The number of injuries, however,
has decreased much less, and the number of accidents has even increased showing existing
potential for active safety systems. (Until 1990 former territory of Federal Republic.)

Figure 1.2.: Roadmap for active and passive safety systems, [Thurner et al., 1998]
While the safety potential of passive systems is almost fully exploited, active safety systems
still offer a large potential for further improvements in traffic safety.
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According to [Bernotat, 1970; Donges, 1982; Rasmussen, 1983], the task of driving can be
subdivided into three levels or subtasks: navigation, guidance, and stabilization, see Figure
1.3. For higher automated systems, these subtasks are attributed to different layers in the
system architecture, called strategic layer, tactical layer and reactive layer. They differ in
their respective time horizons.

Figure 1.3.: Driving task acc. to Bernotat, Donges and Rasmussen akin to [Donges, 2009]
The driving task is divided into a strategic, a tactical, and a reactive layer. Knowledge-based,
behavior-based, and skill-based behavior of a human driver acc. to [Rasmussen, 1983] can
be linked to these layers and the different driving tasks acc. to [Donges, 1982] as displayed.

Navigational tasks on the Strategic Layer have the longest time horizon. Here, a route is
planned from a starting point to a goal. In autonomous systems this plan is often also
referred to as a mission.

The Tactical Layer is responsible for the guidance of the vehicle and contains the develop-
ment and execution of short term plans for the upcoming maneuver(s). For example, it is
decided whether or not to overtake another vehicle or which lane to choose to prevent a
potentially dangerous situation from occurring.

The shortest time horizon is attributed to the stabilization in the Reactive Layer. This
layer comprises the instantaneous control of the vehicle’s dynamic state. It is responsible to
compensate disturbances such as wind or a changing road surface and to prevent instabilities
during the vehicle guidance such as skidding.
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Driver assistance systems have the longest tradition for the strategic and reactive layer while
still fewer assistance is available on the tactical layer. Assistance on the strategic level is
provided by numerous navigation systems. On the reactive levels, among the most abun-
dant are the Anti-Lock Braking System (ABS) and the Electronic Stability Program (ESP)
by Bosch, introduced into the market by DaimlerChrysler in 1979 and 1995, respectively,
see [Schuette and Waeltermann, 2005]. Beyond that, many more stabilization programs
and functionalities have been devised, such as Roll Stability Control (RSC) or Active Front
Steering (AFS). Newer developments like Global Chassis Control (GCC) [Andreasson and
Bünte, 2006] or Vehicle Dynamics Management (VDM) [Trächtler, 2004] aim at the inte-
gration of several subsystems to achieve desired overall vehicle dynamics. On the guidance
level, however, still fewer assistance is available to guide the driver and his vehicle through
increasingly complex traffic situations.

With the advent of environmental sensors such as Radiation Detection and Ranging
(RADAR), Light Detection and Ranging (LIDAR), and video cameras in passenger ve-
hicles, first assistance systems for vehicle guidance were developed. These include Adaptive
Cruise Control (ACC) for longitudinal guidance, see e.g. [Winner et al., 1996], and Lane
Departure Warning (LDW) for lateral guidance, as described e.g. in [Suzuki and Jansson,
2003]. A general overview of early systems on the guidance level can further be found in
[Vahidi and Eskandarian, 2003].

ACC was introduced by Mitsubishi in 1995 and Toyota in 1996. As first European carmakers,
Mercedes and Jaguar followed in 1999 by introducing ACC in the S-Class (ACC is here
called Distronic) and the Jaguar XKR, respectively, followed by BMW’s 7-series in early
2000. These systems are based on RADAR or LIDAR sensors to measure the distance,
velocity, and heading angle of preceding vehicles and adapt the velocity of the ego vehicle
to follow leading vehicles at a safe distance. However, ACC is rather comfort oriented
and not designed to provide safe longitudinal guidance control by itself since the applied
deceleration is limited to a comfortable level, for example 2,5 m/s2, [Özgüner et al., 2007].

Further developments include the extension of ACC to stop-and-go traffic and the integra-
tion of forward collision warning and avoidance, [Piao and McDonald, 2008]. Examples of
such a system are the RADAR-based active brake assistance system which is available in
the Mercedes S-class since 2005 or Honda’s Collision Mitigation System (CMS). As other
similar products, the CMS follows an escalation strategy to mitigate collisions. First, a
warning signal is activated when the distance to the preceding vehicle becomes too small.
Then the system brakes, stepwise increasing the deceleration to a maximum of about 6
m/s2 as the danger of a collision increases. In addition, the system enhances any existing
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yet insufficient reactions by the driver in this situation. Even though such collision miti-
gation systems cannot avoid accidents autonomously, they provide an additional support
to the driver and can reduce the collision severity, [Kodaka and Gayko, 2004]. Completely
autonomous emergency brake systems that activate in time to prevent collisions have also
already been researched, see e.g. [Kopischke, 2000]. Volvo has integrated such a function-
ality for low speeds in its City Safety System introduced in the XC60 which brakes and
stops the car autonomously to prevent forward collisions at velocities of less than 30 km/h,
[Avery and Weekes, 2008].

First driver assistance systems for lateral vehicle guidance were Lane Keeping Assistance
(LKA) systems. First LKA systems where limited to warnings, therefore dubbed Lane
Departure Warning (LDW) systems. LDW systems observe the lane marking of the road
with video sensors and warn the driver if he leaves the lane unintendedly. They were first
introduced in trucks, for example by Mercedes or MAN. Nissan introduced the first LKA
system in a passenger car in the Cima in 2001. The interaction with the human driver
varies and includes beeping sounds, blinking lights, vibrations in the steering wheel or seat,
or combinations thereof. Newer LKA systems guide the driver closer and give feedback
when he deviates from the middle of his lane and not only when he leaves the lane. This
kind of support is often referred to as Lane Keeping Support (LKS) or Heading Control
(HC). Newer systems include an integration with longitudinal assistance such as the Honda
Intelligent Driver Support System (HIDS) which was introduced to the Japanese market in
2002. It combines ACC with LKS. Based on lane detection by a video sensor, an auxiliary
supportive momentum is added to the driver’s action, [Ishida et al., 2004].

Current developments focus on a further integration of different longitudinal and lateral
guidance functions. This includes assistance for maneuvers that require a higher amount of
active steering like assisted lane changes, assisted overtaking, or highly automated driving,
such as in the EU projects HAVEit, [Hoeger et al., 2008]. In addition to assistance in
“normal” traffic situations, automatic or assisted collision avoidance systems have been
researched that do not only brake but are also capable of steering or combined steering and
braking to prevent impending collisions. [Mildner, 2004] describes a method to compute
trajectories for simultaneous braking and evasion. The research project PRORETA uses
similarly planned trajectories to devise a system for automatic collision avoidance, see
[Bender et al., 2007]. Current research efforts in active assistance and automation in normal
and emergency situations include for example the EU project interactIVe, [Etemad, 2010].

One of the challenges for the development of driver assistance systems on the guidance
level is posed by the sensory requirements. In order to plan ahead on a highway for five
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seconds at 100km/h, that is for about 140m, oncoming traffic would have to be detected
at a distance of at least 280m. Environment recognition at these distances, however, is
still subject to research and not reliably possible at the moment. Needless to note that a
whole overtaking maneuver might even take considerably longer than the mentioned time
frame.

Nevertheless, as the sensor ranges are increasing and additional environmental information
becomes available through Car-to-Car and Car-to-Infrastructure communication, the sen-
sors might no longer be the sole limiting factor for future driver assistance. With more
reliable information the number of options for the vehicle increases since complex maneu-
vers might be performed inside the sensor range. Current assistance systems are all based
on either no or a very limited maneuver planning. Lane change assistance for example only
needs fixed predetermined trajectories for lane changes to the right and left. Collision avoid-
ance systems are based only on simple maneuvers with certain lateral offsets that must be
achieved. Even the current efforts in purely autonomous driving use sophisticated planning
algorithms only for parking lot situations and not for road driving, see the review in the
Annex A. This, too, can be related to still existing sensory limitations.

In order to provide a more qualified assistance in complex traffic situations and for more
distant planning horizons, an underlying detailed trajectory planning is necessary. These
planned trajectories can then be either executed autonomously or used as a basis for quali-
fied driver assistance.

It is therefore the goal of this work to contribute by devising a new motion planning algo-
rithm that could be used as a foundation for future autonomous driving or driver assistance
systems. The applicability of the developed algorithm is demonstrated in experiments with
an autonomously driving test vehicle. The following sections offer an extensive review of
existing motion planning approaches (Section 1.1) and provide an overview over available
path or trajectory tracking controllers (Section 1.2). Section 1.3 details the contributions
and structure of this thesis.

1.1. Motion Planning

A key ingredient to the autonomous motion of a car or a qualified driver assistance is the
planning of motion. Besides vehicle guidance, motion planning problems occur in many dif-
ferent disciplines such as in nautics, avionics, or robotics. Even though nautics and avionics
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provide for a large number of different approaches for motion planning and collision avoid-
ance, these methods are generally not applicable in motion planning for vehicle guidance.
In both areas, motions are far less restricted. The dynamics also differ much from that of
an automobile. In avionics, even an additional dimension (elevation) is available. Therefore,
the field of robotics is usually searched for motion planning approaches to be adapted for
use in automotive vehicle guidance.

In their survey of over a hundred different motion planning algorithms in [Hwang and
Ahuja, 1992], Hwang and Ahuja classify the different methods according to their search
space representation, the application domain, and their quality. These aspects are discussed
in the following Sections 1.1.1 - 1.1.3. Sections 1.1.4 and 1.1.5 give an overview over existing
planning algorithms, dividing them with regards to their scope into reactive (Section 1.1.4)
and deliberative algorithms (Section 1.1.5). The scope can be regarded as one aspect of the
attribute quality, as discussed later.

1.1.1. Search Space Representation

The environment can be represented in various different ways, differing by the dimensions
that define the search space and the underlying paradigm that is used to enable or facilitate
its exploration.

Even though any combination of different dimensions can be used to define the search space,
the most common search space representations are:

• Workspace,

• Configuration Space,

• Phase Space, and

• Command Space.

Most basic and intuitive alternative is to make the search space equal to the workspace
W. The workspace includes the physical dimensions that determine a certain location.
Therefore it usually has three dimensions (x,y,z), or can be reduced to a two dimensional
space (x,y) in case the robot is restricted to a plane.

Furthermore, the search can be performed in the configuration space C, which was first
presented in [Lozano-Perez and Wesley, 1979]. It allows to represent all points by just
one coordinate: The dimensionality of the configuration-space C is equal to the degrees of
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freedom of the robot. The vector q ∈ C specifies the robot’s configuration and therefore
its location in the configuration space.

In order to allow an easier representation of existing differential constraints, the phase space
X can be used. Here temporal derivatives of configurations space dimensions are added as
new dimensions until all differential constraints can be represented as first order terms
[LaValle, 2006, p. 736].

One major disadvantage of high dimensional search spaces, such as configuration space or
phase space, is that the size of the search space increases exponentially with the number
of dimensions. Therefore, an extensive search of a highly dimensional space may take
exceedingly long. In addition, many of the trajectories that are can be planned in the
configuration space may not be realizable by the operational layer. In order to avoid this,
Kelly and Stentz elected to represent trajectories implicitly in terms of actuator commands,
[Kelly and Stentz, 1998]. This alternative search space is dubbed command space. The
satisfaction of environment constraints can for example be verified by means of an additional
forward simulation in the workspace.

In their survey of motion planning algorithms, Hwang and Ahuja identify four distinct
underlying paradigms which differ in their environment representation and exploration:

• Skeletons,

• Cell Decompositions,

• Mathematical Programming, and

• Potential Fields.

A Skeleton denotes a one-dimensional, homeotopically equivalent representation of the free-
space. Cell Decompositions consists of dissections of the free-space into simple volumes. In
Mathematical Programming, constraints are represented through linear inequalities. Last,
the physical metaphor of Potential Fields can be used to represent the environment in a
potential field hazard map.

Clearly, additional representations exist such as in behavior or rule-based approaches or
genetic algorithms, where the free space is represented as genes which are subject to muta-
tion, recombination, and selection processes. This list might be augmented by other forms
of representation for different algorithms. In addition, a number of combinations of these
paradigms are possible.
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1.1.2. Application Domain

The characterization of the application domain of a certain motion planning algorithm
includes the specification of allowed robot properties and the classification of the overall
problem.

The allowed robot properties encompasses all geometric, kinematic and dynamic restrictions
that apply to the given robot.

With regards to the problem class, the survey [Kavraki and LaValle, 2008] discriminates
between several classes ensuing from the level of abstraction and the set of constraints in
deterministic motion planning: geometric planning problems, time varying problems, and
problems with differential constraints.

In the geometric path planning problem a robot has to move without collision from an initial
position to a goal position in a world of static and fully known obstacles. The world in
which the robot operates, termed the workspace W, is three-dimensional. Often the robot
is constrained to a plane and the workspace is then assumed to be two-dimensional. The
subset of the workspace occupied by the robot and the obstacles is given by the closed sets
A and O.

As an extension of the geometric planning problem, the time varying planning problem
allows mobile obstacles. Obstacle regions are predicted for all points of time between the
start-time of plan-execution and the arrival-time at any goal or intermediate position. The
search space is augmented by the time dimension, so that validity can be checked against
the predicted positions of the obstacles for each configuration (q, t) ∈ X = CT.

In addition to the global constraints imposed by the obstacles in the geometric planning
problem, problems with differential constraints introduce local constraints arising when the
system’s motion is modeled by a differential equation. The search space, then termed phase
space [LaValle, 2006, p. 736], contains dimensions for the configuration and for the time
derivatives of the configuration: x = (q, q̇).

1.1.3. Quality

The quality of an algorithm is determined by its completeness and scope.

The completeness of an algorithm depends on the algorithm’s ability to guarantee termina-
tion with a valid solution. A complete algorithm finds a plan in finite time for environments,
where plans between start and goal configuration exist. Weaker forms of completeness are



10 1. Introduction and State of the Art

resolution completeness and probabilistic completeness. A resolution-complete algorithm
discretizes continuous quantities, such as obstacle-volume or robot configurations, and is
able to increase accuracy by increasing resolution, so that completeness is gained in the
limit. Randomized algorithms can be probabilistically complete if the probability to find a
solution approaches one in the limit. Resolution- or probabilistically-complete methods may
lack the ability to determine exactly whether a solution exists, but at least the feasibility
of motion from start to goal is guaranteed when a solution is found.

The scope of a method describes how much environmental information is used as a decision
basis in a search algorithm. Algorithms with a local scope usually navigate according to
obstacles in the vicinity of the robot and are inherently incomplete. Due to the limited scope
these local algorithms are rather reactive in a sense that they do not plan long ahead but
can rather only react to the local environment. Global algorithms on the other hand take
all available environmental information into account and allow for deliberate planning.

The different motion planning approaches that are presented in the following sections are
divided with regards to their scope. First, Section 1.1.4 elaborates algorithms with a local
scope, i.e. reactive approaches. Subsequently, deliberative approaches with a more global
scope are detailed in Section 1.1.5.

1.1.4. Reactive Approaches

Local or reactive approaches are often also referred to as planning approaches. However,
they usually only determine what to do in a certain instant and do not create plans that
guarantee to arrive at a certain goal state. Even if a motion from start to goal results
it is usually not optimal with regards to any global criteria and at times hard to predict
[LaValle, 2006]. Their application can be found where local collision avoidance maneuvers
are needed but no global information about the environment can be obtained. Further, re-
active approaches can be used in combination with global plans, to alter them quickly when
new local information for example about obstacles is available, see e.g. [Arkin, 1989].

There are many different reactive “planning” methods, ranging from workspace methods
like Potential Fields or Nearness Diagrams (ND) to command space methods like Curvature
Velocity Methods (CVM), Vector Field Histogram (VFH) variants, or Nonlinear Velocity
Obstacles (NLVO).
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Reactive Potential Fields The reactive potential field method was first introduced by
Krogh [Krogh, 1984] and Khatib [Khatib, 1986] for realtime obstacle avoidance of manip-
ulators and mobile robots. Introductory texts on this topic can be found for example in
[Choset et al., 2005; Latombe, 1991; Siegwart and Nourbakhsh, 2004]. In this approach, the
robot is treated like a point that performs gradient descent on an artificial potential field
which is constructed such that obstacles generate repulsive forces and the goal exercises an
attractive force. The virtual force on the robot is then translated to actuator controls to
generate the desired motion. The modeling of the environment is very intuitive. One of
the major drawbacks of this approach is the existence of local minima in which the robot
can get stuck, see [Latombe, 1991]. Hence, modifications of this approach often aim at
alleviating this drawback.

One attempt to rid the potential field methods of this problem is the introduction of nav-
igation functions as potential fields. As defined in [Koditschek and Rimon, 1990; Rimon
and Koditschek, 1992], a navigation function essentially is a potential field as a function of
distance from the obstacles that is smooth and has only one unique minimum at the goal
state.

In a different approach, [Feder and Slotine, 1997] uses harmonic potentials introduced by
[Connolly and Grupen, 1993] to find closed-form solutions to construct collision-free paths
given a known model of a dynamic environment. Expressing the environment in terms
of harmonic potentials, however, is not straightforward and only guarantees convergence
towards the goal for static environments.

In [Sullivan et al., 2003] Sullivan, Waydo and Campbell use stream functions to create
potential fields that have saddle points but no local minima. Therefore the robot will never
“get stuck” and always reaches its goal. Chang and Marsden add the notion of gyroscopic
forces for obstacle avoidance, [Chang and Marsden, 2003]. In doing so the potential field
itself does not have to regard the obstacles and thus can be created without local minima.
The approach was extended and used for swarming of multi-agent systems in [Chang et al.,
2003].

Reactive potential fields have also already been applied to autonomous vehicles. [Gutsche
et al., 1993] uses this approach for the motion planning of an automatic indoor transport
system. The potential fields are constructed based on a occupancy probability calculated
from sensor input. Hennessey and others use a potential field formulation to introduce their
concept of virtual bumpers combined with lane keeping, [Hennessey et al., 1995]. [Reichardt,
1996] adapts the reactive potential field approach to be used in a continuous guidance of
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automobiles in a dynamic environment. Multiple potential fields are used for the different
lanes and for collision avoidance.

Nearness Diagram (ND), Global Nearness Diagram (GND) The Nearness Di-
agram (ND) uses a sectored (polar) environment representation that is used to express
distances to obstacles and allows selecting an optimal valley, [Minguez and Montano, 2000,
2004]. As navigation strategy, five laws of motion are used, selected on the basis of an
interpretation step. [Minguez et al., 2001] extends this method to a Global Nearness Dia-
gram (GND) approach, adding global reasoning to the Nearness Diagram. It consists of a
Mapping ND which integrates information in a model of the environment, and a Mapping-
Planning ND which exploits connectivity information of free space using NF1 Navigation
Functions. This is an example of using a relatively simple global planner in conjunction
with high-performance reactive obstacle avoidance in order to avoid local minima. The
main drawback of using NF1 is the type of paths it produces, which are not smooth and
graze obstacles.

Curvature Velocity Method (CVM), Lane Curvature Method (LCM) The Cur-
vature Velocity Method (CVM) is a reactive command space search algorithm for unstruc-
tured environments. As described in [Simmons, 1996], the search space is comprised of the
translational and rotational velocity. It treats obstacle avoidance as a constrained optimiza-
tion and determines the optimal translational and rotational velocity. The optimum is de-
fined in terms of speed, safety, and goal-directness. The available velocities are constrained
by the obstacle configurations and physical limitations of the ego-robot or vehicle.

The Lane Curvature Method (LCM) combines the CVM with the Lane Method which
divides the environment into zones of direction called lanes, [Ko and Simmons, 1998]. The
Lane Method then chooses the best lane to optimize travel along a desired heading. A local
heading is determined for entering and following this lane.

Dynamic Window Approach (DWA), Global DWA (GDWA) The Dynamic Win-
dow Approach (DWA) is a reactive “planning” method for obstacle avoidance in unstruc-
tured dynamic environments. It is very similar to the CVM in the sense that is uses a
constrained search in the velocity space to determine actuator commands, see [Fox et al.,
1997]. It also trades off speed, safety, and goal-directedness. However, physical limitations
can be included more easily and it uses a grid-based representation that makes it more
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straight-forward to compute velocity space obstacles, at the cost of the increased memory
requirements.

The Global Dynamic Window Approach (GDWA) adds global reasoning to the local DWA
similar to the way the GND extends the ND. As described in [Brock and Khatib, 1999], NF1
navigation functions are used to provide a global path towards the goal. This is somewhat
inspired by the work of Koditschek and Rimon on reactive potential fields without local
minima, as described above. The drawback, that this kind of navigation function produces
paths that graze obstacles and thus have a high risk of collisions, is alleviated by the use
of the DWA for local obstacle avoidance. Similarly, Ögren and Leonard also propose to use
navigation functions and combine them with a DWA in a model predictive control approach
to be able to prove the convergence towards the goal, [Ögren and Leonard, 2005].

Vector Field Histogram (VFH) Velocity Field Histogram (VFH) planning uses a two-
stage reduction of a local histogram grid to calculate control commands that steer the robot
towards a valley in a polar obstacle density histogram. The chosen valley usually is the
one closest to the goal direction. When the robot drives around an obstacle, the choice is
further influenced by the direction with which the obstacle is circumvented, see [Borenstein
and Koren, 1991].

[Ulrich and Borenstein, 1998] extends this approach in several ways, calling it VFH+. The
obstacles are enlarged by the robot radius and a security distance. Further, a hysteresis is
applied on the polar histogram to reduce oscillations between valleys. In addition, valleys
that require control inputs exceeding actuator limits are blocked. Finally, goal-directedness,
path smoothness, and continuity of motor commands are traded off.

In [Ulrich and Borenstein, 2000] Ulrich and Borenstein add global reasoning to the method,
combining VFH with an A* graph search to VFH*. (For further explanation of A*-based
searches see also Section 1.1.5.2.) For each candidate valley, a projected position is calcu-
lated if this valley was chosen. For each position the predicted VFH+ is evaluated and the
next candidate valleys and projected positions are generated. By repeating this process a
tree of projected positions is created, until the goal point is reached. Then the initial valley
that leads to the best path towards the goal can be chosen.

Velocity Obstacles (VO), Nonlinear Velocity Obstacles (NLVO) [Fiorini and
Shiller, 1998] describes reactive motion planning using Velocity Obstacles (VO). All ob-
stacles are assumed to have a constant velocity. They are transformed into the velocity
space that consists of the two translational velocities (vx, vy). In this description it can be
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seen which velocities of the ego-robot would lead to collisions with obstacles and these can
be excluded when the next velocities commands are chosen. Further, physical limitations
can be regarded by introducing a set of admissible velocities which is defined by the robot’s
acceleration constraints.

In [Shiller et al., 2001] and [Large et al., 2002], a set of approximations is introduced that
allows to extend the method of Velocity Obstacles of circular objects with constant velocities
to non-circular objects on non-linear trajectories, the Nonlinear Velocity Obstacles (NLVO).
Adding a notion of risk (imminent collisions are more dangerous than distant ones), this
allows obstacle avoidance using a cost function on the robot’s velocity.

This local concept can also be used for global or deliberative planning by building a search
tree. This tree is acquired by sampling at certain time intervals and adding several possible
velocities at each step, see [Fiorini and Shiller, 1998; Large et al., 2005].

As described, reactive approaches enable a fast reaction of a vehicle or robot to its immediate
environment and determine actions to prevent imminent collisions. However, purely reactive
approaches do not really plan ahead which results in several shortcomings. First and most
prominently, reactive approaches might get stuck in dead ends or local minima since they
only take instantaneous decisions which might be suboptimal in the long run. This also
results in the second problem, that the resulting path is usually not optimal with regards to
any cost function, like distance to obstacles, necessary accelerations, traveled distance, or
time. Third, the resulting path towards the goal is unknown beforehand which is definitely
a drawback if the planned path shall be communicated to a human driver in order to assist
him. Forward simulations might be used to calculate this path if the environment is known
completely, but this is rather time consuming and only offers the opportunity to check the
results but no direct handle on how to modify them.

The first shortcoming has been addressed in many extensions, as mentioned. In some
approaches like the use of navigation functions or harmonic potential fields for reactive
potential fields, it can be guaranteed mathematically that the reactive approach always
converges towards the goal state. However, this does not alleviate the second and third
problem.

The same holds true when navigation functions are added to other reactive approaches to
provide a global plan that is then used as a rough guideline in combination with a local
reactive collision avoidance algorithm, as for example in GND or GDWA. This approach
splits the task of planning into a global and a local planner. The used NF1 navigation
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functions describe the shortest path towards the goal, therefore, they tend to “graze” obsta-
cles. Therefore, the reactive algorithm must deviate from the planned path to compensate
these shortcomings. Unfortunately, this again results in the mentioned problems that the
resulting path is neither known completely beforehand nor optimal.

Another approach mentioned above to add global reasoning to local reactive methods is to
build a search tree from the current position towards the goal and to apply an adequate
graph search algorithm to find the best path within the search tree, as for example in
VFH* or NLVO. The reactive method is then mainly used to create the vertices from one
node of the tree to the next. This approach truly integrates the reactive part into a global
planner and at least mitigates all three problems that were states above. However, at this
point some drawbacks of the applied tree search methods affect the result. These issues are
addressed in more detail in Section 1.1.5.

In general, the performance of the algorithm and the nature of the overall planned path
depend on the discretization in time and space that is chosen to build the tree. Here this
applies to the length of the time intervals between one node and the next and also to the
number of vertices the reactive algorithm produces at each node to generate subsequent
ones. The quality of the planned path increases with a high discretization along with
the necessary computational time. This problem increases for higher dimensionalities of
the search space. Further, depending on the applied reactive algorithm that produces the
vertices from on node to the next and the connections at the nodes, the final global path
might not be smooth and thus hard to follow. In addition, some approaches as the VFH*
only compute paths and do not plan a velocity profile. The generalization to a trajectory
planning, i.e. an integrated path and velocity planning which is desired in this work, is not
straight forward and sometimes maybe not possible.

1.1.5. Deliberative Approaches

In contrast to reactive approaches, deliberate approaches provide a "real" motion planning
since they develop a plan through the search space from a start to a goal point or region. The
deliberative motion planning approaches can be subdivided as mentioned above according
to their completeness and underlying paradigm.

First, there exist a number of combinatorial approaches which are complete and build an
explicit model of the free space as skeleton (often called roadmap) or by cell decomposi-
tion. Second, there are sampling based algorithms with the weaker forms of completeness
termed resolution completeness and probabilistic completeness, as discussed above. These
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algorithms do not build an explicit model of the environment but check it on an as-needed
basis to save time. Third, a number of incomplete heuristic algorithms have been devised
based on geometric relations or a set of behavior rules. These algorithms work most of
the time but cannot offer any guarantee that a solution is found if it exists. Finally, there
are approaches in mathematical programming that consist of numerical single- or multi-
objective optimization algorithms. In contrast to the other types of methods, they always
require an initial guess as starting solution that is then deformed.

1.1.5.1. Combinatorial Motion Planning

Essentially, combinatorial algorithms create a complete representation of the free space
mirroring its topology, i.e. maintaining the features accessibility, connectivity, and departa-
bility, [Canny, 1988]. In doing so, either the free space Xfree is reduced to a skeleton, also
called roadmap, or decomposed into cells, see Figures 1.4 and 1.5. In many theoretical
papers the motion planning problem is considered to be solved once this representation
can be successfully constructed. In order to generate a certain path or trajectory, both
types or representation could then be used to create a graph that contains all topologically
different paths through the environment. The graph is now searched for the best path in
case several solutions exist. A cell representation can be transformed into a roadmap for
example by connecting all centroids of the cells with the centroids of all neighboring cells
by collision-free trajectories through their shared boundaries.

Skeletons Algorithms of the skeleton class can generate graphs through roadmaps by
identifying arcs and points, which are prominent in the set Cfree and capture the important
topological and geometric properties of a robot’s environment, [Choset, 1997]. Two different
kinds of roadmaps are illustrated in Figure 1.4 and explained in the following paragraphs.

The Visibility-Graph Algorithm or Shortest Path Roadmap [LaValle, 2006, Section 6.2.4]
illustrated in Figure 1.4b is one of the most common skeleton algorithms. It uses the
observation that in a planar environment the shortest connection between two points must
pass along obstacle corners, if the two points cannot be connected directly. A path in a two-
dimensional environment can be constructed in O(n2 lg(n)), with n vertices. The algorithm
cannot be directly extended to three or even more dimensions, as here shortest path edges
may be deflected anywhere on a polyhedron’s edge. Finding an exact shortest path in three
dimensions is NP-hard, [Jiang et al., 1993], although approximation algorithms exist.
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(a) Maximum Clearance Roadmap (b) Shortest Path Roadmap

Figure 1.4.: Combinatorial motion planning with Skeletons.
a) Maximum Clearance Roadmap (Voronoi Diagram),
b) Shortest Path Roadmap (Visibility Graph)

Instead of allowing near contact to obstacles, to minimizes path length, Maximum Clearance
Roadmaps [LaValle, 2006, Section 6.2.3] illustrated in Figure 1.4a locally maximize the
distance to the border of Cfree for any point of the roadmap. Safe paths are in that way
preferred over short paths. Maximum Clearance Roadmaps are based on Voronoi Diagrams
(VD) [Aurenhammer and Klein, 1996]: For a set of obstacle-points S on a plane, the Voronoi
region (VR) of a point p ∈ S is defined to be the set of coordinates, which have a smaller
distance to p than to any other point q ∈ S. The Voronoi Diagram of S is defined as the
conjunction of the coordinates, which belong to the border of the Voronoi regions for all
p ∈ S. Generalized Voronoi Diagrams can be constructed not only for points, but also
for composite objects, such as polyhedra consisting of vertices and line-segments. Voronoi
Diagrams retain the topology of the free-space, but reduce the dimensionality only be one.
The VD of a two-dimensional space is a one-dimensional roadmap, whereas the VD of a
three-dimensional space consists of two dimensional planes. According to [Choset, 1997]
Voronoi Diagrams can be recursively defined on Voronoi Diagrams, until a one-dimensional
structure is obtained, the so-called Generalized Voronoi Graph. These structures though are
not guaranteed to be connected for higher dimensional spaces. A construction of connecting
edges produces roadmaps which contain very unintuitive paths that are not applicable to
higher velocity motion planning.

The algorithm proposed in [Canny, 1988] constructs roadmaps from silhouette curves of
semi-algebraically defined obstacle-sets. The algorithm is applicable to search spaces of
arbitrary dimension, as long as the obstacles can be described semi-algebraically, and was
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the first algorithm which solved the motion planning problem in general. Its run-time is
theoretically polynomial in the number of polynomials and in their polynomial degree, as
well as singly-exponential in the number of dimensions. Probably due to its complexity
though, no robotic real-world application using this algorithm seems to exist.

Cell Decomposition Besides a skeleton approach, the motion planning problem can be
solved by decomposing the free search space into primitive cells, inside of which planning
is trivial. A path can be constructed by finding an ordering of interfacing cells between the
start-cell and the goal-containing cell. The Vertical Cell Decomposition (VCD), [LaValle,
2006, sec. 6.2.2] for example, can be used to decompose two-dimensional search spaces in
time O(n2 lg(n)). The method is illustrated in Figure 1.5. The cells are trapezoids with
vertically aligned parallel sides and can be constructed by ordering the vertices along the
x-axis. At each vertex a vertical wall has to be erected in Cfree, which ends above and
below the vertex at the next encountered edge, 1.5a. On the basis of the constructed cells,
a roadmap can be generated by connecting the centroids of each cell via the midpoint of
the boundaries between two cells, 1.5b.

(a) Vertical Cell Decomposition (b) Roadmap Construction

Figure 1.5.: Combinatorial motion planning with Vertical Cell Decomposition (VCD).
a) The cells are created by erecting vertical divisions for all the corners of obstacles.
b) The contructed cells can be used to generate a roadmap by connecting the centroids of
each cell via the midpoint of the boundaries between two cells.

The method can be extended to higher dimensions, by sweeping a hyperplane across the
search space and noting the critical points. However, highly dimensional cell decomposition
can become quite complex and time consuming.
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It can be concluded that the existing combinatorial motion planning algorithms are not
well suited for online trajectory planning in higher dimensional spaces.

1.1.5.2. Sampling Based Motion Planning

In contrast to the combinatorial motion planning approaches, sampling based methods do
not construct an explicit representation of the free space Xfree. Instead, they “try-out”
the reachability of certain positions with the help of a collision detection module. Since
many of the real world problems can be solved by exploring only a small part of the free
space, this removes a significant overhead and was the main reason for the success of these
algorithms according to [LaValle et al., 2004]. Sampling based algorithms in a way have a
more natural comprehension of what makes planning difficult. Instead of the complexity of
the description of the free space, i.e. the number of polygons or number of dimensions, it is
now rather the form of the free space that stipulates the difficulty of the motion planning
problem and the time the algorithm needs for execution.

Furthermore, general planners can be developed, which are not restricted to certain cost-
functions, certain obstacle representations or classes of robots. As a result, sampling based
algorithms seem to be the only feasible solution to planning problems with high numbers
of dimensions and kinematic and dynamic constraints, also termed kinodynamic planning
problems in [LaValle and Kuffner Jr, 2001]. Sampling-based planning algorithms also al-
low to easily incorporate the time dimension into the planning process, and are therefore
predestined for time-varying environments.

A prototypical framework for single query, sampling-based motion planning is given in
[LaValle, 2006, sec. 5.4.1]. In all algorithms of this class certain recurring software-modules
appear. On the greatest level of abstraction, the motion planner accesses the two modules
Local Planning Method, which is employed to generate a directly connecting trajectory
between any two states x1 and x2, and a Collision Detection and Cost Evaluation Module,
which assesses such a candidate trajectory for satisfaction of constraints and its objective
value. As depicted in Figure 1.6, this abstraction allows to decouple the algorithmic details
of the planning algorithm from the domain dependent models and representations of the
robot and the environment.

An abstract algorithm complying to the framework is given in algorithm 1: The design
freedom of such algorithms lies in the manner, in which the order of exploration is handled.
In the vertex selection step in line 2, the algorithm may prefer to select the vertex, which
for example has the smallest distance to the goal, or which bears the maximum potential
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Model and State- 
Representation of
Environment and
Robotic System Assessment of

Partial Trajectory

Generation of
Partial Trajectory Sampling-Based

Motion Planning Algorithm:
Order of Exploration

Figure 1.6.: General structure of sampling-based motion planning algorithms (loosely after
[LaValle, 2006, Figure 5.1])

for exploration. Additionally, an algorithm might decide to connect several xnew to one xcur
at once.

Algorithm 1 Prototypical Sampling-based Algorithm, after [LaValle, 2006, p. 217]

SampleAndSearch
1 Initialization: Create a graph-represented search structure G(V,E),

which will contain all accessible states in V and the connecting trajectories in E.
All states which the solution must pass along, can be initially inserted into V .

2 Vertex Selection Method: Choose a vertex xcur ∈ V for expansion,
according to the algorithms exploration strategy.

3 Local Planning Method: For some intriguing state xnew ∈ Xfree:
4 Let the Local Planning Module calculate a trajectory τ from xcur to xnew.
5 Check that τ is collision free with the Collision Detection Module.
6 If not collision free, go to line 2.
7 Let the Cost Evaluation Module calculate the value of τ .
8 Insert into Graph: The state xnew can be added to V as reachable,

and the trajectory τ can be added to E as a connection between xcur and xnew.
9 Check for Solution: If a solution path as been found, terminate.
10 Else, continue process, goto line 2.

The two strategies most widely employed in motion planning are A* based heuristic al-
gorithms, which select the one unexplored xcur for exploration, which yields the smallest
estimated cost from the start to the goal, and Rapidly Exploring Random Trees (RRT)
based randomized algorithms, which select xcur in favor of exploration of unvisited free-
space. An additional distinction between A* and RRT is the representation of the search
space, which is constrained to a locally finite graph in case of the A* algorithm, and is
represented by random samples in case of the RRT algorithm. Originally, these algorithms
sample the work- or configuration-space, however the method is applicable to any kind of
search space.
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One special subclass of sampling-based algorithms is gained by sampling the command-
space and directly selecting controls u that can be applied by the controller. Such a
command-space search strategy is typically limited to a constant set of distinct alterna-
tives that are evaluated one after each other.

A* Based Motion Planning A best-first search strategy maintains a set of candidate
solutions and decides the next exploration step based on a numeric value f , which indi-
cates the “utility” of an exploration-step. Pearl [Pearl, 1985, p. 48] gives three types of
“utility” that might guide such a search: The difficulty of the remaining sub-problem, the
estimated quality of complete solutions reachable from a candidate solution and the amount
of information gained by the exploration of a candidate solution.

The most widely used best-first search is A*. It was developed in 1968 by Hart, Nilsson and
Raphael [Hart et al., 1968] and estimates the quality of the best solution reachable from
a given candidate solution. The estimate f is given in form of an additive cost measure,
which sums up the already expended cost g(n) of a partial solution n and the expected
remaining cost h(n). h(n) is a heuristic function that makes cost-predictions based on
domain knowledge.

Each search-step, the algorithm selects the candidate solution from all known candidate so-
lutions, which minimizes f , and discovers all refined candidate solutions, which are directly
reachable from that specific candidate solution. The property which defines this reachabil-
ity is the dual of a directed graph, where vertices stand for subsets of candidate solutions
and edges stand for specifications of candidate-solution sets to more refined sets.

In the context of deterministic motion planning, a candidate-solution is equivalent to a
plan or trajectory starting at the current state of the system. A complete solution is a
movement plan specifying the motion from the start-state of the investigated system, via
all intermediate states to an end-state in a region which has been selected as goal-region.

The pseudo-code for the algorithm is given in algorithm 2. A* manages two sets of known
candidate solutions: The OPEN-set contains all candidate-solutions, (nodes), which still
have to be explored. The CLOSED-set contains all nodes that have been explored at least
once. The algorithm starts by inserting the initial problem s, in the context of motion-
planning the system’s start configuration, into the OPEN set. The subsequent operations,
the selection- (line 2) and expansion-step (line 4-7), are repeated until a solution is found.

The selection-step retrieves the node n with minimum f -value from the OPEN-set, that is
the candidate-solution who’s exploration is deemed most useful. In most implementations of
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(a) A* initial problem (b) A* final result

Figure 1.7.: A* motion planning
In this simple example the reachable nodes are set up as a regular 8-connected 2 dimensional
grid. In each step all possible next nodes are added to the OPEN list, the best one is explored
further. All visited nodes are added to the CLOSED list. When the goal is reached, the
planned path is constructed going backwards from the goal to each predecessor node until
the starting node is reached.

A*, the OPEN set is represented by an implementation of the priority-queue abstract data
type, for example a binary heap. The priority of a node is given by its evaluation function
f . This allows for fast extraction of the node with minimum f . The expansion-step moves
n from the OPEN- to the CLOSED-set and generates all successors of n. For each successor
ni the new expended cost g′(ni) is calculated as the cost of its potential predecessor g(n)
plus the cost that has to be spent to reach ni from n, c(n, ni). The expected cost of a
solution passing through n and ni is calculated as expended cost plus expected remaining
cost h(ni). The parent-relationship parent′(ni) := n creates a pointer-path leading from
any known candidate-solution via all ancestors to the initial problem s.

g(ni) := g(n) + c(n, ni) expended cost (1.1)

f(ni) := g(ni) + h(ni) expected cost (1.2)

If a successor ni is already known, (ni ∈ OPEN ∪ CLOSED), its associated values g(ni),
f(ni) and parent(ni) are replaced by the new values g′(ni), f ′(ni), parent′(ni) only if the
new cost is better, (g′(ni) < g(ni)). If the f -value of node ni is lowered, although it had
previously been expanded, the f -values of its successors are invalid and ni has to be re-
expanded. The algorithm terminates as soon as the selection-step produces a node that is
identified in line 3 to belong to the set of goal-states.

A* is guaranteed to terminate in finite time, if the search space is locally finite, [Pearl,
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1985, Theorem 1]. A search space is locally finite, if each node is allowed only a finite
number of successors. The size of the graph itself though may be unrestricted. According
to [Pearl, 1985, Theorem 2], A* terminates with an optimal solution, if the heuristic h is
admissible. An admissible heuristic is required under all circumstances to underestimate
the exact remaining solution cost h∗: h(n) ≤ h∗(n). The closer the heuristic h comes to
the exact remainder h∗, the more guidance it can give to an A* search. If two heuristics h1

and h2 are compared, the heuristic h2 is said to dominate h1 if the guidance of h2 is better
than the guidance of h1 for all non-goal nodes, h2(n) > h1(n). An A* algorithm using h2

is guaranteed to be more efficient than an algorithm using h1, according to [Pearl, 1985,
Theorem 7].

Algorithm 2 A* Planning Algorithm, adapted from [Hart et al., 1968, p. 102]

Input: A start-vertex s and a set of goal vertices Γ.
Output: A goal-vertex n and an optimal cost f
1 Mark s “open” and calculate f(s).
2 Select the open node n whose value of f is smallest.

Resolve ties arbitrarily, but always in favor of any node n ∈ Γ.
3 If n ∈ T , mark n “closed” and terminate the algorithm with n and f(n).
4 Otherwise, mark n closed and determine all successors ni ∈ succ(n).
5 Update g(ni), f(ni) and parent(ni) for each successor ni.
6 Mark as open each successor not already marked closed.
7 Remark as open any closed node ni which is a successor of n

and for which f(ni) is smaller now than it was when ni was marked closed.
8 Go to step 2.

A discretization of the naturally continuous search space has to be found. This can either
be achieved by sampling the command space, i.e. deciding on a finite set of actions that
may be applied to move through the configuration space, thereby implicitly discretizing the
configuration space. Or by a direct discretization of the configuration space, which allows
only actions to be taken that move from one discrete point in the configuration space to
another point in a specific, finite neighborhood.

The most common methods of configuration space discretization are regular grids or lattice
structures. The problem is here to choose the neighborhood in such a way that the system’s
action space is sampled densely enough while the neighborhood is kept as small as possible
to prevent redundant node explorations.

The publication [Ferguson and Stentz, 2006] describes a replanning A* derivative, called
Field D*, with a new neighborhood selection method for two-dimensional grids. Instead
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of restricting the heading of edges to four or eight discrete angles, the Field D* algorithm
is able to produce edges of arbitrary orientation by interpolating between adjacent grid-
points.

The algorithm Theta* is presented in [Nash et al., 2007] as a compromise between visibility
graphs and four- or eight-connected two dimensional grids. It combines the advantage of
minimal length paths in visibility graphs with the superior runtime of grid-based planners
by adding direct line of sight connections to the standard grid-neighborhood.

In [Montemerlo et al., 2008, pp. 583ff] the utilization of a Hybrid A* algorithm is reportet.
The “hybrid” discretization in an A* planning algorithm is used for free-form navigation
during the Defense Advanced Research Projects Agency (DARPA) Urban Challenge. The
action space is discretized to create a finite set of controls. The system is simulated with
each control in the set as a constant control input for a preselected amount of time ∆t,
each simulation generating one edge in the search graph. During execution of the search,
reachable configuration space positions are grouped according to a predefined grid to prevent
the search space from growing exponentially with the planning distance. By approaching
the problem from the action space side, every solution plan is automatically realizable and
contains a description of the controls necessary for execution. The authors note that the
approach is not complete and fails to find solutions more often for large ∆t.

In a similar approach presented in [Pivtoraiko and Kelly, 2005a] Pivtoraiko and Kelly use
a “primitive path set generation” to create offline a problem specific neighborhood for
grid-based search algorithms, which respects the system’s motion constraints and at the
same time supplies the algorithm with a set of discrete representations of states to reduce
computational complexity. The problem of planning a path through a continuous function
space is reduced to a problem of selecting a number of path-primitives from a finite set of
alternatives. Pivtoraiko and Kelly refer to the search-space induced by the set of primitive
paths as a state lattice. The primitive path set can be generated in such a way that the
algorithm remains resolution complete, see [Pivtoraiko and Kelly, 2005c].

The utilization of a set of (offline generated) motion primitives to discretize the configuration
space is already very similar to a sampling of the command space, as mentioned above.
Other examples of implicit discretization of the configuration space by command space
sampling can be found by combining local (reactive) “planning” methods introduced in
Section 1.1.4 with the A* search paradigm. Depending on the type of local method, the
local method may be used both as Local Planning Method to populate the OPEN set and
also as Cost Evaluation Module to estimate the expended and/or expected cost for each



1.1. Motion Planning 25

candidate solution. This kind of combination leads to A* based variants such as VFH*,
[Ulrich and Borenstein, 2000].

For the use of A*-based searches under real-time restrictions so called Anytime extensions
exist. Their goal is therefore to quickly produce a highly suboptimal solution, and to
improve the solution as long as time is remaining. The most common methods are Anytime
Repairing A* (ARA*), see [Likhachev et al., 2004], and Anytime Weighted A* (AWA*), see
[Hansen and Zhou, 2007]. Based on Weighted A* [Pearl, 1985, pp. 87ff], this is generally
achieved by balancing the cost functions in such a way that it first favors exploration toward
the goal more or less disregarding the optimality of the found path. Then the cost function
is updated incrementally to produce more optimal results.

Another useful addition to A* methods can be found in incremental search algorithms.
These assume that planning is a continuous process as a form of adaption to the chang-
ing environment. To improve the reaction time, these algorithms try to reuse results from
previous planning cycles. Examples are Dynamic A*, also called D* [Stentz, 1994] with
variants such as D* Lite [König and Likhachev, 2002] and Focused D* [Stentz, 1995], Life-
long Planning A* (LPA*) [König et al., 2004], Adaptive A* [König and Likhachev, 2006],
or Fringe Saving A* (FSA*) [Sun and Koenig, 2007; Sun et al., 2009].

RRT Based Motion Planning The class of randomized sampling based motion plan-
ners introduced in the 1990s enabled the solution of high-dimensional and dynamically
constrained motion planning problems. The first well-known randomized sampling based
algorithm was the Randomized Path Planner [Barraquand and Latombe, 1990] in 1990,
which is built on potential fields and random walks. According to [Lindemann and LaValle,
2003], “for the following decade virtually every significant sampling-based motion planning
algorithm used randomization”.

Rapidly Exploring Random Trees (RRT), also termed Rapidly Exploring Dense Trees
(RDT) in [LaValle, 2006], constitute a family of randomized search algorithms that have
been explicitly developed for motion planning. They solve the problem of search-space
discretization on-line: A search tree is grown through the search-space in such a way that
the resolution of the tree is iteratively refined.

The search space is sampled randomly. For each selected sample α(i) the nearest point
xnear in the already existing search tree is found and a local planning method (LPM) tries
to connect α to xnear, see Figure 1.8. The LPM can ensure that the planned path obey all
kinematic and dynamic constraints to create only realizable solutions. If the direct link to
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the sample α is obstructed by an obstacle, only the first collision-free part from xnear to the
last collision-free position xnew, is added to the tree.

Figure 1.8.: RRT motion planning
A sample α is chosen randomly and the nearest point xnear on the explored tree is selected.
Then a local planning method (LPM) is invoked to plan from xnear towards α either a certain
distance or until a collision is detected. The endpoint of this LPM is added as new point
xnew to the tree.

A speed-up of the planning process can often be gained, if the samples α(i) are not selected
from a uniform distribution, but preferably from “important” regions of the search-space.

It can be argued that the goal-region is one of these “important” regions, since it must
contain part of the solution. Therefore, a goal-bias can be introduced: Each sample is
drawn with probability p from the usual sampling-space and with probability (1− p) from
the goal-region.

Further, a lot of ideas were published on sampling-biases regarding obstacles. These
ideas target the enhanced performance on motion planning problems with “narrow pas-
sages” that are otherwise very difficult for RRT-based algorithms. [Geraerts and Over-
mars, 2006] details different alternatives such as Gaussian-Sampling, Bridge-Test-Sampling,
Obstacle-Based-Sampling, Nearest-Contact-Sampling, or Medial-Axis-Sampling. However,
[Geraerts and Overmars, 2006, Table 4] shows that these heuristic sampling-methods only
gain speedups for specific problem-instances, but on average perform worse than uniform-
sampling.

A basic RRT algorithm is exploration oriented and possesses no inherent method to prefer
“better” over “worse” paths. In [Urmson and Simmons, 2003] three methods are stud-
ied which introduce such a cost control into the RRT-framework. The methods bias the
selection-step towards higher quality predecessor nodes xnear. Heuristically-guided RRT
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(hRRT) is the simplest: It draws a sample α(i) and calculates the nearest neighbor xnear.
If xnear passes the quality-based selection test, it is selected and explored. Otherwise new
samples are drawn and new neighbors are calculated until a quality test succeeds. The al-
gorithms Best of k-nearest neighbor RRT (BkRRT) and Iterative k-nearest neighbor RRT
(IkRRT) require calculation of the k nearest neighbors for each search-space sample α(i). In
IkRRT all k neighbors are tested in order of quality, the first successful is selected. BkRRT
tests only the neighbor with the highest quality value and re-samples on failure. The algo-
rithm BkRRT gives best results in terms of quality, but is up to a magnitude slower than
the basic RRT.

RRTs are especially suitable for anytime implementations, because the first feasible solution
can be generated with a total focus on exploration and might outperform smallest-cost
first strategies as A* in situations where the ‘small-is-quick’ principle is misleading. In
an anytime RRT algorithm presented in [Ferguson and Stentz, 2006] the improvement is
enforced by adding only nodes to the tree with an expected cost smaller than the cost of
the last solution.

Incremental search strategies are also possible. The most common are Extended-RRT
(ERRT) [Bruce and Veloso, 2003], Dynamic-RRT (DRRT) [Ferguson et al., 2006], and
Multipartite-RRT (MPRRT) [Zucker et al., 2007].

A very similar concept to RRTs are Probabilistic Roadmap Planners (PRM). However, they
create roadmaps to find multiple paths rather than just a single one. For more details see
for example [Kavraki et al., 1996].

Incremental anytime RRT approaches can be formed by a combination of the described
RRT extensions, exemplified by the combination of an Anytime-RRT and DRRT algorithm
as proposed in [Ferguson and Stentz, 2007].

Although RRT based motion planning algorithms are rather easy to implement and the
random sample selection provides some advantages for high-dimensional and dynamically
constrained search spaces, this randomization also constitutes the major drawback: The
outcome is neither predictable nor repeatable with regards to the result and the execution
time, i.e. two consecutive planning updates might produce very different solutions in very
different computation times for the same situation. Further (at least for most RRT variants)
the resulting planned motion is not optimal with regards to any criterion.
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1.1.5.3. Heuristic Motion Planning

Purely heuristic motion planning approaches are usually inherently incomplete. These
algorithms work most of the time but cannot offer any guarantee that a solution is found if it
exists. However, they have received increasing interest, especially in the area of automotive
collision avoidance and autonomous driving. In these areas, completeness is a still a valuable
feature but often not strictly required. Rather, it is of higher interest if certain paths or
maneuvers are possible, like a lane-change to the left. If no viable alternative is found, a
backup solution like automatic braking can often be applied.

Examples for such motion planning approaches are simple geometric motion planning and
rule- or behavior-based motion planning methods.

Geometric Motion Planning The simplest geometrically planned path consist of linear
segments. [Fraichard, 1991] presents a planning method for static, structured environments
that smooths such a piecewise linear path to produce concatenated arcs and straight pieces.
[Fraichard and Ahuactzin, 2001] discusses the possibility to further enhance the planning
result by the use of clothoid pieces to create a continuous curvature along the path.

In a different geometric approach to create drivable, curvature continuous paths, splines
can be used. In [Simon, 2003; Simon and Becker, 1999] Simon proposes path planning with
Bezier splines through bounded corridors in static, structured environments.

The above approaches consider only static environments and deal with moving obstacles
only by frequent replanning, but do not regard their motion within each planning step. The
velocity is usually not planned simultaneously. It is either assumed to fixed or planned in
a second step.

Much more specialized to collision avoidance, [Lammen, 1993] decides between braking
and evading. A braking maneuver decelerates the vehicle to keep a constant distance to a
leading obstacle or sufficiently to avoid a collision with cross traffic. The evasion maneuver
consists of a quadratic curve at a constant velocity which results in a discontinuous lateral
acceleration. If possible, an evasion maneuver is preferred over braking in this approach.

Similarly, [Ameling, 2002] decides between braking, evading left, and evading right. The
evasion paths target a certain lateral offset. In this approach they are comprised of four seg-
ments of third-order polynomials to approximate clothoids. This leads to smoother lateral
accelerations and steering rates. Further, the evasion maneuvers feature combined steering
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and braking and always end in a stand-still. A decision module chooses the maneuver that
can be initiated last to still avoid the collision.

Weisen and Milder follow the same train of thought. In order to achieve a continuous
and smooth lateral acceleration along the planned trajectory, they demand the lateral
acceleration to have a sinusoidal form as function of the longitudinal distance x, [Mildner,
2004; Weisen, 2003]. Assuming a constant velocity this yields the path’s curvature which
can be approximated by a third order polynomial and integrated to obtain the desired
collision avoidance path as a fifth order polynomial. Along the path the remaining tire
adhesion potential that is not used for steering is used to decelerate the car. The fact that
at a reduced velocity, smaller turning radii become possible is neglected to facilitate the
calculations. The planned maneuver always ends in a stand still.

[Isermann et al., 2008] presents a very similar motion planning approach. Instead of a
polynomial, the resulting path is given explicitly as a sigmoidal function, thereby reducing
the distance that is traveled until stand still is reached.

Advantages of such geometric approaches can be found in their predictability and their short
and reliable execution times. The major disadvantage lies in the fact, that the planned
trajectory is not general enough to allow alternative or more complex maneuvers and solve
more general motion planning problems.

Behavior- or Rule-Based Motion Planning A very different heuristic approach is
behavior- or rule-based motion planning. The basic idea is to discretize possible motions
into distinct maneuvers and to emulate human maneuver-based decision making. In order
to do that, often fuzzy logic is used. Therein the situation, the possible maneuvers, and the
decision rules are expressed in linguistic terms; for example: “IF the car ahead is slower
THEN brake”.

One example of such an approach that uses fuzzy logic can be found in [Lages, 2001]. Lages
designs a system that is capable of braking, steering and combined braking and steering in
order to prevent a collision with static obstacles. The system depends heavily on specific
experimental data of the used test vehicle to tune the rule-basis and decision thresholds.

Dickmann and others use a behavior and rule based approach that chooses a certain behavior
that is to be executed according to the situation. This choice is performed by means of
fuzzy logic. The approach regards that a behavior is only executable if all required lower
level motion primitive or “skills” are available and offers a “backup behavior” in case the
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first choice becomes impossible because one of the associated skills is no longer accessible,
[Brüdigam, 1994; Dickmanns, 2005; Pellkofer, 2003].

1.1.5.4. Optimization Motion Planning

In addition to the mentioned combinatorial, sampling-based, and heuristic approaches there
exist a number of optimization methods which are generally also referred to as motion
planning approaches when applied to a motion planning problem. Most of them can be
attributed to the paradigm of mathematical programming, i.e. an “optimal solution” is
acquired numerically under certain constraints which are formulated as inequalities or dif-
ferential equations. Because of the numerical algorithm, an initial guess or start solution is
necessary. Thus, the task of motion planning can be distributed between the initialization
of the starting solution and its optimization. The necessary quality of the starting solution
depends on the sophistication of the optimization algorithm.

Different optimization algorithms for motion planning can be classified as local or global.
Whereas global optimizations search the global optimum and have the ability to “jump”
from one local optimum to another, local optimizations merely find a single local optimum
that is closest (for this algorithm) to a starting solution. The distinction sometimes blurs
and some algorithms can also be tuned to be more local or global.

Both classes have their distinct advantages and disadvantages for an application in motion
planning. A global optimization poses minimal requirements on the starting solution, since,
apart from very ill-posed problems, any starting solution converges to the same global
optimum. On the other hand, this might be undesirable if a certain type of solution is
targeted, as for example to pass an obstacle on the left. In this case, only homeotopic
deformations are desired and a local optimization might be better suited.

Optimal Control Motion Planning The Nonlinear Trajectory Generation (NTG) al-
gorithm developed in [Milam, 2003] treats motion planning as a constrained optimal control
problem. Among others the algorithm is applied to micro satellite formation flying.

A similar optimal control approach is adapted in [Bertolazzi et al., 2007] for real-time mo-
tion planning of a vehicle in traffic. The method achieves a speed-up compared to previous
similar approaches by eliminating hard constraints and replacing them with penalty func-
tions instead. The algorithm uses a combination of finite differences and a Newton-Broyden
algorithm.
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A comprehensive survey of optimal control methods in general can be found for example in
[Betts, 2010].

Genetic Algorithm Motion Planning Genetic Algorithms (GA) or Evolutionary Algo-
rithms are global optimization techniques that represent the subject, in this case a planned
path or trajectory, by genes. A certain combinations of genes, i.e. a certain planned path,
is called an individual and all currently “living” individuals together constitute the popu-
lation. The algorithm then tries to find an optimum by emulating natural evolution in a
repeated two-step process: reproduction and selection. First, new individuals are created
by recombining the genes of individuals from the existing population (crossover) or selected
mutation of certain genes. Second, all individuals of the population are evaluated with
regards to a certain fitness function and only the fittest survive. This basic concept can
be complemented by a number of variations. Especially, the genes of new individuals can
be repaired before the evaluation, i.e. a planned path can be made collision-free by small
local changes. An overview and a general introduction to genetic algorithms can be found
for example in [Mitchell, 1998].

Applied to motion planning, the genes can be for example trajectories parts, IDs of visited
nodes on a grid, or command space samples at certain times instances. These genes com-
bine to represent the total planned trajectory. Depending on the number of different genes
and the number of genes to a whole planned trajectory, the total number of possible combi-
nations is very large and it becomes unfeasible to test all possible combinations. Therefore,
Genetic Algorithms can be used to identify good combinations.

Sugihara proposes a GA for path planning and trajectory planning of an autonomous mobile
robot, [Sugihara and Smith, 1997]. The environment is represented by a 2D occupancy
grid that is considered static for each planning instant. Time varying environments are
addressed only by adapting previous solutions in the next planning instant. In order to
enhance the performance, each path is described by a fixed length binary string of genes
which represent distances and directions of path pieces. To ensure this fixed length, all
paths are required to be monotonous in at least one direction of the grid. [Castillo et al.,
2006] extends Sugihara’s GA algorithm by introducing a difficulty value to each grid cell
and adding a second objective into the fitness function. Paths are selected with regards to
minimal length and difficulty.

One of the outstanding characteristics of genetic algorithms is that they are inherently
parallel and are therefore predestined for distributed computations. If not implemented in
parallel, on the other hand, the large computational and memory requirements can become
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quite challenging, [Ismail et al., 2008], which leads the voluntary restrictions like monotony
of the path as addressed above. In an attempt to decrease the necessary computational
time, [Koryakovskiy et al., 2009] sketches the idea of a local map and does not plan the
whole path to the goal at once but only to a receding horizon. Further, the article proposes
an interpolation with Bezier splines to create smooth paths and suggests to regard the
obstacle velocity in the calculation of a distance to obstacle-based fitness function.

Genetic Algorithms are known to be very robust for complex and ill-behaved optimization
problems, [Goldberg, 1989]. However, if a good model of the problem exists and the opti-
mization problem is not too ill-behaved, often superior optimization techniques exist that
might for example exploit knowledge about the direction of path deformation that leads
to a better path. So far it seems that Genetic Algorithms are not yet suitable for the
application to the online planning of drivable trajectories in a quickly changing, dynamic
environment or higher dimensional search spaces.

Predictive Potential Field Motion Planning While former potential field methods
were purely reactive approaches, where resulting virtual forces acted directly on the mobile
robot, Quinlan and Khatib developed a deliberative approach by letting the virtual forces
act upon the planned path rather than on the robot. They introduced the concept of
representing the planned path by an elastic band that is deformed by virtual forces that
push the band away from obstacles, [Quinlan and Khatib, 1993b].

(a) initial path (b) deformed final path

Figure 1.9.: Predictive potential field motion planning, [Brandt, 2007]
The environment is modeled by a potential field, the planned path is represented by discrete
nodes, interlinked by linear springs. Forces produced by the potential field and the linear
springs deform the planned path.
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The elastic-band method presented in [Quinlan and Khatib, 1993a] samples a given path
and creates bubbles around these points. The size of these bubbles depends on the distance
to the closest obstacle. During the deformation process the bubbles are maximized in size.
The path is guaranteed to be collision-free as long as the bubbles overlap sufficiently along
the path. In order to achieve a smooth path, the bubble centers are then connected with
splines to form the final planned path.

The form of the bubbles depends on allowed movements of the planning robot or vehicle.
While a circle, sphere or hypersphere results for non-restricted movements in cartesian
spaces, the form of the bubble becomes more complex if non-holonomic constraints are
regarded as described in [Khatib et al., 1997; Vendittelli et al., 1999]. Further, the size of
the bubbles can be used as means of implicitly calculating safe velocities along the path, as
illustrated in [Furtwängler et al., 1998].

However, even though kinematic constraints have been regarded by the form of the bubbles
and the spline interpolation creates smooth paths, dynamic limitations were not considered
within the this path planning. The major limitation, however, consists in the fact that all
obstacles were considered static and no velocity profile was planned.

Later, the elastic band approach was adapted for automotive motion planning by Hilgert
and others, see for example [Hilgert et al., 2003]. As in the original approach in [Quin-
lan and Khatib, 1993b], the elastic band is discretized into equally spaced nodes that are
interconnected with linear springs. The first and last node are fixed. The obstacles are
represented by a number of relatively small safety circles (R = 1m). Within these safety
circles, potential fields are defined that increase quadratically toward the center. The vir-
tual obstacle forces are derived as negative gradient of these potential fields and cause a
deformation of the elastic band. [Hirsch et al., 2005] uses the same elastic band path plan-
ning and adds a second step where a linear bicycle model is used to evaluate the driveability
of the path and to determine the necessary steering angle to follow it. This first adaption
to automotive application still has some disadvantages, though. The main disadvantage
lies in the representation of the obstacles. Road sides are not considered and all obstacles
are considered to be static, which prevents a truly predictive planning. Further, the po-
tential fields have an extremely limited area of influence and due to their quadratic form,
this influence might be compensated completely by the forces of the linear springs inside
the elastic band. Therefore, the final path cannot be guaranteed to be collision free even
directly at the nodes.

In a different adaption, [Gehrig and Stein, 2007] uses an elastic band path planning for
vehicle following. The last node of the band is attached to the preceding vehicle. The
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elastic band is also represented by virtual linear springs. However, these forces receive an
offset such that the planned path matches the path of the preceding vehicle in the absence
of obstacles. The ego vehicle is represented as rectangle, obstacles as polyhedra. Obstacles
and road sides are modeled as potential fields that depend quadratically on the distance.
Similar to [Hilgert et al., 2003], the obstacle potential fields are active only within a certain
safety distance from the obstacles. The obstacle’s motion is not extrapolated but the
potential field of each each obstacle is modified around a static position depending on the
relative velocity, as proposed by [Krogh, 1983] for the reactive potential field approach.

[Brandt, 2007] adapts the method of elastic bands further for spatially and temporally
predictive motion planning. As in all previous approaches, the velocity is not planned but
assumed to be constant or otherwise known. Brandt then determines the points of time for
all nodes of the elastic band and extrapolates the motion of all obstacles for these points
of time. The repulsive potential fields are then built around these extrapolated positions.
The final path is defined as the equilibrium configuration, where all forces cancel each other
out.

Differing from the elastic band formulations above mentioned, the obstacle and roadside
potential fields are not limited in range, which leads a smoother overall potential field,
weighing distance to obstacles versus deformation of the elastic band for all nodes and
not only in the close vicinity of an obstacle. Furthermore, the potential fields are defined
logarithmically with regards to the distance. This has the advantage that the repulsive
forces tend to infinity as a node approaches an obstacle or roadside. Therefore, each node
of the final path is guaranteed to be collision free. Brandt determines that for path planning
on low curvature streets it is sufficient to shift the nodes only in lateral direction in a fixed
reference frame and to remove one degree of freedom.

However, the unidimensional displacement of the nodes in a single direction and the used
road model limit the approach to low curvature streets or very low planning distances.
Furthermore, no kinematic or dynamic limitations are considered.

All predictive potential field approaches mentioned above are purely path planning or rather
path deformation methods and no velocity profile is planned simultaneously. To integrate
the velocity in the planning algorithm and to provide an integrated trajectory planning
algorithm, the dimensionality can be increased.

Kurniawati and Fraichard suggest a trajectory deformation method that applies such an
augmentation. The environment is modeled by potential fields in an x-y-t workspace
WT = W × T and the trajectory representation and deformation takes place in a state
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space that is augmented by the time dimension ST = S × T, [Kurniawati and Fraichard,
2007]. As in other approaches, virtual forces are calculated from the obstacle potential field
which are then translated to forces in the augmented configuration space. Additional state
space forces are determined to regard dynamic limitations. These forces push a node to the
center of forward and backward reachability sets which depend on the dynamic model of
the given mobile robot or vehicle, see [Fraichard and Delsart, 2009].

In each planning, the trajectory is deformed one step in the direction of the resulting
total forces at the nodes. Because no equilibrium solution is sought, the results differ
depending on the initial trajectory and the number of planning steps. Further, the high
dimensional representation of the trajectory makes the algorithm computationally more
expensive which might be a reason that no equilibrium configuration is computed. In
addition, the reachability sets become very complex for realistic vehicle models. The idea
is implemented for moving circular obstacles and a double integrator point mass vehicle
model.

1.2. Motion Control

If a certain desired trajectory has been determined by a motion planning module, it still
needs to be “executed”. This task of motion control is usually taken over by a separate mod-
ule. Trajectory following consists of a lateral control component that keeps the vehicle on
the planned path and a longitudinal control component that controls the velocity. Different
motion control approaches for trajectory following can be separated in decoupled motion
control where lateral and longitudinal control are realized in two separate controllers and
integrated motion control where the two components are integrated in a single controller.
Further differences can be found for example with regards to the controller type, the vehicle
model that is used for the controller design, and the control variables.

Figure 1.10 illustrates the main components for motion control and some of the control
variables that are commonly used. It is exemplified, that the control difference might not
necessarily be evaluated at the center of gravity V ∗ of the ego vehicle but rather at a preview
point PV in front of the vehicle.

A generalized control loop that covers a majority of possible control approaches is depicted
in Figure 1.11. Its basic components include a feedback controller for general tracking, a
feedforward controller to enhance the response time and counteract known disturbances,
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Figure 1.10.: Main components in motion control
Among others, motion control approaches differ with regards to the type of reference tra-
jectory, the used vehicle model, and the used control variables.

Figure 1.11.: General control loop
Most linear control approaches can be described by this control loop and its basic compo-
nents: a feedback controller for general tracking, a feedforward controller to enhance the
response time and counteract known disturbances, and a prefilter to further compensate
slow or otherwise undesired closed loop dynamics.
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and a prefilter to further compensate slow or otherwise undesired closed loop dynamics.
The system consists of the vehicle and some subordinate control loops.

The reference qref may consists for example of the desired lateral position yref and a reference
orientation ψref. The input u to the system could be e.g. the desired steering angle δ, or a
desired longitudinal acceleration which are then controlled by a subordinate control loop.

1.2.1. Decoupled Motion Control

In the majority of applications, decoupled motion control approaches are applied. They offer
the advantage that each separate controller is less complex and has less control variables
which facilitates the design process.

Longitudinal Control The longitudinal control usually aims to reach and maintain a
certain desired velocity or a velocity profile. In automotive applications it has the longest
tradition in the application to cruise control systems, where a constant velocity constitutes
the control reference, [McMurray and Sniers, 1963]. Later longitudinal controllers for intel-
ligent or adaptive cruise control applications or platooning were developed, where the main
focus shifted to controlling a certain relative position to a lead vehicle, see [Swaroop et al.,
2001; Xiao and Gao, 2010].

Other applications exist in automated driving either on test grounds or for collision avoid-
ance. Here, often the longitudinal velocity control is combined with a lateral control for
path following and the emphasis is placed mostly on the lateral control part. Longitudinal
controllers differ in their design but also with regards to the reference variable. A veloc-
ity profile is usually given either with respect to space (v(x)) or time (v(t)). Additionally,
the desired acceleration is often used to add a feed forward control component for a faster
control response. However, if only the velocity (and its derivative(s)) are used as control
variables, the longitudinal position error might accumulate over time. Therefore, the longi-
tudinal position must be used as control variable for successful tracking of a certain position
over time.

Lateral Control The lateral control component tries to keep the ego vehicle on a certain
given path y(x) and is not concerned with deviations from a desired velocity or with longi-
tudinal position errors. Especially for collision avoidance, the lateral control has received
a much higher attention than the longitudinal control, [Schorn et al., 2006]. The control
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variables for lateral control are usually the lateral deviation ∆y and sometimes also the
orientation error ∆ψ. In addition, their derivatives might be used as well.

A vast variety of different controller designs exist, see [Lunze, 2008], many of which have
been applied to lateral control of vehicles. The majority of approaches seems to use a linear
single track model as vehicle model that is used in the controller design process. Some
approaches use a nonlinear model and apply an input-output-linearization to be able to
apply linear control techniques again.

Almost all controllers for lateral vehicle guidance rely on the steering angle δ or the steering
rate δ̇ as sole actuating variable. Another option to influence the lateral vehicle dynamics
would be differential braking, where only one wheel on the front or rear axle is braked as
used in the ESP. However, this kind of actuation is mostly just used in an subordinate
stabilization control, as in vehicle dynamics management (VDM), see [Trächtler, 2005].

Among the most basic controller types are PID controllers and their variants. Weilkes
shows in [Weilkes et al., 2005] that a combination of a PI controller for the lateral deviation
∆y and a P controller for the orientation error ∆ψ yields sufficient results for lane keeping.
The controllers are augmented by a curvature dependent feedforward control. Similarly,
Schorn and Isermann test a PD controller with feedforward control and gain scheduling
to control the lateral deviation ∆y in collision avoidance maneuvers, see [Schorn et al.,
2006]. [Söhnitz, 2001] demonstrated satisfactory results for a PIDT2 controller to control
∆y for path following with high curvatures, also combining it with a curvature dependent
feedforward control.

Adding a slightly different perspective, Switkes and Gerdes devise a potential field controller
for lane keeping, [Switkes and Gerdes, 2005]. The lane is modeled by a potential field and
any deviation in position or orientation causes a virtual force on the vehicle. In order to
make the vehicle move as if this forces existed, a desired steering angle and differential
braking are determined. The advantage of the approach is that Lyapunov functions can
be derived to prove stability and error bounds for the controlled system. However, the
control law itself comes down to a rather simple P controller for lateral deviation ∆y and
orientation error ∆ψ.

This approach was adapted for path following in [Brandt, 2007], adding a curvature depen-
dent feedforward control for the steering angle. To the author’s knowledge the proof of
stability on the other hand has not yet been extended beyond straight reference paths.

Taylor uses a Lead-Lag controller for autonomous highway driving. The controller sets the
steering angle δ depending on the lateral deviation ∆yPV at a preview point PV in front of
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the ego vehicle, [Taylor et al., 1999]. Note that the distance lPV from the vehicle’s center
of gravity V ∗ to the preview point PV can be used as an additional control parameter.
For approximately straight reference paths and small orientation errors ∆ψ, lPV actually
scales the current lateral deviation ∆y versus the orientation error ∆ψ in the control law
according to ∆yPV ≈ ∆y + lPV ∆ψ.

In an attempt to create superior results, additional variables can be fed back to the controller
besides the lateral deviation ∆y and the orientation error ∆ψ. This leads to full state
feedback controllers where the full state of the used (linear) vehicle model is either measured
or observed and fed back to the controller. This approach might give some more freedom
in the design of system dynamics and allows to place the poles anywhere, actuator limits
permitting. Taylor applies this method, but in his case it yields inferior results to his
Lead-Lag compensator design, see [Taylor et al., 1999].

Maurer applies a full state feedback controller design for autonomous highway driving where
he switches between a third- and a fifth-order model depending on the velocity, [Maurer,
2000]. Besides the lateral position y and the yaw angle ψ, the fifth-order model regards the
yaw rate ψ̇, the steering angle δ, and the side slip angle β.

As exemplified by [König and Likhachev, 2006] and [Weilkes et al., 2005], the controller
design for full state feedback approaches can be facilitated by optimization methods such
as Linear Quadratic Regulator (LQR), see [König and Likhachev, 2006; Weilkes et al., 2005],
or H2, see [Söhnitz, 2001]. In these methods the poles of the controlled system are chosen
such that a quadratic costfunction is minimized, thus reducing the error integral or the
necessary control effort.

All the above approaches regard linear vehicle models. However, for certain situations,
as e.g. for higher lateral accelerations, a linear single track model is oversimplified and no
longer accurately represents the vehicle dynamics. Therefore, the performance of controllers
that were designed using such a linear model might degrade in these cases. In order to
regard more accurate nonlinear vehicle models and still be able to apply linear control
theories, some authors have applied an input-output linearization, see Figure 1.12. In
the illustrated example, the system, i.e. the nonlinear vehicle model, is combined with a
nonlinear decoupling controller such that the closed loop transfer function Y (s)

W (s) is linear
and decoupled in wi, yi. Therefore, linear control methods such as pole placement can be
used in the design process.

Taylor combines the input-output linearization with his Lead-Lag controller. However, in
his experiments on low curvature paths the controller performed not as good as the pure



40 1. Introduction and State of the Art

Figure 1.12.: Input-Output Linearization
A controller is designed such that the nonlinear system is decoupled and the closed loop
behavior of controller and system yields a linear behavior.

Lead-Lag controller, [Taylor et al., 1999]. König reports good results of a similar approach
to an LQR design with a linear model. The tests where performed on a 1:5 model vehicle,
[König and Likhachev, 2006]. In [Söhnitz, 2001], an input-output linearization is combined
with a linear integral control and a Kalman filter as observer to reduce the measurement
noise. In [Schorn et al., 2006], an input-output linearization approach is applied successfully
for collision avoidance. Test results show a maximum lateral deviation of 0.2 m during such
a maneuver at 10 m/s.

It can be concluded that many different control approaches can be used successfully for
lateral control of a vehicle. The choice of the controller type and the performance of the
controlled system among others largely depend on the vehicle, its sensor and actuator
limitations and the specific requirements (like high speed, high curvatures, slopes, wind or
uneven terrain).

1.2.2. Integrated Motion Control

While a decoupled motion control usually is easier to design and to parametrize, integrated
control approaches promise superior results, [Pham et al., 1997; Söhnitz, 2001]. While H.
Pham compares several different control approaches for mostly low-curvature autonomous
highway driving, [Pham et al., 1997], I. Söhnitz specifically targets trajectory following
control for high curvature paths, [Söhnitz, 2001].

The control variables for integrated motion control approaches are largely the same as for
decoupled motion control for trajectory following. The controller output usually consists of
the steering angle δ as well as a certain accelerating or braking torque TA/B or longitudinal
force Fx.
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For autonomous highway driving Pham proposes a sliding mode controller based on a
linear single track model for integrated lateral and longitudinal control. In order to control
a certain position error ∆x and ∆y, the desired steering angle δ and the desired accelerating
or braking torque TA/B are determined. The controller is tested only in simulations and
performs well for the tested curvatures of about κ =1/200m.

A very similar approach is used in [Swaroop and Yoon, 1999], where a sliding mode controller
is designed for vehicle following during an autonomous lane change maneuver. The control
design is also based on a linear single track model. Given a certain desired distance to the
preceding vehicle, the control variables consists of the position error ∆x and ∆y as well
as the velocity error ∆vx, which are used to calculate the desired steering angle δ and the
desired accelerating or braking torque TA/B, as in [Pham et al., 1997]. The controller is also
tested only in simulations and performs well for the tested curvatures of κ =1/300m.

As discussed before with regards to lateral control, the design based on linearized models is
limited and for certain situations a nonlinear control design may yield superior results. Mayr,
for example, concluded that among various controllers he tested for collision avoidance
maneuvers, a nonlinear model-based design performed best, [Mayr, 1991]. The controller
design is based on the principle of nonlinear decoupling which is further detailed in Section
4.3.1. In order to reduce oscillations, he determines the position error at a preview point
PV in front of the vehicle instead of the car’s center of gravity V ∗. The controller performed
well in simulations at v = 100km/h and curvatures of κ ≤ 1/100m.

Lammen successfully applies the nonlinear controller design of Mayr to a test vehicle for
autonomous collision avoidance, [Lammen, 1993]. However, due to limitations in available
sensors and computational resources, the tests are limited to 15 km/h and lateral accelera-
tion of about ay = 1m/s2.

As already mentioned for lateral control, the choice of the controller type and the perfor-
mance of the controlled system among others largely depend on the vehicle, its sensor and
actuator limitations and the specific requirements. The more information is available and
used about the vehicle state, the vehicle model, or possible disturbances the better the po-
tential performance but the more complex the controller design becomes. In addition, any
error in used models might result in larger errors if the controller design depends heavily
on their correctness.
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1.3. Thesis Contributions and Outline

As detailed, collision avoidance systems are generally based only on simple maneuvers with
certain lateral offsets that must be achieved. Even current efforts in purely autonomous
driving use sophisticated planning algorithms only for parking lot situations and not for
road driving, as detailed in the Annex A regarding the successful DARPA Urban Challenge
participants. In part this can be related to still existing sensory limitations, which will most
likely be alleviated in future. However, in order to provide a more qualified assistance in
complex traffic situations and for more distant planning horizons, an underlying detailed
trajectory planning is necessary.

Therefore, as stated above, it is the goal of this work to contribute by devising a novel
motion planning algorithm that could be used for autonomously driving vehicles or as basis
of future driver assistance systems.

The new proposed motion planning approach is an integrated trajectory planning method
that plans both path and velocity profile simultaneously. It centers on a predictive force
field trajectory deformation algorithm which is combined with an A*-based trajectory ini-
tialization and thus joins the advantages of predictive potential field methods and A*-based
graph search trajectory planning. As described in Chapter 2, a given initial trajectory is
deformed by a virtual force field. Based on the ideas of existing predictive potential field
path planning methods such as [Brandt, 2007; Hesse and Sattel, 2007; Sattel and Brandt,
2008], a predictive virtual force field approach is devised for integrated lateral and longi-
tudinal motion planning, see also [Hesse et al., 2010]. The most fundamental extension
lies in the integrated planning of a velocity profile by additional degrees of freedom in the
time dimension. In difference to [Brandt, 2007], other enhancements include that the initial
state, especially the orientation of the vehicle, is regarded in the planning, and limitations
to low curvatures stemming from very rough street approximations have been lifted. (The
additional dimensionality is also one major reason, why a different method had to be found
to create a viable starting solution.)

The description of the environment by a potential field hazard map and the definition of
optimization objectives as virtual forces that “push” the trajectory away from undesired
configurations is very intuitive. The deformation of the trajectory depends on the course
of the road, the predicted movements of all detected obstacles and the desired traveling
speed and minimizes necessary lateral and longitudinal accelerations. The virtual force
field approach is a locally convergent method, and therefore depends on an initial guess,
i.e. it cannot be executed without a trajectory initialization step. However, in combination
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with a good trajectory initialization the local convergence becomes a desirable characteristic,
since the nature of the maneuver is preserved and initial and optimized trajectory are always
homeotopically equivalent.

The initial solution is generated in an A* based trajectory initialization, see Chapter 3.
This sampling based search algorithm provides (resolution) completeness and allows fast
and efficient coverage of a higher dimensional search space to find a solution that is optimal
with regards to a given cost function. In this work, existing A* based approaches are
extended to plan trajectories for road traffic in five dimensions x, y, t, ψ, and v and create
feasible starting solutions for the force field optimization. Therein, an AWA* variant with
anytime characteristics (following [Hansen and Zhou, 2007]) is chosen, where the search
space S : 〈x, y, t, ψ, v〉 is discretized by an offline generated “state lattice”, in an extension
of [Pivtoraiko and Kelly, 2005a,c].

During this trajectory initialization, the best “type” of motion (e.g. follow, overtake before
oncoming traffic, overtake after oncoming traffic, etc.) is selected regarding necessary accel-
erations and path length, and a viable starting solution is created, see Chapter 3. The initial
trajectories are also collision free, but could graze them as the algorithm does not include
spatial or temporal “distances” to obstacles as optimization criteria. The “optimality” of
the solution might be further limited by the resolution of the search space discretization and
the allotted execution time. Due to the discretization of the search space, graph searches
also tend to create aliasing or “staircase” effe cts that result from the concatenation of
motion primitives or vertices to connect grid points. These disadvantages are alleviated by
the before mentioned trajectory optimization step.

As additional goal of this research work, an autonomous test vehicle was set up to demon-
strate applicability of devised motion planning approach in experimental tests. Chapter
4 details the modifications, added actuators and sensors, the applied architecture and the
implemented controllers. For the implementation of motion control within this thesis an
integrated control approach is chosen. One reason lies in the fact that the motion planning
provides a position reference [x(t), y(t)] over time in lateral and longitudinal direction. In
order to prevent a collision with moving obstacles it is essential not only to follow a cer-
tain path but also to be at a specific place at a certain point of time. Therefore, it seems
reasonable to apply an integrated control approach.

Furthermore, a decoupled motion control approach was tested that used the potential field
control devised by Gerdes and Brandt in [Brandt, 2007], but the performance was unsat-
isfactory. The vehicle was only stable up to a velocity of about 9 m/s when following
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a straight path at a constant velocity. The integrated approach proved more stable and
yielded superior tracking results for the used test vehicle.

Chapter 5 discusses the results of planning simulations and first experimental tests. The
work concludes with a summary and outlook in Chapter 6.



CHAPTER 2

Trajectory Optimization

The optimization of the trajectory is achieved by its submersion into a predictive virtual
force field. The choice of method and some principal advantages and disadvantages com-
pared to other state of the art motion planning methods have been elaborated in Chapter 1.
This new approach is based on the ideas of existing predictive potential field path planning
methods such as [Brandt, 2007; Hesse and Sattel, 2007; Sattel and Brandt, 2008] and other
methods as detailed in Chapter 1.

One of the most fundamental extensions of this method lies in the integrated lateral and
longitudinal motion planning, i.e. the simultaneous planning of path and velocity profile.
This is achieved by additional degrees of freedom in the time dimension, see also [Hesse
et al., 2010]. The development of this method has been supported by several student and
diploma theses supervised by this author, where differing variants and possible extensions
were implemented and tested, see for example [Kahl, 2007; Klötzer, 2007a,b; Neuhaus, 2008;
Stefani, 2009].

The current chapter details the devised predictive force field trajectory optimization algo-
rithm. Further characteristics and advantages are discussed within Chapters 5 (Results)
and 6 (Conclusion and Future Prospects).
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Figure 2.1.: Illustration of workspace
The trajectory optimization is carried out in the augmented workspace WT = 〈x, y, t〉 to
limit the computational complexity. The obstacles O| are represented as rectangles for each
point of time, resulting e.g. in rhombohedra for obstacles moving in a straight line at a
constant velocity, see O∈. The trajectory T is represented as discrete nodes Pi = [xi, yi, ti]T
representing the planned states of the ego vehicle’s (V) center of gravity CG = V ∗.

The trajectory T is given as discrete nodes Pi in the augmented workspace

WT = 〈x, y, t〉 , (2.1)

that includes the spatial dimensions x, y and regards the time t as third dimension as
displayed in Figure 2.1. Therefore, a position vector in the augmented workspace WT is
defined as r = [x, y, t]T.

The trajectory is now subjected to a predictive virtual force field F that pushes the nodes
in certain directions and thus deforms the trajectory in order to enhance its safety and
driveability. The virtual force field

F (T ,R,O) = Fext (R,O) + Fint (T ) + Fprev (T ,R,O) (2.2)

comprises three components as illustrated in Figure 2.2. The external force field Fext

represents the environment and ensures the safety of the trajectory by pushing it away
from hazards posed by the sides of the road R and from obstacles O and their predicted
future movements, see Section 2.1.
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Figure 2.2.: Blockdiagram trajectory optimization
The virtual forcefield F consists of three components, detailed in Sections 2.1, 2.2 and 2.3.
It then deforms the trajectory T until an equilibrium configuration is found, as detailed in
Section 2.4.

The internal force field Fint punishes dynamically unfavorable trajectories and depends
solely on the planned trajectory T itself. This is detailed in Section 2.2. The preview force
field Fprev introduces an additional look-ahead and depends on both the trajectory T and
the environment R,O as presented in Section 2.3.

The virtual force field F is evaluated at all nodes Pi of the trajectory T to produce certain
forces Fi. The solution to the trajectory optimization problem is defined as the equilibrium
configuration of the trajectory in the augmented workspace WT , where at each node the
forces produced by the different force field components Fext (see Section 2.1), Fint (see
Section 2.2), and Fprev (see Section 2.3) cancel each other out to yield

F (Pi) = 0 ∀ Pi ∈ T . (2.3)

The equilibrium configuration must be obtained numerically, as detailed in Section 2.4.

While the external and preview forces Fext
i , Fprev

i at the nodes Pi depend on the trajectory’s
representation in the augmented configuration space

CT = 〈x, y, ψ, t〉 , (2.4)
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because they depend also on the orientation ψ of the ego vehicle relative to the environment.
The internal forces Fint

i are defined with regards to the trajectory’s representation in

XT = 〈x, y, ψ, v, a, ay, ȧ, ȧy, t〉 , (2.5)

which shall be called augmented phase space. XT also contains all derivatives of the dimen-
sions in WT , CT that are regarded in optimization criteria or restrictions for the trajectory.
The trajectory optimization is performed in WT instead of XT to avoid the high number of
dimensions and thereby reduce the computational effort.

Due to the discrete nature of representation, the relations between the augmented workspace
WT , the augmented configuration space CT , and the augmented phase space XT along the
trajectory T are established via finite differences. For each discrete node Pi = [xi, yi, ti]T

they are defined as

ψi := arctan ∆yi
∆xi

, (2.6)

vi := ∆si
∆ti

, (2.7)

ai := vi − vi−1
1
2(ti − ti−2) , (2.8)

ay,i := vy,i − vy,i−1
1
2(ti − ti−2) , (2.9)

ȧi := ai+1 − ai−1
1
3(ti+1 + ti−2) , (2.10)

ȧy,i := ay,i+1 − ay,i−1
1
3(ti+1 + ti−2) , (2.11)

where

∆xi = xi − xi−1, ∆yi = yi − yi−1,

∆si =
√

∆xi2 + ∆yi2, vy,i = ∆yi
∆ti

,

∆ti = ti − ti−1.

All components above are assumed to be given with regards to the same cartesian reference
frame. Using these relations, the ego vehicle is assumed to be aligned with the trajectory,
neglecting a sideslip angle.
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2.1. External Force Field

The external force field Fext (R,O) depends on the course of the road R and the obstacles
O. It is derived as the negative gradient of a potential field hazard map V ext that represents
the environment, analogously to existing potential field motion planning approaches, see
Chapter 1. The external force Fext

i that results at a certain node Pi = [xi, yi, ti] is therefore
given by

Fext
i := −∇V ext

i :=
[
−∂V ext

∂xi
, −∂V ext

∂yi
, −∂V ext

∂ti

]T
(2.12)

and has components in spatial (x, y) and temporal (t) directions.

As illustrated in Figure 2.3, the total external potential V ext results as the sum of potentials
from the road and obstacle representations V R and V O,

V ext = V R + V O. (2.13)

The calculation of the road potential V R is detailed in Section 2.1.1, while Section 2.1.2
introduces the definition of the obstacle potential V O.

Figure 2.3.: Blockdiagram external force field
The road R and the obstacles Oj are mapped into an external potential field V ext. The
resulting external force Fext

i at Pi is defined by the negative gradient ∇.
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For the mathematical description of the environment, the following reference frames are
used, see Figure 2.4:

6-E: {E∗, Eex, Eey, Eet} Earth fixed reference frame
6-R: {R∗, Rex, Rey, Ret} Road fixed reference frame fixed at planning time t0
6 -R̃ (s̃):

{
R̃∗, R̃ex, R̃ey, R̃et

}
Road centerline reference frame, shifted with the ar-
clength s̃ along the centerline

6-̃R
i:

{
R̃i∗, R̃iex, R̃iey, R̃iet

}
Road centerline reference frame for point Pi

6-R̂
k:

{
R̂k∗, R̂kex, R̂key, R̂ket

}
Road segment fixed reference frame of segment R̂k

6-V: {V ∗, V ex, V ey, V et} Vehicle fixed reference frame of ego-vehicle
6-Oj:

{
O∗j , Ojex, Ojey, Ojet

}
Obstacle fixed reference frame of obstacle Oj

Figure 2.4.: Street representation and relevant reference frames
Besides the global earth fixed reference frame 6-E, there are object fixed reference frames for
the ego-vehicle as well as for all obstacles, and reference frames at the road centerline, placed
at the beginning of each segment and for each node Pi. The usage of different reference
frames simplifies the description of motions and allows the reduction of degrees of freedom
in search for the equilibrium solution.

Note that for all reference frames the third spatial dimension (z) is replaced by the temporal
dimension (t). The relation between the different dimensions for any of the above reference
frames is defined by 1

mex × 1
mex = 1

set. Unless stated otherwise, position vectors are given
with respect to 6-R.
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The road centerline reference frame 6 -R̃ (s̃) is defined depending on the arc length s̃ along
the centerline, as illustrated in Figure 2.4. Its origin lies on the centerline Rc of the road,
its R̃ex-axis is tangent to the road and the R̃ey-axis points to the left border of the road,

R̃ex := rR̃∗
′∥∥∥rR̃∗ ′∥∥∥ = Rx

R̃∗ ′
Rex + Ry

R̃∗ ′
Rey√(

RxR̃
∗ ′
)2

+
(
RyR̃

∗ ′
)2
, R̃ey := −Ry

R̃∗ ′
Rex + Rx

R̃∗ ′
Rey√(

RxR̃
∗ ′
)2

+
(
RyR̃

∗ ′
)2
, (2.14)

where (·)′ = d(·)
ds̃

abbreviates the derivative with respect to the arc length s̃ along the
centerline of the road.

For each node Pi a reference frame 6-̃R
i = 6 -R̃ (s̃i) is defined on the centerline of the road

closest to Pi such that

s̃i = argmin
s̃i

∥∥∥ rR̃∗(s̃i),Pi
∥∥∥. (2.15)

This means that by definition the position vector of Pi in 6-̃R
i only has a lateral component

and

R̃i
rR̃i∗,Pix := 0. (2.16)

At each planning instant t0, the centerline Rc is represented in the road fixed reference
frame 6-R. 6-R is identical to the reference frame 6 -R̃ (0) that is closest to the current position
of the center of gravity V ∗ of the ego-vehicle V . Therefore, the longitudinal position of the
ego-vehicle at t = t0 becomes

RrR∗,V ∗x = 0. (2.17)

At the beginning of each road segment R̂k there is a segment fixed reference frame 6-R̂
k. It

is identical to the road centerline reference frame 6 -R̃ (s̃k) at that position. Finally, also the
ego vehicle and all obstacles have their own reference frames 6-V, 6-Oj.
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Figure 2.5.: Representation of road
For every point Pi on the street, the road model calculates the closest point on the centerline
of the road R̃i∗, the corresponding points Ril and Rir, and the road orientation RψR̃

i of the
tangent at R̃i∗. From this information, the road potential V Ri is calculated.

2.1.1. Representation of Road

The street is modeled in order to map its course into a potential field hazard map, as
shown in Figure 2.5. For every point Pi on the street, the road model calculates the closest
point on the centerline of the road, R̃i∗, the corresponding points Ri

l and Ri
r, and the road

orientation RψR̃
i of the tangent at R̃i∗ as illustrated in Figure 2.4. Using this information,

the road potential V Ri at Pi is calculated.

For the sake of the trajectory optimization algorithm, any kind of road model that produces
the indicated information is feasible. Following in Section 2.1.1.1, this degree of freedom
is explored and a suitable road model is discussed. The definition of the road potential is
given in Section 2.1.1.2. In addition, this model provides a basis for the extrapolation of
obstacle movements, see Section 2.1.2.1.

2.1.1.1. Road Model

The construction of roads in Germany is, as in most countries, governed by national guide-
lines as documented in “Richtlinien für die Anlage von Straßen” (RAS), [FGSV, 1999].
Among others, Germany’s national guidelines demand a continuous curvature for the course
of the road. Therefore, straight pieces and circular arcs need to be connected by transition
segments called clothoids, see Figure 2.4.

Multifarious approaches for modeling the road for motion planning or driver assistance
systems can be found. In most cases, first information about the course of the road in
the vicinity of the ego-vehicle is collected by the use of various sensors such as RADAR
[Polychronopoulos et al., 2004], laser RADAR (LADAR) [Cremean and Murray, 2006; Wi-
jesoma et al., 2004], video [Bellino et al., 2004; Koller et al., 1993], laser scanners [Sparbert
et al., 2001], or combinations thereof [Cramer et al., 2004; Goyat et al., 2009]. Then a
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Figure 2.6.: Road approximation with cubic polynomials

mathematical model for the road is devised and the acquired data is fitted to this model.
An overview of early approaches can be found in [Kluge and Thorpe, 1989].

With regards to the mathematical road model, the majority of approaches use flat (2D)
road representations. In some publications these models have been extended to account
for 3D shapes of roads, as for example in [Dickmanns and Mysliwetz, 1992; Nedevschi
et al., 2004]. It is very common to use continuous models for the road centerline that give
local approximations in the vicinity of the ego-vehicle. These models vary from linear [Lee,
2002] or circular [Ma et al., 2000] to parabolic [Kreucher and Lakshmanan, 1999] and cubic
polynomial representations [Southall and Taylor, 2001]. The advantage of these rather
simple continuous geometric models lies in the need for only very few parameters that can
easily be estimated from sensor data.

However, even cubic models are only valid within a certain range that depends on the
curvature of the road. Figure 2.6 shows a curve with a minimum radius of 80 m that
obeys the national road construction guidelines for a velocity of 50 km/h [FGSV, 1999]. It
consists of a concatenation of straight, clothoid and circular segments. The Figure shows
three cubic approximations that start at different locations along the road. Approximation
1 starts right before the circular segment is reached, approximation 2 starts at the beginning
of the circular segment and approximation 3 starts at the end of the circular segment. Figure
2.6 shows that the cubic polynomial approximation may exhibit large lateral offsets: in this
example more than a lane width of 3.5 m after an arc length of less than 60 m.
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In an attempt to enlarge the validity range of a road model, [Khosla, 2002] discusses the
concatenation of two cubic polynomials as approximation for clothoids.

Following this train of thought, piecewise or segmented representations have the advantage
that their accuracy can be chosen arbitrarily by their discretization. The arising models
have no inherent range limitations. Each segment could for example be represented by a
linear [Kwon and Lee, 2002] or circular [Kluge and Thorpe, 1995] function. The disadvan-
tage of such a representation lies in the need for an increasingly high number of parameters
that need to be estimated from sensor data. For an accurate representation of the road, an
infinite number of linear or circular segments would be necessary. As a general trade-off,
the simpler the segment model the more segments are necessary. Therefore, the used model
of the road heavily depends on the purpose which defines the necessary range and accuracy
of the model and the available (sensor) data to estimate the model parameters.

For the course of this work, the centerline Rc of the road is modeled segment-wise as
given in the national construction guidelines by linear, circular and clothoid segments. The
altitude information of the road is neglected and the road is modeled two dimensionally
as projection to the x-y-plane. This yields an accurate model that is valid for arbitrary
planning distances. The road model, i.e. the (partially redundant) parameters for each
segment, l̂i, κk,0, κ′k, (RψR̂k , rR∗,R̂k∗), are stored in R and are assumed to be known at least
within the planning distance from a digital map and/or sensor data. For each Pi, the given
road model is applied to recover Ri

l, Ri
r, R̃i∗, and RψR̃

i . The blockdiagram of the apllication
of the road model is illustrated in Figure 2.7.

The road centerline model returns the position vector rR∗,R̃∗(si) and orientation RψR̃(si) of
the road centerline Rc relative to the road-fixed reference frame 6-R for a given arc length
s̃i (compare also Figure 2.4).

Figure 2.7.: Road representation
For every point Pi on the street, the road model calculates the closest point on the centerline
of the road R̃i∗, the corresponding points Ril and Rir on the road sides, the road orientation
RψR̃

i of the tangent at R̃i∗, and the arc length s̃i along the centerline from R∗ to R̃i∗
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Calculate Roadpoints Using the output of the road centerline model, the correlating
roadside points Ri

l and Ri
r on the left and right road side, are easily determined. The right

and left border of the road ∂Rr, ∂Rl are given by

∂Rl/r := Rc ±
b

2 R̃ey, (2.18)

where b denotes the width of the road. Therefore, the position of the roadside points is
given by

rR
∗,Ri

l/r = rR∗,R̃i∗ ± b

2 R̃i
ey, (2.19)

where, as defined earlier, R̃i∗ = R̃∗(s̃i) and
R̃i

ey = − Rex sin RψR̃
i + Rey cos RψR̃i with

RψR̃
i = RψR̃(si). Thus, all outputs R̃i∗, RψR̃i , Ri

l, and Ri
r are known.

Determine s̃i In case the arc length s̃i is unknown for a certain point Pi, it must be
determined in order to use the road centerline model as seen in Figure 2.7, but as will be
shown, hardly ever an extensive search is necessary.

The search for s̃i for the nodes Pi of the planned trajectory can be divided into three
different cases. In the first case, when no prior information about s̃i exists, the whole map
must be searched for s̃i to fulfill Equation 2.15 such that the point R̃(s̃i) is the one on the
road center line Rc that is closest to Pi. The best choice for the search algorithm depends
heavily on the characteristics of the map, as for example its size. In most cases it makes
sense to search first the road segment in which Pi lies and then inside this segment the
closest point on the centerline.

The search for the relevant road segment can be enhanced by storing the segments in
specialized data structures that allow time efficient retrieval of the closest element. The
fastest search inside a segment again depends on its characteristics: While in a linear
segment the arc length within the segment can be directly computed, in other types of
segments e.g. a recursive search of segment parts could be implemented.

However, this first case where no prior information for s̃i exists is extremely rare and is
usually only relevant for the first node P0 of the planned trajectory for the very first planning
instance K = 0.

In the second case, we are also searching for s̃0 correlating to the first node P0 of the planned
trajectory. However, in difference to the first case, a trajectory had been planned already
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in a previous planning instance K − 1. Knowing s̃0 for the previous first node PK−1
0 and

the approximate distance the ego vehicle has traveled since then, a very good initial guess
for s̃0 already exists to speed up the search.

In the third case, the search for s̃i is even simpler. In this case, we are searching for the
arc length s̃i correlating to Pi with i > 0. Since s̃i−1 can be assumed to be known at this
point, as is the arc length ∆s̃i−1,i between the nodes, s̃i is given as s̃i = s̃i−1 + ∆s̃i−1,i.

The position rR∗,R̃∗ (s̃) and orientation RψR̃ (s̃) of the road centerline Rc are defined depend-
ing on the type of road segment. As illustrated in Figure 2.7, the road centerline model
consists of three parts: First, a part to find the relevant segment, second, the segment
model of this segment, and third, a coordinate transformation.

Find Segment In each segment R̂k only the segment arc length

ŝk = (s̃− s̃k) (2.20)

along the centerline of the segment is regarded, where

s̃k = s̃0 +
k−1∑
i=0

l̂i (2.21)

denotes the arc length along the road centerline from R∗ to R̂k∗. Therein, l̂i represents
the length of the centerline in each segment R̂i and s̃0 designates the arc length along the
centerline from R∗ to the beginning R0∗ of the current road segment, see Figure 2.4. It is
important to note that s̃0 ≤ 0. The segment R̂k is determined by

k = argmin
k

(s̃− s̃k |s̃− s̃k > 0). (2.22)

Transformation For each segment R̂k, the position rR∗,R̃∗ (s̃) and orientation RψR̃ (s̃) of
the road centerline Rc are first computed in a road segment fixed reference frame
6-R̂
k = 6 -R̃ (s̃k), that is fixed on the centerline Rc of the road at the beginning of each segment,

and then transformed into 6-R by applying

RrR∗,R̃∗ (s̃) = RrR∗,R̂k∗ + CR̂k∗,R
R̂k

rR̂k∗,R̃∗ (ŝk) , (2.23)
RψR̃ (s̃) = RψR̂

k + R̂kψR̃ (ŝk) . (2.24)



2.1. External Force Field 57

The transformation matrix in Equation 2.23 reads

CR̂k∗,R =
 cos RψR̂k sin RψR̂

k

− sin RψR̂
k cos RψR̂k

 , (2.25)

where the start orientation RψR̂
k of each road segment R̂k and the position vectors RrR∗,R̂k∗

of the segment fixed reference frames are known from a digital map and/or sensor data, as
mentioned before. Relative to one another they are given as

RψR̂
k = RψR̂

k−1 + R̂k−1
ψR̃

(
l̂k−1

)
, (2.26)

RrR∗,R̂k∗ (s̃k) = RrR∗,R̂k−1∗ + CR̂k−1∗,R
R̂k−1rR̂

k−1∗,R̃∗
(
l̂k−1

)
. (2.27)

Segment Model for Straight Street Segments As illustrated in Figure 2.8, the cen-
terline of straight segments is given by

R̂k
rR̂k,R̃∗ (ŝk) =

 ŝk

0

 . (2.28)

The road orientation remains constant at

RkψR̃ (ŝk) = 0. (2.29)

Figure 2.8.: Straight road segment
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Figure 2.9.: Circular road segment

Segment Model for Circular Street Segments Circular segments, as shown in Figure
2.9, are represented by

R̂k
rR̂k,R̃∗ (ŝk) = 1

κk

 sin (φ (ŝk))
1− cos (φ (ŝk))

 , (2.30)

RkψR̃ (ŝk) = φ (ŝk) = ŝkκk, (2.31)

where κk denotes the curvature of the road segment.

Segment Model for Clothoid Street Segments For clothoid street segments, as illus-
trated in Figure 2.10, the curvature κ varies linearly with κ′ over the arc length s

κ (s) = κ′s, (2.32)

where κ′ denotes the change in curvature which remains constant at κ′ = κ′k within each
clothoid road segment R̂k. In the road construction guidelines [FGSV, 1999], further restric-
tions on κ′ exist. However, they shall not be regarded at this point, since they do not limit
the validity of this road model. The start curvature κk,0 is the same as the end curvature of
the previous segment, i.e. the curvature of two consecutive segments (for example a circular
and a clothoid segment) is identical where they are connected.
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Figure 2.10.: Clothoid road segment

As detailed in B.1, clothoids are described as Fresnels integrals and cannot be solved in
closed form, [Bronstein and Semendjajew, 1991]. However, they can be approximated with
arbitrary accuracy using series expansions for the sine and cosine functions in the integrands,
see for example [Wang et al., 2001].

This results in

R̂k
rR̂k∗,R̃∗ (ŝk) = CCL,R̂k


∑∞
n=0

(−1)n( 1
2κ
′
k)

2n

(2n)!(4n+1)

((
ŝk + κk,0

κ′
k

)4n+1
−
(
κk,0
κ′
k

)4n+1
)

∑∞
n=0

(−1)n( 1
2κ
′
k)

2n+1

(2n+1)!(4n+3)

((
ŝk + κk,0

κ′
k

)4n+3
−
(
κk,0
κ′
k

)4n+3
)
 . (2.33)

CCL,R̂k denotes the transformation matrix between 6-CL and 6-R̂
k

CCL,R̂k =
 cos CLψR̂k sin CLψR̂

k

− sin CLψR̂
k cos CLψR̂k

 , (2.34)

where CLψR̂
k represents the rotation angle between the two reference frames

CLψR̂
k =

κ2
k,0

2κ′k
. (2.35)
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The orientation of the road centerline of a clothoid segment with regards to the segment
fixed reference frame is given (see B.1) by

R̂kψR̃ (ŝk) = κk,0ŝk + 1
2κ
′
kŝ

2
k. (2.36)

2.1.1.2. Definition of Road Potential

For the trajectory optimization the road is mapped into an external road potential V R, as
mentioned before. This potential shall have the properties that it is well defined and twice
continuously differentiable for any point on the road. In addition, both the potential and
its first derivative shall go to infinity at the borders of the road. This property is demanded
to ensure that the equilibrium always lies within the road borders even when obstacles are
present. Further, there should be a unique minimum across the width of the road that can
be placed to represent the desired path in the absence of obstacles, see Section 2.6. Since
the road does not vary over time, the potential field shall not vary in time-direction.

Following the design considerations above and a previous successful approach for path
planning, see [Brandt, 2007], the road potential is chosen as the sum of two logarithmic
functions for each road side

V R := V ∂Rr + V ∂Rl , (2.37)

V ∂Rq := −k∂Rq ln
(
d∂Rq

)
, q ∈ {r, l} (2.38)

where d∂Rq denotes the distance to the road side ∂Rq. The distance d∂Rq does not depend
on the time, since the roadsides are time-invariant. Further it is approximated to be inde-
pendent of the ego-vehicle’s orientation ψ to reduce computational complexity, since the
planned motion is mostly longitudinal to the course of the road. This is especially true
where the ego vehicle comes close to the road borders. Therefore, the final result should
not differ significantly.

The road potential for a given road R therefore only depends on the spatial position,

V Ri = f (xi, yi) = f (ri) . (2.39)

The choice of the constants k∂Rr and k∂Rl is discussed in Section 2.6.
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2.1.2. Representation of Obstacles

All obstacles are mapped to an obstacle potential V O that can be evaluated for any point
P . In principle, any obstacle geometry can be regarded, but certain approximations are
advantageous because they simplify the calculations. Available sensor data would have to
be fitted to these approximations to create the obstacle representations for the trajectory
optimization. Easiest in terms of distance computations would be circles, however, for auto-
motive vehicles, a circle is a rather poor approximation and an encompassing circle would
be far too conservative for little available free space: Two vehicles on neighboring lanes
could not pass each other anymore because they would seemingly collide if approximated
by encompassing circles. Therefore, all obstacles are represented as rectangles. Different
geometries are enlarged to rectangles.

The motion of all obstacles Oj, j = 1..M is extrapolated depending on their detected
dynamic state at t = t0 as illustrated in Figure 2.11 and detailed in Sections 2.1.2.1 and
2.1.2.2. Then the distances dOji from a point Pi to all obstacles Oj is determined, see
Section 2.1.2.3, as well as the time to collision ∆tOji (forward and backward in time) in case
it exists for the position [xi, yi]T of Pi, see Section 2.1.2.4. Finally, the obstacle potential
V O is computed depending on these spatial and temporal distances, see Section 2.1.2.5.

Figure 2.11.: Blockdiagram Representation of Obstacles
The obstacle potential field depends on the spatial and temporal distances to all obstacles.
In order to determine these distances for a certain point Pi, the motion of the obstacles is
extrapolated either along the road (in-lane) or only due to the current dynamic state of the
obstacle and ignoring the course of the road (out-of-lane).

The extrapolation of traffic objects and other obstacles is a complex matter and there have
been many investigations. In many motion planning algorithms dynamic obstacles are
extrapolated on linear trajectories with a constant velocity or acceleration [LaValle, 2006].
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More sophisticated model-based approaches are used in object tracking applications [Hu
et al., 2004]. Wang et al. incorporate traffic flow information in their model for in-lane
vehicle motion prediction [Wang et al., 2005].

In addition, there exist behavior-based approaches that model the behavior of a human
driver to predict the motion of the ego-vehicle [Toledo et al., 2007] and the surrounding
traffic [Dagli and Reichardt, 2002]. Therein, probabilistic belief networks are used that
operate with discrete motion concepts or maneuvers such as a lane-change [Dagli et al.,
2003]. For an overview of behavior-based approaches see [Plöchl and Edelmann, 2007]. In
case little previous knowledge about the behavior of obstacles exist, their motion patterns
can also be learned over time, as presented in [Kruse et al., 1997; Vasquez et al., 2004].

The problem of the uncertainty of such predictions that are based on flawed or noisy sensor
data can be addressed for example by Monte Carlo simulations, reachability set analyses
[Althoff et al., 2008], or Markov chains [Rohrmüller et al., 2008].

Among others, the best extrapolation algorithm should be chosen depending on the available
data. Within this virtual force field trajectory optimization, any (deterministic) extrapola-
tion algorithm is feasible that predicts at least position and orientation of each obstacle for
a given point of time to be able to compute the spatial and temporal distances dOji , ∆tOji ,
see Figure 2.11. Data about obstacles can be obtained by the use of various sensors and
data sources such as RADAR, LIDAR, laser scanners, cameras or car-to-x communication,
see [Klein, 2001; Stiller et al., 2000].

For the course of this thesis, at the point of time of replanning t = t0 the following data is
assumed to be given for each obstacle Oj:

lOj , wOj =̂ length and width of obstacle Oj

rR∗,O∗j (t0) =̂ position of obstacle
RψOj (t0) =̂ yaw angle of obstacle (if applicable, is included in geometric form)
RvOj (t0) =̂ velocity of obstacle
RaOj (t0) =̂ acceleration of obstacle
RωOj (t0) =̂ yaw rate of obstacle
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The obstacle’s velocity RvOj (t) is extrapolated assuming that it maintains the constant
acceleration RaOj (t0) until either an assumed maximum velocity v

Oj
max or a standstill is

reached

RvOj (t) =


Rv

Oj
lin (t) 0 < Rv

Oj
lin (t) < v

Oj
max

v
Oj
max if Rv

Oj
lin (t) > v

Oj
max

0 0 > Rv
Oj
lin (t) ,

(2.40)

Rv
Oj
lin (t) = RvOj (t0) +R aOj (t0) (t− t0) . (2.41)

The traveled arc length sOj (t) is then given according to

sOj (t) =
t∫

t0

vOj (τ) dτ . (2.42)

For the course of this work, the extrapolation of an obstacle is divided into two categories,
as illustrated in Figure 2.12. Depending on the orientation of the obstacle relative to the
road centerline Rc,

R̃ψOj = RψOj (t0)− kπ − RψR̃
(
s̃Oj (t0)

)
, (2.43)

the obstacle is either assumed to follow the course of the road or to ignore it. k depends
on the direction of motion relative to the ego-vehicle,

k =

 0 for parallel traffic
1 for oncoming traffic.

(2.44)

RψR̃
(
s̃Oj (t0)

)
is determined using Equations 2.24 and 2.26. The arc length s̃Oj (t0) is

defined as the arc length along the road centerline from R∗ to the point on the centerline
that is closest to the obstacle at t = t0.

If R̃ψOj is greater than a certain threshold εψ, the obstacle is assumed to leave the road,
otherwise it is assumed to follow it,

rR∗,O∗j (t) =

 r
R∗,O∗

j
in-lane (t) if

∣∣∣R̃ψOj ∣∣∣ ≤ εψ

r
R∗,O∗

j
out-of-lane (t) otherwise.

(2.45)
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Figure 2.12.: Extrapolation of obstacles
Depending on the relative orientation to the road, the obstacle is either assumed to follow the
course of the road (in-lane extrapolation) or to ignore the road (out-of-lane extrapolation).

2.1.2.1. In-Lane Extrapolation of Obstacles

If an obstacle follows the road, the lateral offset to the road centerline is assumed to remain
constant such that

r
R∗,O∗

j
in-lane (t) = rR∗,R̃∗

(
s̃Oj (t)

)
+ y

Oj
off R̃ey

(
s̃Oj (t)

)
(2.46)

where yOjoff equals the obstacle’s current lateral offset to the center of the road

y
Oj
off = R̃r

R̃∗,Oj
y

(
s̃Oj (t0)

)
. (2.47)

The orientation of the extrapolated obstacle is assumed to be equal to the tangent on the
road centerline

RψOj
(
s̃Oj

)
= RψR̃

(
s̃Oj

)
+ kπ, (2.48)

where k again represents the direction of motion relative to the ego-vehicle, see Equation
2.44. s̃Oj represents the arc length along the centerline of the roadRc. The relation between
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s̃Oj and sOj depends on the segment type. As derived in B.2, the final arc length relations
are given by

sOj =


s̃Oj straight road segments
s̃Oj + y

Oj
off κk s̃

Oj for circular road segments

s̃Oj + y
Oj
off

(
κk,0 s̃

Oj + κ′k
(s̃Oj)2

2

)
clothoid road segments.

(2.49)

2.1.2.2. Out-of-lane Extrapolation of Obstacles

In case the obstacle is assumed to ignore the course of the road, its motion is extrapolated
depending only on the obstacle’s current dynamic state at t = t0. For the extrapolation,
a kinematic singletrack model is used. The motion is extrapolated in the object-fixed
reference frame 6-O

0
j=6 -Oj(t0) which is fixed at t = t0 and then transformed into the road

fixed reference frame 6-R by applying

Rr
R∗,O∗

j
out-of-lane = RrR∗,O0∗

j + CO0
j ,R

O0
j
r
O0∗
j
,O∗
j

out-of-lane, (2.50)
RψOj = RψO

0
j + O0

jψOj . (2.51)

For ψ̇ = ω = 0, the obstacle moves on a straight line given by

O0
j
r
O0∗
j
,O∗
j

out-of-lane (t) =
 sOj (t)

0

 , (2.52)

where the traveled arc length sOj (t) is determined using Equations 2.40 to 2.42.

For ψ̇ = ω 6= 0, the obstacle is assumed to maintain its curve radius. As illustrated in Figure
2.13, this results in a circular motion with the instantaneous center of rotation ICR lying
besides the object’s rear axle, see [Mitschke and Wallentowitz, 2004]. For this rotational
movement of the point Hj on the rear axle of obstacle Oj, its center O∗j can be determined
for any point of time according to

O0
j
r
O0∗
j
,O∗
j

out-of-lane (t) =
O0
j
rO0∗

j
,H0
j +

O0
j
rH0

j
,Hj (t) +

O0
j
rHj,O∗j (t) (2.53)

=
−lH

0

+
 RH sinφ (t)
RH (1− cosφ (t))

+
lH cosφ (t)
lH sinφ (t)

 , (2.54)
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Figure 2.13.: Out-of-lane obstacle extrapolation
If the obstacle is not extrapolated along the road, it is extrapolated due to its current
dynamic state at t = t0, using a kinematic single track model. The area swept by the
obstacle is denoted area of potential collisions which is used for the computation of the
temporal distances.

where

φ (t) = sOj (t) /RH (2.55)

and the radius RH is given by

RH =
∥∥∥ rICR,H0

j

∥∥∥ = ‖
EvHj (t0)‖
EωOj (t0) =

∥∥∥ EvO∗
j (t0) + rO0∗

j
,H0
j × EωOj (t0)

∥∥∥
EωOj (t0) . (2.56)

The obstacle’s orientation can be calculated according to

RψOj (t) = RψO
0
j + φ (t) . (2.57)

2.1.2.3. Computation of spatial distances dOj

For the evaluation of the obstacle potential (that is then used to determine the external
forcefield) it is necessary to compute the spatial distances from the ego-vehicle V at any node
Pi, i = 0..N to all obstacles Oj, j = 1..M for the correlating points of time. Further, it is of
interest to determine the closest point Ôj on each obstacle. The position and orientation of
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the obstacles are given by the extrapolations, for example as described in Sections 2.1.2.1
and 2.1.2.2. This results in N ×M necessary distance computations.

The distance dOji =
√

(∆xOji )2 + (∆yOji )2 is defined as the minimum distance between the
two rectangles, V at Pi and Oj for t = ti, see Figure 2.14. Such distance computations
have received much attention because they serve as fundamental building blocks in many
collision detection packages. A very simple and straight forward approach is to treat each

Figure 2.14.: Distance to obstacles
The distances dOj

i are determined by simple vertice-edge distance computations. Collision
checks are performed according to the separating axis theorem.

node Pi separately. First, the motion of every obstacle is extrapolated for t = ti, and second,
the distance dOji is computed.

Early work on distance calculation includes a linear-time algorithm by Dobkin and Kirk-
patrick to determine the distance between two static convex polyhedra, [Dobkin and Kirk-
patrick, 1985]. More sophisticated and efficient approaches have been developed using
hierarchical data structures and incremental distance computation by exploiting the coher-
ence of motion. Lin and Canny deduct that for small time increments between two distance
calculations the closest pair of features (vertices, edges, or faces) between two polyhedra
will not vary much. In [Lin and Canny, 1991] they propose an algorithm that exploits
this coherence for convex polyhedra and “walks” on the surface of polyhedra from a previ-
ously found closest pair to the next. Empirically, the query time was found to be almost
constant.

Many modifications and extensions of this algorithm have hence been devised, as for exam-
ple in [Cameron, 1997] or [Mirtich, 1998]. A combination of incremental distance computa-
tions with hierarchical data structures was suggested by [Guibas et al., 1999]. In [Ehmann
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and Lin, 2001], Ehmann and Lin devise a similar method that enables queries of vary-
ing generality such as collision detection, approximate and exact distance calculation and
disjoint contact determination in a single framework. Even more general geometries, i.e.
non-convex objects could be handled by an extension published in [Quinlan, 1994]. Non-
convex objects are decomposed into several convex objects using a hierarchical bounding
representation and spherical approximations.

Since for the course of this work the distance calculations are performed in the x-y-plane
of the augmented workspace where all objects are approximated as simple rectangles, very
general algorithms such as those for non-convex objects are not expected to significantly
benefit the average computation time of distances. Further research would be necessary at
this point in order to evaluate and adapt the most suitable method. Especially incremental
algorithms seem promising due to the vast number of distance calculations and small time
increments. For first implementations as used for the experimental results in Chapter 4, a
very crude algorithm has been implemented that treats the extrapolation for all nodes Pi
separately and does not use any special data structure but simply performs eight vertice-
edge distance computations to yield the minimum distance and the closest point Ôj on the
obstacle Oj to Pi.

2.1.2.4. Computation of temporal distances ∆tOj

While the spatial distance always exists, the temporal distance on the other hand is defined
in such a way that it only exists with non-infinite value if there is a potential collision at a
certain node Pi. A potential collision occurs if the extrapolation of obstacle Oj for any time
from its detection tOjdetect to the extrapolation horizon tehorizon collides with the ego-vehicle
V at (xi, yi), i.e. if the projection of Pi to the x-y-plane lies within the area of potential
collisions, see Figures 2.13, 2.15. The temporal distance ∆tOji from Pi to obstacle Oj is
defined as

∆tOji :=


∣∣∣t̂Oj (xi, yi)− ti

∣∣∣ if potential collision exists for Pi
∞ otherwise.

(2.58)

For each planned position Pi of the ego-vehicle V that has a potential collision with an
obstacle, there exists a certain period of time during which this potential collision occurs.
It starts at tOFji when the front of the obstacle Oj reaches the position of the ego-vehicle
V(ti) that is associated with Pi, and it finishes at tORji when the rear end of the obstacle
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Figure 2.15.: Temporal distance to obstacles
If the ego vehicle V intersects (“collides”) with the swath (area of potential collision) of
the obstacle Oj for any node Pi, there exists a finite (positive or negative) time to collision
∆tOj

i . The collision checking can be performed e.g. by oriented bounding boxes (OBB) of
partial trajectories.

leaves the potential collision. t̂Oj (xi, yi) denotes the point of time within this period that
is closest to ti. Setting ∆tOji to infinity lets the temporal part of the obstacle potential
vanish, see Section 2.1.2.5. Figure 2.16 illustrates the two-step process of computing ∆tOji
in a blockdiagram.

Figure 2.16.: Blockdiagram for calculation of temporal distance to obstacle
For each node Pi and its time ti and each obstacle Oj it is first checked whether a potential
collision exists, see 2.15. Then the time interval [tOFj

i , t
ORj

i ] is determined in which the
obstacle is in collision with the ego vehicle if it was static at (xi, yi). Finally, from this time
interval the shortest difference to ti is calculated.

In order to calculate
[
t
OFj
i , t

ORj
i

]
and finally t̂Oj (xi, yi), a number of different approaches can

be taken. To handle any method for obstacle extrapolation, a recursive numerical approach
is proposed. The obstacles’ extrapolated trajectories are recursively broken up into parts.
Each partial trajectory is then tested for collision with the rectangle that represents ego-
vehicle at Pi. If there is no collision, this part is disregarded. In case there exists a collision,
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the partial trajectory is further subdivided. This is repeated until either the time interval
∆t of the examined partial trajectory drops below the threshold ε∆t or all parts are found
to be collision-free. ε∆t determines the accuracy of the returned temporal distance.

For the collision detection of the partial trajectories, a number of different algorithms can
be applied, among those many listed already in Section 2.1.2.3, see for example [Dobkin and
Kirkpatrick, 1985; Mirtich, 1998]. Lin and Gottschalk give a survey of different classes and
algorithms in [Lin and Gottschalk, 1998]. Efficient collision detection algorithms mostly
rely on hierarchically structured approximations of different objects with suitable bounding
volumes. In [Hubbard, 1996] for example, polyhedra are approximated with spheres for
collision checking, while Klosowski et al. use hierarchically structured convex polytopes,
[Klosowski et al., 1998]. Newer approaches further try to extend collision detection to
dynamically deforming objects, see [Curtis et al., 2008; Teschner et al., 2005].

Since in this case all objects are represented as rectangles, the approximation by oriented
bounding boxes (OBB) as presented in [Gottschalk et al., 1996] seems most appropriate, see
Figure 2.15. The collision test between the rectangular ego-vehicle and the rectangularly
bounded partial obstacle trajectory is performed by an efficient test that is based on the
separating axis theorem which is frequently used in this context, [Gottschalk, 2000; LaValle,
2006; Van Den Bergen, 2005]. For rectangles this means that there exists a collision if and
only if the projections on all four axes intersect, see Figure 2.14. These axes coincide with
the directions of the rectangles’ edges.

For the special obstacle extrapolations used within the course of this work, the case that
there exists no potential collision can be found more directly, since only certain geometric
types of areas are swept by the obstacles. If an obstacle follows the road, the test is
whether or not the ego-vehicle at node Pi covers a certain width of the road. If an obstacle
is extrapolated out of the lane, the swept area of potential collision is bounded either by
a rectangle for EωOj = 0 or two circles for EωOj 6= 0, see Figure 2.13 and Sections 2.1.2.1,
2.1.2.2.
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2.1.2.5. Definition of Obstacle Potential

For the trajectory optimization, the obstacles are represented by a potential field V O, from
which the obstacle force field FO is computed. Analogously to the road potential, there is a
logarithmic component for each obstacle that decays with growing distance to the obstacle
and reaches infinity at the obstacles’ borders

V O =
M∑
j=1

V Oj , (2.59)

V Oj = −kOjy ln
(∥∥∥dOj∥∥∥)− kOjt ln

(∥∥∥∆tOj∥∥∥) . (2.60)

The spatial and temporal distances dOj and ∆tOj to all obstacles Oj are determined as
presented in the sections above.

The obstacle potential depends on the planned position (x, y) and orientation ψ of the ego
vehicle. Further, the obstacle potential varies over time for dynamic obstacles. Due to the
relations established above between the phase space X and the work space W the potential
at node Pi depends on the position of Pi and Pi−1 in W

V Oi = f (xi, yi, ti, ψi) = f (ri, ri−1) . (2.61)

Figure 2.17 illustrates the external potential field for a straight road and two obstacles for
a single point of time t = 0 and ψ = 0. It goes to infinity as the distance to the borders
of the road or the obstacles approaches zero. As can be seen, areas closer to the border of
the road than half of the ego vehicle width are prohibited. The minimum of the combined
road and obstacle potential obviously does not always lie in the middle of the right lane
anymore. In case an obstacle is not static but moves, the external potential also varies over
time, as illustrated in Figure 2.18.
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Figure 2.17.: External potential field V ext(x, y) for t = 0 and ψ = 0
The figure illustrates the external potential field for a straight road and two obstacles for
a single point of time t = 0 and ψ = 0. It goes to infinity as the distance to the borders of
the road or the obstacles approaches zero.

Figure 2.18.: External potential field V ext(x, y, t) for ψ = 0
The figure illustrates the external potential field for a straight road with one static obstacle
and one obstacle moving with a constant velocity from right to left on the farther lane.
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2.2. Internal Force Field

Depending on the trajectory’s representation in the augmented phase space XT , a virtual
internal force field Fint is defined that enhances the trajectory’s drivability by punishing
configurations that are dynamically unfavorable. Different models can be applied here. For
forcefield path planning for example an inverse linear single track model has been applied,
see [Hesse and Sattel, 2007]. Pending future incorporation of more detailed models in to this
trajectory optimization method, the suitability of a trajectory is here quantified in terms
of accelerations of a point-mass model in lateral and longitudinal road direction along the
trajectory. In addition to the expected lateral and absolute acceleration ay, a, also the
change in acceleration, called jerk, is regarded. Further, the internal force field comprises
another longitudinal component that abets a certain desired traveling speed vdes

Fint (v, a, ay, ȧ, ȧy) =
(
Facc
y (ay) + Fdacc

y (ȧy)
)
R̃ey

+
(
Fvel
t (v) + Facc

t (a) + Fdacc
t (ȧ)

)
R̃et. (2.62)

The following sections define the forces that result when the virtual internal force field is
evaluated at a certain node Pi. As mentioned above, the planned trajectory consists of
discrete nodes Pi in the augmented workspace WT = 〈x, y, t〉. Using the relations between
WT and XT that were stated at the beginning of this chapter, the dependencies of the
internal force at a node Pi read

Fint
i (ri+1, ri, ri−1, ri−2) =

(
F acc
y,i (ri+1, ri, ri−1) + F dacc

y,i (ri+1, ri, ri−1, ri−2)
)
R̃ey

+
(
F acc
t,i (ri+1, ri, ri−1) + F dacc

t,i (ri+1, ri, ri−1, ri−2)
)
R̃et

+F vel
t,i (ri, ri−1) R̃et. (2.63)

2.2.1. Representation of Lateral Motion

The lateral motion along the planned trajectory is optimized by the forces F acc
y,i and F dacc

y,i

in lateral road direction that depend on the lateral acceleration and rate of change of this
acceleration, called lateral jerk, respectively.
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The lateral acceleration force F acc
y,i at each node Pi works against high accelerations in lateral

road direction ay,i at the node Pi, given by the backward difference quotient as defined at
the beginning of this chapter in Equations 2.6ff,

F acc
y,i = −kaccy ay,i (2.64)

= −kaccy 2
yi−yi−1
ti−ti−1

− yi−1−yi−2
ti−1−ti−2

ti − ti−2
. (2.65)

All components (ti, ti−1, ti−2, yi, yi−1, yi−2) are given with respect to the road centerline
reference frame for Pi, 6-̃R

i.

At this point it can be seen why it makes sense to define the lateral acceleration ay,i the way
it is. The use of a central difference quotient as relation between the augmented workspace
WT and the phase space variable ay,i would , among others, not be well-suited to produce
a low acceleration at the very beginning of the trajectory, see F acc, c

y,i in Figure 2.19. In case
of a sharp bend at P0 from P−1 (which results from the previously planned trajectory) to
P1, a central difference quotient might produce only a force at P0. However, because this
node is fixed, the acceleration force F acc, c

y,0 would be rendered useless.

As can be seen in Figure 2.19, the use of a backward difference quotient in the same situation,
on the other hand, produces the force F acc

y,1 on P1 that effectively reduces the curvature and
hence the lateral acceleration at P0.

The lateral jerk force F dacc
y,i is designed to produce trajectories with a constant lateral

acceleration and to prevent high lateral jerks. It depends on the change in acceleration in
lateral road direction ȧy,i at Pi

F dacc
y,i = −kdaccy ȧy,i (2.66)

= −kdaccy

6
ti+1 − ti−2

 yi+1−yi
ti+1−ti −

yi−yi−1
ti−ti−1

ti+1 − ti−1
−

yi−yi−1
ti−ti−1

− yi−1−yi−2
ti−1−ti−2

ti − ti−2

 . (2.67)

As before, all components (yi, yi−1, yi−2) are given with respect to the road centerline refer-
ence frame for Pi, 6-̃R

i. The resulting trajectory can be tuned by scaling kaccy and kdaccy , see
Section 2.6.
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Figure 2.19.: Lateral acceleration forces
F accy,i depends on the lateral acceleration at Pi as defined by the backward difference quotient.
The lateral offsets yi, yi−1, yi−2 therein are given with respect to 6-̃R

i.

2.2.2. Representation of Longitudinal Motion

The total internal force in time direction at node Pi is composed of three parts: The
acceleration force F acc

t,i , the jerk force F dacc
t,i that depends on the change in acceleration, and

finally the travel velocity force F vel
t,i that depends on the deviation from the desired traveling

speed.

The acceleration force F acc
t,i in time-direction at node Pi is given by

F acc
t,i = kacc,1t ai (2.68)

= 2kacct

∆si
ti−ti−1

− ∆si−1
ti−1−ti−2

ti − ti−2
, (2.69)

where the spatial distances are defined as before

∆si =
√

(xi − xi−1)2 + (yi − yi−1)2, (2.70)

∆si−1 =
√

(xi−1 − xi−2)2 + (yi−1 − yi−2)2. (2.71)

As before, the components (xi, xi−1, xi−2, yi, yi−1, yi−2) given with respect to 6-̃R
i.
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Analogously to the representation of the lateral motion, there is also a force F dacc
t,i that

depends on the change in acceleration ȧi at the node Pi

F dacc
t,i = kdacct ȧi (2.72)

= kdacct

6
ti+1 − ti−2

 ∆si+1
ti+1−ti −

∆si
ti−ti−1

ti+1 − ti−1
−

∆si
ti−ti−1

− ∆si−1
ti−1−ti−2

ti − ti−2

 , (2.73)

where the spatial distances are defined as

∆si+1 =
√

(xi+1 − xi)2 + (yi+1 − yi)2, (2.74)

∆si =
√

(xi − xi−1)2 + (yi − yi−1)2, (2.75)

∆si−1 =
√

(xi−1 − xi−2)2 + (yi−1 − yi−2)2. (2.76)

Again, the components (xi+1, xi, xi−1, yi+1, yi, yi−1) are given with respect to 6-̃R
i.

The resulting trajectory can be tuned by scaling kacct and kdacct , see Section 2.6.

The velocity force F vel
t,i at the node Pi punishes a divergence from the desired traveling

speed vdes and ensures that the vehicle returns to it when possible. The force depends on
the difference between the current velocity vi at node Pi and the desired one, vdes

F vel
t,i = kvel (vi − vdes) (2.77)

= kvel
(

∆si
ti − ti−1

− vdes
)
, (2.78)

where

∆si =
√

(xi − xi−1)2 + (yi − yi−1)2, (2.79)

(2.80)

with (xi, xi−1, yi, yi−1) are given with respect to 6-̃R
i.

This force also determines the distance with which a leading obstacle is followed as discussed
later in Section 2.6.
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2.3. Preview Force Field

The force field framework as presented so far already leads to smooth, drivable, and collision-
free trajectories, however, they can be improved further. The introduction of force fields
depending on the acceleration and jerk creates trajectories that change the current dynamic
state of the vehicle as little and as slowly as possible. The downside to this desirable
characteristic is that planned trajectories start for example an overtaking maneuver rather
late and the maximum lateral deviation is located behind the middle of the obstacle that
is passed. Further, when returning the the right lane, the planned trajectory shows some
overshoot.

Therefore, inspired by lookahead controllers, a lookahead is introduced such that the over-
taking maneuver is initiated earlier. In order to introduce such a preview, for every node
the external force field is evaluated at a preview point and the computed force is then
applied at the node Pi as illustrated in Figure 2.20. The preview point P prev

i for node Pi is
determined by the orientation given by Pi and Pi−1 and a certain preview distance lprev

rP
prev
i = rPi + rPi,P

prev
i , (2.81)

where

rPi,P
prev
i = lprev

rPi−1,Pi

‖ rPi−1,Pi‖
= lprev

sinψi
cosψi

 . (2.82)

In case the preview point lies outside the road or inside an obstacle it is moved to a certain
minimum distance εprev from the roadside or the border of the obstacle in the direction of
the nodes Pi+x the same distance ahead.

The external force is computed as before as the negative gradient of the external potential
field. Thus, the preview force Fprev

i at node Pi becomes

Fprev
i = Fext (P prev

i ) = −∇riV
ext (P prev

i ) (2.83)

= −∇riV
R (P prev

i )−∇riV
O (P prev

i ) (2.84)

The road and obstacle potentials at the preview point are evaluated according to the Equa-
tions 2.37, 2.38 and 2.59, 2.60.
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Figure 2.20.: Preview forces
The external forcefield F ext is evaluated at a preview point P prev

i for each node Pi to create
a preview force F prev

i that enhances the incorporation of the ego vehicle’s orientation and
leads to improved obstacle avoidance and lane following plans.

The preview force field enhances the trajectory optimization not only by deforming a trajec-
tory “earlier” to avoid hazards smoothly but also further incorporates of the ego vehicle’s
orientation along the trajectory which leads to enhanced plans.

2.4. Equilibrium Search

The solution to the trajectory optimization is defined to be the equilibrium-configuration,
where all internal, external, and preview forces cancel each other out, i.e. the total force at
each node is zero.

All forces and node coordinates are each combined into a single 3 (N + 1)-dimensional
vector

z =



r0

r1

r2
...

rN


and F =



F0

F1

F2
...

FN


, (2.85)



2.4. Equilibrium Search 79

where

ri = rR∗,Pi =


Rr

R∗,Pi
x

Rr
R∗,Pi
y

Rr
R∗,Pi
t

 , Fi = FPi =


RF

Pi
x

RF
Pi
y

RF
Pi
t

 . (2.86)

Therefore, the task is to solve the 3 (N + 1)-dimensional nonlinear equation

F (z) = 0. (2.87)

Because there is no analytical solution, a numerical approach must be taken. For an
overview of existing methods for this purpose see [Ortega and Rheinboldt, 1970; Roos and
Schwetlick, 1999; Schwetlick and Kretzschmar, 1991]. An analysis and comparison of some
available numeric algorithms was performed in a bachelor thesis supervised by this author,
[Stüve, 2007]. The vast number of algorithms mainly results from various combinations of
algorithms for subproblems.

One main approach is to subdivide the multidimensional nonlinear problem into multiple
scalar nonlinear equations. Each equation is solved separately in each iteration. For the
next iteration all equations are solved again using the solutions of the separate equations
from the previous iteration. Examples for this kind of algorithm are the nonlinear Jacobi,
nonlinear Gauss-Seidel, or nonlinear Successive Over Relaxation (SOR) algorithms [Rhein-
boldt, 1998]. Often the solution of the nonlinear scalar equations also requires iterative
numerical methods.

Another main approach, that is also chosen in this work, is to simplify the nonlinear problem
by some kind of approximation at a certain starting point z0 to acquire a simpler system of
equations that can be solved efficiently. In each iteration, this approximation is solved and
then a new approximation is constructed where the previous approximation was zero, thus
converging to a solution. For this work in each step the nonlinear problem is linearized

F (zk) + A∆zk = 0. (2.88)

The new point of approximation is then iteratively found by

zk+1 = zk + ∆zk, (2.89)
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until the displacement ∆zk falls below a certain threshold ε∆z,

∆zk < ε∆z, (2.90)

and the iteration is terminated successfully.

The different algorithms in this class differ with regards the kind of linearization and the
solution of the linear subproblem. An extensive overview can be found for example in
[Argyros, 2005; Deuflhard, 2006].

The standard Newton method uses an analytically given Jacobian A = J (zk) = ∂F
∂zT
k

that
is computed for each iteration k. The resulting linear approximation of Equation 2.87 at
z = zk is given by

F (zk) + J (zk) ∆zk = 0. (2.91)

J represents the Jacobian

J =



J0,0 J0,1 J0,2 · · · J0,N

J1,0 J1,1 J1,2 · · · J1,N

J2,0 J2,1 J2,2 · · · J2,N
... ... ... . . . ...

JN,0 JN,1 JN,2 · · · JN,N


=



∂F0
∂rT

0

∂F0
∂rT

1

∂F0
∂rT

2
· · · ∂F0

∂rT
N

∂F1
∂rT

0

∂F1
∂rT

1

∂F1
∂rT

2
· · · ∂F1

∂rT
N

∂F2
∂rT

0

∂F2
∂rT

1

∂F2
∂rT

2
· · · ∂F2

∂rT
N... ... ... . . . ...

∂FN
∂rT

0

∂FN
∂rT

1

∂FN
∂rT

2
· · · ∂FN

∂rT
N


, (2.92)

where each partial Jacobian Jν,µ is

Jν,µ = ∂Fν

∂rT
µ

=



∂ RF
Pν
x

∂ Rr
R∗,Pµ
x

∂ RF
Pν
x

∂ Rr
R∗,Pµ
y

∂ RF
Pν
x

∂ Rr
R∗,Pµ
t

∂ RF
Pν
y

∂ Rr
R∗,Pµ
x

∂ RF
Pν
y

∂ Rr
R∗,Pµ
y

∂ RF
Pν
y

∂ Rr
R∗,Pµ
t

∂ RF
Pν
t

∂ Rr
R∗,Pµ
x

∂ RF
Pν
t

∂ Rr
R∗,Pµ
y

∂ RF
Pν
t

∂ Rr
R∗,Pµ
t

 . (2.93)

Simplified Newton methods, also called parallel-chords methods, only compute the Jacobian
once, A = J (z0), to save computational cost for the repeated evaluation of J. Similarly,
n-ary Newton methods update the Jacobian every n steps. However, the reduction of
computational cost for each iteration in general results also in a reduced convergence rate
and therefore a higher number of necessary iterations. Besides this approach, also otherwise
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approximated Jacobians are applicable. Where the Jacobian cannot be given analytically,
there exist algorithms that approximate tangents or secants from discrete points of F.

The convergence of the standard Newton method is quadratic. However, the convergence is
local and cannot be guaranteed in general. In order to stabilize the Newton algorithm and
increase the area of convergence, the class of damped Newton methods has been developed.
Here, the computed step size in each iteration is reduced by a certain factor to stabilize the
algorithm, rewriting Equation 2.89 to

zk+1 = zk + αk∆zk. (2.94)

One prominent solution is the application of an Armijo-type stepsize rule that iteratively
finds an appropriate reduction factor that guarantees F (zk+1) < F (zk), see for example
[Bonnans and Lemaréchal, 2006]. But also other reductions are admissible to achieve a
stabilization of the Newton method, see [Cohen, 1981].

The most efficient solution of the linear subproblem largely depends on the matrix structure
of A. Since the direct inversion of A is hardly ever a good idea, there exist several different
Gauss algorithms that use row and column pivoting and different factorizations such as LR
or Cholesky that solve linear problems efficiently. Besides Gauss, many other methods exist
as for example splitting methods such as Jacobi, Gauss-Seidel or SOR can be used.

In order to solve for the equilibrium of the trajectory in the virtual force fields, a Newton
method is chosen. The method is applied in local road-fixed reference frames and unnec-
essary degrees of freedom are removed, see Section 2.4.1. The Jacobian is approximated
analytically and evaluated in every iteration, and a variable dampening is applied to stabi-
lize the algorithm and to enforce a number of constraints, see Section 2.4.2.

2.4.1. Application of Algorithm to Local Reference Frames

In order to facilitate the calculations, the forces, position vectors, and displacements are
represented in the local reference frames 6-̃R

i, combining them into R̃F, R̃z, and R̃∆z,
respectively. Therein, the position and forces for each node Pi are represented in the
reference frame 6-̃R

i which is rotated around

ψi = RψR̃i (2.95)
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with respect to 6-R. The relations are given by

R̃z = T
(
RzR̃i∗ + Rz

)
(2.96)

R̃∆z = TR∆z (2.97)

R̃F = TRF, (2.98)

where RzR̃i∗ contains the position vectors to the local reference frames

RzR̃i∗ =



RrR∗,R̃0∗

RrR∗,R̃1∗

RrR∗,R̃2∗

...
RrR∗,R̃N∗


with RrR∗,R̃i∗ =


Rr

R∗,R̃i∗
x

Rr
R∗,R̃i∗
y

Rr
R∗,R̃i∗
t

 (2.99)

and the rotation matrix T is given by

T =



T0 0 0 . . . 0
0 T1 0 . . . 0
0 0 T2 . . . 0
... ... ... . . . ...
0 0 0 . . . TN


with Ti =


cosψi − sinψi 0
sinψi cosψi 0

0 0 1

 . (2.100)

Equation 2.91 can be reformulated to

F = −J∆z, (2.101)

where all forces F and displacements ∆z are represented in 6-R. Using the transformation
matrix in 2.100 and exploiting T−1 = TT, this results in

R̃F = −TTJT︸ ︷︷ ︸
R̃J

R̃∆z. (2.102)
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The Jacobian R̃J now contains the partial derivatives of the forces with regards to the
displacements in the local reference frames 6-̃R

i

R̃J =



R̃J0,0 R̃J0,1 R̃J0,2 · · · R̃J0,N

R̃J1,0 R̃J1,1 R̃J1,2 · · · R̃J1,N

R̃J2,0 R̃J2,1 R̃J2,2 · · · R̃J2,N
... ... ... . . . ...

R̃JN,0 R̃JN,1 R̃JN,2 · · · R̃JN,N


(2.103)

=



∂
R̃0 F0

∂
R̃0 rT

0

∂
R̃0 F0

∂
R̃1 rT

1

∂
R̃0 F0

∂
R̃2 rT

2
· · ·

∂
R̃0 F0

∂
R̃N

rT
N

∂
R̃1 F1

∂
R̃0 rT

0

∂
R̃1 F1

∂
R̃1 rT

1

∂
R̃1 F1

∂
R̃2 rT

2
· · ·

∂
R̃1 F1

∂
R̃N

rT
N

∂
R̃2 F2

∂
R̃0 rT

0

∂
R̃2 F2

∂
R̃1 rT

1

∂
R̃2 F2

∂
R̃2 rT

2
· · ·

∂
R̃2 F2

∂
R̃N

rT
N

... ... ... . . . ...
∂
R̃N

FN
∂
R̃0 rT

0

∂
R̃N

FN
∂
R̃1 rT

1

∂
R̃N

FN
∂
R̃2 rT

2
· · ·

∂
R̃N

FN
∂
R̃N

rT
N


. (2.104)

2.4.2. Constraints and Stabilizations

In order to enhance the quality and efficiency of the numerical solution, certain constraints
and simplifications are introduced. First, unnecessary degrees of freedom are removed
from the system as detailed in Section 2.4.2.1. Second, the numerical efficiency is further
improved by the use of an approximate Jacobian and a decoupling of the spatial and
temporal dimensions during each Newton iteration, see Section 2.4.2.2. Third, several
constraints exist for the displacements so as to stabilize the Newton algorithm and prevent
a divergence, see Section 2.4.2.3.

2.4.2.1. Eliminating degrees of freedom

As discussed before, certain displacements are restricted. The first node P0 is fixed com-
pletely. All other nodes are fixed in longitudinal road direction R̃ex and may only be moved
in R̃ey- and R̃et-direction. In order to assure these constraints, constraint-forces Fconstr

exist that cancel out the other forces in the direction of restricted movement. Since forces
and displacements are zero for the restricted degrees of freedom, they can be eliminated
completely from the equation and the corresponding rows and columns in the Jacobian can
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be removed. Thus, the dimension of the problem has been reduced from 3 (N + 1) to 2N .
The equation that is iteratively solved to find the equilibrium now reads

R̃F (R̃zk) + R̃J (R̃zk) R̃∆zk = 0 (2.105)

with

R̃z =



R̃1rR̃
1∗,P1

y

R̃1rR̃
1∗,P1

t

R̃2rR̃
2∗,P2

y

R̃2rR̃
2∗,P2

t

...

R̃N
rR̃

N∗,PN
y

R̃N
r
R̃N∗,PN
t


, R̃F =



R̃1F P1
y

R̃1F P1
t

R̃2F P2
y

R̃2F P2
t

...

R̃N
F PN
y

R̃N
F
PN
t


, (2.106)

and

R̃J =


R̃J1,1 R̃J1,2 · · · R̃J1,N

R̃J2,1 R̃J2,2 · · · R̃J2,N
... ... . . . ...

R̃JN,1 R̃JN,2 · · · R̃JN,N

 , (2.107)

where each partial jacobian R̃Jν,µ is

R̃Jν,µ = ∂Fν

∂rT
µ

=


∂
R̃ν
FPνy

∂
R̃µ
r
R̃µ∗,Pµ
y

∂
R̃ν
FPνy

∂
R̃µ
r
R̃µ∗,Pµ
t

∂
R̃ν
FPνt

∂
R̃µ
r
R̃µ∗,Pµ
y

∂
R̃ν
FPνt

∂
R̃µ
r
R̃µ∗,Pµ
t

 . (2.108)

Note that the forces R̃νFPν depend on the position of several nodes Pν−2, ..., Pν+1

R̃νFPν = f
(

rR̃ν−2∗,Pν−2 , rR̃ν−1∗,Pν−1 , rR̃ν∗,Pν , rR̃ν+1∗,Pν+1
)
, (2.109)

where the position vectors rR̃ν∗,Pν can still be represented in any arbitrary reference frame.
The forces R̃νFPν at node Pν are formulated depending on position vectors which are also
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represented in the local reference frame 6-R̃
ν of node Pν

R̃νFPν = f
(
R̃νrR̃

ν−2∗,Pν−2 , R̃νrR̃
ν−1∗,Pν−1 , R̃νrR̃

ν∗,Pν , R̃νrR̃
ν+1∗,Pν+1

)
. (2.110)

The partial derivatives from Equation 2.108 are therefore detailed

R̃Jν,µ = ∂Fν

∂rµT =


∂
R̃ν

FPνy

∂
R̃ν
r
R̃µ∗,Pµ
y

∂
R̃ν
r
R̃µ∗,Pµ
y

∂
R̃µ
r
R̃µ∗,Pµ
y

∂
R̃ν
FPνy

∂
R̃ν
r
R̃µ∗,Pµ
t

∂
R̃ν
FPνt

∂
R̃ν
r
R̃µ∗,Pµ
y

∂
R̃ν
r
R̃µ∗,Pµ
y

∂
R̃µ
r
R̃µ∗,Pµ
y

∂
R̃ν
FPνt

∂
R̃ν
r
R̃µ∗,Pµ
t

 , (2.111)

where

∂ R̃νr
R̃µ∗,Pµ
y

∂ R̃µr
R̃µ∗,Pµ
y

= cos R̃νψR̃µ . (2.112)

R̃νψR̃µ denotes the angle between the reference frames 6-R̃
ν and 6-R̃

µ.

2.4.2.2. Approximation of Jacobian and Decoupling of Dimensions

Instead of the correct Jacobian, also approximate Jacobian matrices can be used in order to
speed up the algorithm, see for example [Broyden, 1967; Dennis Jr and More, 1977; Kelley,
2003]. It is important to note that the equilibrium itself remains unchanged and any solution
acquired using an approximate Jacobian is also a valid solution for the original problem.
An approximation can influence the convergence, however the reduction in computational
complexity that can be achieved often leads to an overall speed-up in computation time.

Approximation of Obstacle Jacobian As described above, the ego-vehicle and the
obstacles are modeled as rectangles. The obstacle force field is defined depending on the
distance to the obstacle and depends on the position in x, y and t as well as on the relative
orientation V ψOj of ego-vehicle V and obstacle Oj. For the distance computation for each
node Pi, a certain reference point Ôj on each obstacle Oj is computed that has the lowest
distance to the ego-vehicle V at Pi, see Figure 2.14. In order to enable the analytical
calculation of the obstacle Jacobian JOj , this reference point Ôj is assumed to remain
constant within one Newton iteration.
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Decoupling of Time and Space In this case the Jacobian is approximated such that
all cross-dimensional derivatives of forces are set to zero

∂ RF
Pν
x

∂ Rr
R∗,Pµ
t

:= 0, ∂ RF
Pν
t

∂ Rr
R∗,Pµ
x

:= 0, ∀ µ, ν ∈ {1, 2, ..., N} . (2.113)

This results in two decoupled N -dimensional equations for each iteration, while the over-
all trajectory optimization remains a coupled 2N -dimensional problem in the augmented
workspace WT .

As discussed before, see Section 2.4.2.1, Equation 2.108-2.111, the time-part Jacobian re-
mains unaltered when transforming everything into 6-̃R, while the transformed lateral-part
Jacobian entries become

R̃Jν,µ = ∂ R̃νFν

∂ R̃νrT
µ

cos R̃µψR̃ν . (2.114)

2.4.2.3. Restrictions of Displacements

There exist three kinds of restrictions for the trajectory during the iterative numerical
solution with the Newton algorithm. First, there are forbidden areas in the augmented
configuration space CT = 〈x, y, t, ψ〉, where the ego-vehicle would drive off the road R or
collide with an obstacle O. Second, there apply dynamic limitations for the ego-vehicle
like limited allowable velocities or accelerations that pose restrictions on the usable portion
of the augmented phase space XT . Finally, there exist node configurations that have an
adverse effect on the numerical convergence of the Newton algorithm. All three kinds of
configurations must be prevented. In order to do this, on the one hand the initial solution
must already obey these constraints and on the other hand, the calculated displacements
in each Newton iteration are checked and limited by scaling each displacement ∆zi by αi

∆ẑ = α∆z =


α1∆z1

α2∆z2
...

αN∆zN

 , (2.115)

α = diag (αi) , 0 < αi < 1 ∀ i ∈ {1, 2, ..., N} . (2.116)



2.4. Equilibrium Search 87

This alters Equation 2.89 to

zk+1 = zk + ∆ẑk. (2.117)

The reduction factor α regards all three kinds of restrictions mentioned above

α = αextαintαnum, (2.118)

where the external restrictions posed by the road R and the obstacles O are included in the
external reduction factor αext, the dynamic limitations of e.g. velocity and accelerations are
regarded by the reduction factor αint, and the numerical restrictions produce αnum. These
three factors are computed and applied after one another.

In computing each of these factors, there are two different options how to reduce the dis-
placement to prevent forbidden movements. First, all displacements could be reduced by
the same amount α1 = α2 = ... = αN which only scales the length of the 2N -dimensional
displacement vector ∆z. Second, only the displacement of the nodes that would cause a
violation could be reduced which allows to scale all displacements ∆zi individually by dif-
ferent αi. This modifies both the size and the orientation of the displacement vector and
affects the search direction in the 2N -dimensional search space.

In most cases, the first method is to be preferred, because an alteration of the search
direction of the Newton algorithm can cause a poor convergence. On the other hand, if
the reduction is too large and scaling all displacements equally would lead to hardly any
displacement, it might be advantageous to scale single displacements individually to increase
convergence speed. Therefore, a threshold εred is chosen. If the necessary reduction would
be less than this threshold, than the threshold reduction is applied and further necessary
displacement reductions are applied only to the displacements of individual nodes,

αi =

 min (εred, αi,max) if min (α1,max, ..., αN,max) < εred

min (α1,max, ..., αN,max) otherwise.
(2.119)

αi,max denotes the least necessary reduction of displacement for the iteration such that the
restrictions are obeyed. The reduction factors αi are combined in a matrix

α = diag (αi) . (2.120)
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Prevent movement of nodes into forbidden areas by αext Even though the repelling
forces become infinity as a node approaches a forbidden area, i.e., an obstacle or a border of
the road, due to the local linear approximations the calculated displacements in one Newton
iteration could still move a node into a forbidden area of the augmented configuration space
CT such that the ego-vehicle would be either off the road or in collision with an obstacle.
Inside these forbidden areas there are no force fields defined. Therefore, in each iteration
the calculated displacements must be checked and reduced in case a node would be moved
into a forbidden area.

In case one or more nodes would leave the street, the maximum displacement ∆zi,max for
these nodes is determined and the necessary reduction parameters αext

i,max are computed and
combined according to Equation 2.119.

If the displacement of the nodes would lead to a collision with an obstacle, it is more
complicated to calculate the maximum allowable displacement ∆zi,max. Therefore, here a
numerical approach is taken and all αi are iteratively decreased until no collision occurs
anymore to determine

αext
i,max = ∆zi,max

∆zi
. (2.121)

Once the threshold εred is reached only the scaling parameters αext
i and αext

i−1 are reduced
further since the collision-checking at Pi depends on the position and orientation which is
determined depending on the position of Pi and the previous node Pi−1.

Prevent violations of maximum velocity by αint Besides environmental restrictions,
there exist also dynamic limitations of the ego vehicle. Limitations can be implemented
regarding the velocity, acceleration, and jerk, as well as regarding lateral acceleration. Es-
pecially critical is the limitation to an allowed velocity range, as this includes the restriction
that the ego vehicle cannot drive backwards nor can it go back in time. This must be pre-
vented, because no force fields are defined for these two cases. Displacements of nodes that
would lead to violations of dynamic limitations are also restricted analogously to Equations
2.115 and 2.119.

Prevent badly conditioned configurations by αnum In addition to forbidden areas
and dynamic limitations in C and X, there exist unfavorable node configurations that are
very likely to lead to a divergence of the Newton algorithm. These configurations must be
prevented as well and displacements are checked and restricted analogously.
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Formally, we demand that the force fields are all monotonically increasing or decreasing
for all node coordinates. This means that the negative gradient on the force fields always
points toward the zero which leads to a better convergence of the Newton algorithm.

Even though the used force fields are mostly designed to obey the condition of monotonic
dependences, this is not true in some cases for the longitudinal acceleration force fields as
a function of the temporal coordinates of the nodes.

Figure 2.21.: Example of potentially unstable region for Facc
t + Fdacc

t
The figure shows an array of force curves for F acc

t,i + F dacc
t,i at Pi as a function of ti for

different ti−1.

Figure 2.21 shows an array of force curves for F acc
t,i + F dacc

t,i at Pi as a function of ti for
different ti−1. As can be seen by this example, the force does not decrease monotonically.
This creates a more difficult problem for the zero finding algorithm, since it uses local linear
approximations which could, in this case lead to (even large) steps in the wrong direction.

This whole problem exists due to the discrete representation of the trajectory and the fact
that the acceleration is approximated from finite differences from nodes in the augmented
workspace WT . Figure 2.22 illustrates this problem with regards to the acceleration: A
constant acceleration over three nodes is assumed, which effectively results in fitting a
quadratic polynomial through three points. Even though there always exists a solution to
this problem, the underlying assumption of constant acceleration does not always make
sense. As can be seen in Figure 2.22, this could result in a motion where the vehicle is
assumed to first drive from the second point Pi−1 beyond the third point Pi with a constant
negative acceleration and then finally drives backwards reaching the third point Pi. Similar
problems exist for the jerk which result in fitting a cubic polynomial to four points.
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Figure 2.22.: Schematic analysis of badly conditioned node configurations for Facc
t

Due to the defined relations between X and W the acceleration ai at Pi is determined by
finite differences, which effectively results in fitting a quadratic polynomial through three
points. If not prevented certain node configurations can yield unmeaningful results, where
the direction of motion would be inverted between the second and third node.

Therefore, certain node configurations must be prevented to restrict the node configurations
to monotonic regions. This can be achieved by analysis of local extrema and the derivation
of appropriate limitations. The limitations are enforced by the application of the according
scaling factor αnum in Equation 2.118.

2.4.2.4. Stabilization of the Newton Algorithm

In addition to the specific modifications that have been discussed in the previous sections,
more general measures can be taken to stabilize the Newton algorithm and ensure that the
value of the function, in this case the forces, decreases in each step,

‖F (zk+1)‖ = ‖F (zk + ∆ẑk)‖ < ‖F (zk)‖. (2.122)

One of the most common methods to achieve this characteristic is to introduce Armijo step
size control [Bonnans and Lemaréchal, 2006], given in algorithm 3. For each iteration, the
Armijo rule calculates a secant fsecant at F (zk),

fsecant (zk) = F (zk) + δArmijoJ (zk) ∆ẑk (2.123)
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with δArmijo ∈ (0, 1), and then reduces the step size ‖∆ẑk‖ to ‖∆ˆ̂zk‖ by applying ∆ˆ̂zk =
αArmijo∆ẑk until the Armijo condition is met, i.e. until the forces decrease below this
secant,

‖F
(
zk + ∆ˆ̂zk

)
‖ < ‖F (zk) + δArmijoJ (zk) ∆ˆ̂zk‖. (2.124)

The slope of the secant is msecant = δArmijoJ (zk) and thus given relative to the slope of
the tangent mtangent = J (zk) with 0 < δArmijo < 1. The step size is reduced by iteratively

Algorithm 3 Armijo step size rule

1 αArmijo ← 1
2 while ‖F (zk + αArmijo∆ẑk)‖ ≥ ‖F (zk) + αArmijoδArmijoJ (zk) ∆ẑk‖
3 αArmijo ← ρArmijoαArmijo

4 ∆ˆ̂zk ← αArmijo∆ẑk

decreasing the dampening factor αArmijo by multiplying it with the reduction factor 0 <

ρArmijo < 1. The smaller ρArmijo, the quicker the Armijo condition is met, however, the
step size ∆ˆ̂zk might become unnecessarily small which leads to a slower convergence of the
overall Newton method.

Since the norm of the force along the trajectory is a measure for the quality of the trajectory,
the Armijo dampening guarantees that the quality of the trajectory monotonically increases
with each step. Therefore, as a by-product, the trajectory optimization algorithm now has
an anytime characteristic, meaning that it can be aborted anytime if no further computation
time is available and the longer it runs the better the solution becomes. Equation 2.89 has
been finally modified to read

zk+1 = zk + ∆ˆ̂zk = zk + αArmijoα∆zk. (2.125)

The Armijo dampening is applied after the previously mentioned restrictions of displace-
ments from Subsection 2.4.2.3, since the step size reduction from Subsection 2.4.2.3 could
lead to a violation of the Armijo condition and therefore reduce the convergence. Further,
all nodes must already be collision-free in order to be able to apply the Armijo step size
rule.
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2.5. Summary of Algorithm

The algorithms 4 and 5 summarize the virtual forcefield trajectory optimization algorithm
as detailed in the previous sections of this chapter.

Algorithm 4 Virtual Forcefield Trajectory Optimization

ForcefieldTrajectoryOptimization(Tinit,R,O, C)
Input: Initial Trajectory Tinit,

road model R, obstacle description O, dynamic constraints C
Output: Planned Trajectory T

1 R̃z ← SampleInitialTrajectory(Tinit,R)
2 R̃F ← CalculateForces(R̃z,R,O) [see Alg. 5]
3 R̃∆z ← ∞; αArmijo ← 1; α← I
4 while time is remaining and αArmijo ·α · R̃∆z ≥ ε∆z
5 R̃J ← CalculateJacobian(R̃z, R̃F,R) [see Sec. 2.4]
6 R̃∆z ← Displacement(R̃F, R̃J) [see Eq. 2.101]
7 α ← LimitDisplacement(R̃z, R̃∆z,R,O, C) [see Sec. 2.4.2.3]
8 R̃Fnext ← CalculateForces(R̃z +α · R̃∆z,R,O) [see Alg. 5]
9 αArmijo ← 1
10 while ‖R̃Fnext‖ ≥ ‖R̃F + αArmijo · δArmijo · R̃J ·α · R̃∆z‖ [see Alg. 3]
11 R̃Fnext ← CalculateForces(R̃z + αArmijo ·α · R̃∆z,R,O) [see Alg. 5]
12 αArmijo ← ρArmijo · αArmijo
13 end
14 R̃z ← R̃z + αArmijoαR̃∆z [see Eq. 2.125]
15 R̃F ← R̃Fnext
16 end
17 T ← ConstructTrajectory(R̃z,R)
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Algorithm 5 Calculation of Forces for Trajectory Optimization

CalculateForces(R̃z,R,O)
, Input: R̃z = [r1 . . . rN ]T which represents the Trajectory T ,

road model R, obstacle description O
Output: Forces R̃F in local (road centerline) reference frames 6-̃R

i

1 For i = 1 to N ri ← CoordinatesNodePi(R̃z, i) End
2 For i = 1 to N
3 Ri

l, R
i
r ← RoadModel(ri,R) [see Sec. 2.1.1.1]

4 V Ri ← PotentialFieldRoad(Ri
l, R

i
r) [see Sec. 2.1.1.2]

5 For all Oj ∈ O [see Sec. 2.1.2]
6 If

∣∣∣R̃ψOj ∣∣∣ ≤ εψ [see Sec. 2.1.2.1, 2.1.2.3, 2.1.2.4]
7 d

Oj
i ,∆t

Oj
i ← InLaneExtrapolation(ri, Oj,R)

8 Else [see Sec. 2.1.2.2, 2.1.2.3, 2.1.2.4]
9 d

Oj
i ,∆t

Oj
i ← OutOfLaneExtrapolation(ri, Oj,R)

10 End
11 V

Oj
i← ObstaclePotentialField(dOji ,∆t

Oj
i ) [see Sec. 2.1.2.5]

12 End
13 V Oi ← ∑

j V
Oj
i [see Eq. 2.59]

14 R̃Fext
i ← −∇

(
V Oi + V Ri

)
[see Eq. 2.12, 2.13]

15 R̃Fint
i ← InternalForce(ri−2, ri−1, ri, ri+1) [see Sec. 2.2]

16 R̃Fprev
i ← PreviewForce(ri−1, ri,R,O) [see Sec. 2.3]

17 R̃Fi ← R̃Fint
i + R̃Fprev

i + R̃Fext
i [see Eq. 2.2]

18 End
19 R̃F ← [R̃F1, . . . , R̃FN ]T
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2.6. Choice of Parameters

As presented, the virtual force field trajectory optimization depends a number of different
parameters. While this constitutes the challenge to tune all parameters properly, this pa-
rameter sensitivity also presents a great potential to adapt the method to specific needs.
One opportunity might be to make it driver-adaptive to yield certain characteristics a par-
ticular driver favors. This section presents some basic considerations and design guidelines
to obtain a suitable parameter choice. The parameters can be grouped as shown in Table
2.1.

General planning parameters
L planning distance
∆L discretization of planned trajectory
N number of nodes in trajectory

Force field parameters
k∂Rr amplification of road force field of right road side
k∂Rl amplification of road force field of left road side
kR amplification of road force field
kO amplification of obstacle force field
kprev amplification of preview force field
lprev preview length for preview force field
kaccy amplification of lateral acceleration force field
kdaccy amplification of lateral jerk force field
kvelt amplification of velocity force field
kacct amplification of longitudinal acceleration force field
kdacct amplification of longitudinal jerk force field

Newton parameters
εred reduction threshold
ε∆z iteration abortion threshold

Table 2.1.: Parameters for virtual force field trajectory optimization

2.6.1. General Planning Parameters

There are a couple of parameters that affect the general characteristics of the planned and
optimized trajectory such as its length and discretization.



2.6. Choice of Parameters 95

2.6.1.1. Planning Horizon

The planning horizon L denotes the length of the planned trajectory along the course of the
road. It is determined outside the trajectory optimization and depends on the distance or
time interval that shall be planned. In practice it largely depends on the available sensors
and data sources about the environment, since it does not seem prudent to execute or
optimize planned maneuvers in a yet unknown region of the environment.

2.6.1.2. Discretization

The discretization ∆L of the optimized trajectory determines the number of nodes N .
Currently, the nodes are equally distributed, resulting in

N = L

∆L (2.126)

nodes that comprise the discretized trajectory in addition to the first node P0 that is
fixed. However, since the computation time depends approximately quadratically on the
number of nodes, it appears prudent to save nodes where they are not needed. Therefore,
the discretization could be adaptive to guarantee smoother reference for the controller at
the beginning of a planned trajectory and finer discretization near obstacles in order to
better avoid collisions. At these places a higher number of nodes could be placed. Lower
discretizations could be chosen for the rest of the planned trajectory, especially further away
from the current position, in order to save computational power.

2.6.2. Force Field Parameters

This section presents some basic considerations about the different force field parameters
and their interactions.

2.6.2.1. k∂Rr vs. k∂Rl

The coefficients k∂Rq can be scaled to shift the potential minimum of V R to any desired
course that should be taken in the absence of obstacles, for example to the middle of the
right lane. In this case it can be assumed that the ego-vehicle’s orientation does not differ
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much from that of the road. Therefore, as shown in Figure 2.23, the distances to the right
and left road border d∂Rr , d∂Rl are given by

d∂Rr = 1
4b−

1
2w, (2.127)

d∂Rl = 3
4b−

1
2w, (2.128)

where b denotes the road width and w stands for the width of the ego-vehicle. Therefore,
the relation between the two roadside coefficients should be

k∂Rl

k∂Rr
= 3b− 2w

b− 2w . (2.129)

The absolute value of each coefficient can then be defined via a single road potential coeffi-
cient kR with

k∂Rl := kR (3b− 2w) (2.130)

k∂Rr := kR (b− 2w) . (2.131)

The coefficient kR can be used to scale the road potential versus other potentials and
forcefields.

Figure 2.23.: Real and “virtual” road
Since the ego vehicle has a finite width w, it’s center of gravity (for which the trajectory is
planned) cannot be allowed to touch the real road border, but must be restricted a narrower
“virtual” road. If the vehicle is in the middle of the right lane of the real road, the center
of gravity is not in the middle of the “virtual” road.
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The relation between the two road side parameters could, however, be adjusted in order to
achieve another preferred trajectory in the absence of obstacles. This could be useful for
example to achieve lane changes or to perform other maneuvers that might be suggested
from some other level of planning.

2.6.2.2. kR vs. kO

The parameters kO and kR determine something akin to a threat level posed by the obstacles
and roadsides. Since both kinds of collisions can have similar effects these two parameters
can be chosen to be equal. If more information is available even each individual obstacle
Oj could be scaled with regards to its hazard.

2.6.2.3. kR vs. kacc
y

As an initial design consideration the road force field parameter kR can be chosen relative
to the lateral acceleration force field parameter kaccy such that the reduction of lateral
acceleration is not acquired at the expense of cutting curves into oncoming traffic. For the
parameter design we demand that in the absence of obstacles the equilibrium solution lies
within the ego-vehicle’s own lane and not cross into the oncoming traffic.

Even in the absence of obstacles the equilibrium solution cannot be found analytically.
Therefore, this demand requires further approximations. First, the solution trajectory is
assumed not to exceed the curvature of the road centerline anywhere. Because the internal
force fields tend to reduce the curvature along the trajectory this assumption is plausible
and usually met when no obstacles are present. Hence, the maximum road curvature κmax
along the planned trajectory is taken into account.

Second, at the apex of the planned trajectory where the lateral shift from the middle of
the own lane is highest, the change of curvature of the planned trajectory is assumed to
be negligible. This is usually the case, since the curvature increases until this point and
decreases afterwards. Therefore, at the apex the change in curvature should be zero. Finally,
the ego-vehicle is assumed to maintain its desired traveling velocity vdes.

In this case the force produced by the lateral acceleration force field reads

F acc
y = kaccy κiv

2
i (2.132)

≤ kaccy κmaxv
2
des. (2.133)
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In order to prevent the equilibrium solution from crossing into the other lane it is mandatory
that the road force field and the lateral acceleration forcefield cancel each other out (latest)
at the center of the road y = yC

Facc
y (yC) = FR (yC) . (2.134)

This results in a design choice for kR

kR = kaccy

κmaxv
2
des

2− 2w
b

, (2.135)

where w denotes the width of the ego-vehicle and b the width of the road.

Note that the preview force field Fprev might have an adverse effect and may foster the
cutting of curves. The size of its effect depends on several parameters, such as lprev, kprev,
κ, b, and κ̇. To counteract Fprev in curves, kR can be increased further to build a “reserve”.
Regarding the empirical choice of lprev, kprev see Section 2.6.2.5.

2.6.2.4. kvel vs. kacc
t

The parameters kvel and kacct can be scaled versus one another to achieve a certain desired
safety distance between the ego-vehicle and a leading obstacle at a constant velocity. For an
obstacle with a constant velocity the equilibrium solution will follow the obstacle eventually
also at the same constant speed and therefore at a constant distance. Since in this case
the acceleration and jerk forces become zero, the equilibrium solution in time-direction is
determined only by the travel velocity force field and the obstacle force field of the leading
obstacle. These two must cancel each other out which leads to

kvel (vi − v0) = −kOjt
1

ti − t̂
Oj
i

. (2.136)

Substituting ∆sfollow = vi
(
ti − t̂

Oj
i

)
and vi = vOj in Equation 2.136 yields the resulting

safety distance ∆sfollow

∆sfollow = k
Oj
t

kvel
vOj

v0 − vOj
. (2.137)
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This can be used to calculate the necessary relation between kvel and kOjt to ensure a certain
safety distance for vehicle following.

2.6.2.5. lprev and kprev

The preview forces depend on the preview distance lprev and the amplification factor kprev.
The preview distance must be chosen such that no obstacle is “missed”. This could be the
case if the preview distance is too large. As a design goal the overshoot during alane change
back to the right lane should be eliminates and the maximum lateral displacement when
overtaking could be placed the middle of the obstacle. The amplification factor kprev must
be chosen empirically, balancing it versus the external and internal force fields.

As options for further improvement, the preview distance could be chosen adaptive de-
pending on the distance to the next obstacle. Alternatively, multiple previews could be
introduced.
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CHAPTER 3

Trajectory Initialization

The virtual forcefield trajectory optimization algorithm presented in Chapter 2 optimizes a
given trajectory and easily adapts an existing plan to smaller changes in the environment.
As most numerical optimization algorithms it requires an initial guess. Since the algorithm
for trajectory optimization is locally convergent, the final solution is always homeotopically
equivalent to this initial guess. This is generally a desired characteristic since it makes the
outcome of the optimization step controllable. On the other hand this property increases
the importance of the trajectory initialization, since the fundamental type of maneuver is
chosen here.

In an application to an advanced driver assistance system, the desired maneuver can be
chosen depending on detected driver intentions, which could be detected for example with
Artificial Neural Networks, Hidden Markov Models, Dynamic Belief Networks or others,
[Dagli et al., 2003; Liu and Pentland, 2002; Oliver and Pentland, 2000; Zong et al., 2009].
However, most research in this area still focuses on a limited number of very short maneu-
vers, such as go straight / turn left / turn right or follow lane / change lane, and hardly
predict longer or more complex maneuvers such as avoiding several obstacles or multiple
lane changes.

For the demonstration in autonomous driving, in this chapter an alternative means of
trajectory initialization is devised that does not require any input from a human driver. It
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could also be combined with driver intention recognition as a basis for maneuver arbitration
between driver and assistance system, see for example [Löper et al., 2008]. The basic
trajectory chosen together by human and machine can then be detailed by the introduced
trajectory optimization approach and finally used for driver assistance in vehicle guidance.

The trajectory initialization must meet several demands: It must provide a viable initial
solution to the short term trajectory planning problem. A single solution is desired in order
to reduce computational demands. It would be generally infeasible to plan all possible
homeotopically different trajectories, since their number grows exponentially with the num-
ber of obstacles. Further, the initial trajectory must obey a number of constraints to prevent
collisions and to enhance the numerical stability of the trajectory optimization, see Section
2.4.2.3. Since the trajectory initialization has to be executed online and in frequent plan-
ning updates, anytime and incremental characteristics are of interest. Anytime algorithms
aim at finding a solution quickly and spend the remaining time refining it. Therefore, they
are well-suited when only limited time is allotted and the computational requirements vary
depending on the scenario. Incremental algorithms try to achieve a speed-up by reusing pre-
viously planned trajectories or parts thereof. They are especially successful when changes
are limited from one planning update to the next.

Based on the literature review in Chapter 1, a state-space oriented, A* derived search algo-
rithm that includes the above characteristics is devised as trajectory initialization. Recalling
this review, combinatorial approaches proved difficult and computationally expensive for
more than two dimensions. Therefore, the class of sampling-based algorithms was selected.
Among those, randomized planning approaches such as RRT-based approaches were tested
and compared to A*-based algorithms in a related diploma thesis, [Hess, 2009]. In this
comparison the implemented RRT-based approaches proved to be slower on average for
most test scenarios. Moreover, the unpredictability of execution time and type of initial
trajectory posed the most significant drawback, since for frequent online replanning only
a limited time is available for each planning update and frequent changes in the type of
initial trajectory are undesireable. Therefore, an A*-based approach was chosen, extended,
and implemented, supported by a supervised diploma thesis, see [Hess, 2009; Hesse et al.,
2010].

The basic structure of the employed algorithm is illustrated in Figure 3.1 and given in the
form of pseudo-code in Algorithm 6: It is a direct application of AWA* to the domain of
motion planning, assuming that transitions in the search space are defined by a finite set of
motion primitive trajectories. (For some more basic explanations about A* in general see
Chapter 1 or related literature such as [Pearl, 1985].)
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None of the mentioned incremental algorithm extensions (e.g. LPA*, FSA* or Adaptive
A*) for A* are used for several reasons: For the overhead of the incremental algorithm
(esp. LPA*, FSA*) to pay off, changes in the environment have to be limited and occur
towards the leafs of the search-tree, so that major parts of the previous search tree can
be reused. These requirements are often not fulfilled, as obstacle extrapolations can vary
significantly depending on current sensor inputs which might effect large portions of the
search space. The combination of AWA* with Adaptive A* seems attractive, since it requires
hardly any preprocessing overhead. Further it could potentially eliminate Adaptive A*’s
dependency on increasing edge costs to maintain admissibility. AWA* could improve the
solution incrementally until all decreased edge costs have been addressed. However, AWA*
might be terminated prematurely and the learned heuristic h′(x) = f ∗t−1 − gt−1(x) could
then degrade to a non-admissible estimate, which could have unforeseen effects on the search
behavior. Hence, for this work, incremental A* extensions are not applied.

Figure 3.1.: Blockdiagram Trajectory Initialization

As illustrated in Figure 3.1, the input to the AWA*-based trajectory initialization algorithm
(Algorithm 6) is comprised of the desired vehicle state qdes, the road model R, the obstacles
O, existing dynamic constraints C, the goal set Γ, and a set of motion primitives Λ. The
result is the currently best solution vertex qincumbent and a pointer path defined by p, from
which the initial trajectory T kinitial is then constructed.

In lines 2 to 6 the OPEN list is populated with starting positions based on the given inputs,
see Section 3.3. g(q) denotes the cost for each vertex - note that in general each initial state
also has an associated nonzero cost, 3.3. finfl and fadm represent solution cost estimates for
each states, where the inflated cost estimate finfl is allowed to overestimate the solution cost
and the admissible cost estimate fadm is guaranteed to underestimate the solution cost.

The main body of the algorithm, lines 8 to 27, is repeated until either the allotted time is up
or OPEN contains no nodes to explore (see line 7). In each cycle, first the best candidate
q is selected from OPEN (line 8) and tested if worth exploring (line 9). Then, in lines 10
to 27, new nodes qnew are discovered and added to OPEN . Note, that the inflated cost



104 3. Trajectory Initialization

Algorithm 6 AWA*-based anytime algorithm, compare [Hess, 2009].

UpdatePathAWA(qdes,R,O, C,Γ,Λ)
Input: Desired vehicle state qdes, road model R, obstacle description O,

dynamic constraints C, goal set Γ, set of motion primitives Λ.
Output: Currently best solution vertex qincumbent, pointer path def. by p
1 qincumbent ← ⊥; f(qincumbent)←∞
2 OPEN, g ← CalculateStartPositions(Λ,qdes,R,O, C)
3 For each q ∈ OPEN
4 finfl(q)← g(q) + EstimateCost(q,Γ)
5 fadm(q)← g(q) + EstimateCostAdmissibly(q,Γ)
6 p(q)← ⊥

End
7 While time is remaining and OPEN 6= ∅
8 q ← argmin{finfl(qi) : qi ∈ OPEN}
9 If fadm(q) < f(qincumbent)
10 For all τ ∈ Λ with τ(0) ≡ q
11 τfit ← transform τ in such a way that τfit(qt) = q
12 qnew ← τfit(end)
13 c← CalculateCost(τfit)
14 hinfl ← EstimateCost(qnew,Γ)
15 hadm ← EstimateCostAdmissibly(qnew,Γ)
16 If qnew /∈ OPEN ∨ g(qnew) > g(q) + c
17 If g(qincumbent) > g(q) + c+ hadm
18 If Validate(τfit,R,O, C)
19 p(qnew)← q
20 g(qnew)← g(q) + c
21 finfl(qnew)← g(qnew) + hinfl
22 fadm(qnew)← g(qnew) + hadm
23 If qnew ∈ Γ
24 qincumbent ← qnew
25 f(qincumbent)← g(qnew)
26 Else
27 OPEN ← OPEN ∪ {qnew}
28 End
29 End End End End End
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estimate finfl is used for the selection of q and therefore determines the “search direction”,
while the admissible cost estimate fadm serves to eliminate nodes which are known to have
a higher cost than already known solutions (f(qincumbent)).

In line 11 all motion primitives τ from Λ are transformed to “fit” the selected node q. A
new node qnew is found at the endpoint of every transformed primitive τfit (line 12). In
lines 13 to 15 the cost c from q to qnew and the estimated remaining costs hinfl and hadm to
the goal region Γ are calculated.

The new node qnew is only regarded further, if it has not been in OPEN before or in case
a known node has now been reached at a lower cost (g(q) + c) than before (g(qnew)), line
16. In addition, in line 17 it is tested whether there is a chance that the new node can
improve an already existing solution qincumbent, i.e. whether the underestimated cost to the
goal region via the new node (g(q) + c+hadm) is lower than the cost of the current solution
g(qincumbent). As last (because most time consuming) test, the trajectory τfit is checked to
stay on the road R, not to hit any obstacles O and to obey all dynamic constraints C (line
18).

If the new node passes all of the above tests, a pointer p(qnew) is set to the predecessor
node q (line 19) to be able to reconstruct the solution trajectory and the required costs are
recorded (lines 20-22). Here, the goal-criterion is tested directly upon discovery (line 23),
differing from A*’s delayed termination and testing upon selection from OPEN . In case
the new node qnew lies in the goal region Γ, the previous solution qincumbent is replaced (lines
24, 25), since the new one must be better (because it passed the test in line 17). Otherwise
qnew is added to the OPEN list for further exploration (line 27).

The algorithm consists of several subproblems, which are detailed in the following sections.
Section 3.1 defines an adequate planning space that allows to plan useful initial trajectories
that regard all necessary constraints. Section 3.2 discusses how to determine the goal
states. Section 3.3 details considerations concerning the selection of the starting states and
discusses why it was decided not to select the vehicle’s actual position as starting state.
Sections 3.4 and 3.5 describe the constraint validation and the used cost functions that
determine which initial trajectory is chosen.

3.1. Definition of the Search Space

The performance of the algorithm depends heavily on the selection of the searched dimen-
sions. As deliberated in the literature review in Chapter 1 and further detailed in Annex
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A, most state space search-algorithms used during the DARPA Urban Challenge (DUC)
did not include the longitudinal velocity as full dimension. Instead, a decoupled planning
approach was mostly sought: First, a path through a static environment was planned and
afterwards, the velocity along the path was calculated to avoid also mobile obstacles. Such
a decoupled planning is less flexible than an integrated path and velocity planning approach
and could yield very unfavorable maneuvers if applied to regular road traffic. For example,
an overtaking maneuver would be planned for all preceding vehicles, if they were considered
as static obstacles in the path planning step.

In this case, the task is to create an initial trajectory for the virtual forcefield optimiza-
tion which represents trajectories as discrete nodes in WT : 〈x, y, t〉. Planning the initial
trajectory also in x, y, t allows an implicit velocity planning. However, in order to generate
smooth initial velocity profiles it is necessary to add the longitudinal velocity v as an extra
dimension. Otherwise two states at the same place (x, y) and time t would be considered
identical even if they were reached at different velocities, and this velocity would not be
regarded in the selection of the subsequent trajectory element. Analogously, the orientation
ψ is added as fifth dimension to enforce finite changes in orientation along the trajectory.
Furthermore, the addition of v and ψ as search dimensions facilitates the restriction to
viable orientations and velocities. It is important to keep in mind that the initial trajectory
merely provides a starting guess for the subsequent trajectory optimization. Further opti-
mization with regards to acceleration ax, ay and jerk ȧx, ȧy is not yet necessary at this point
but left to the trajectory optimization. Therefore, the trajectory initialization is performed
within the searchspace S : 〈x, y, t, ψ, v〉.

3.1.1. Search Space Discretization

The performed literature review on the search space discretization for A*-based algorithms
did not reveal any methods for integrated planning of acceleration and steering. Therefore,
it was necessary to modify one of the lower dimensional methods. Field-D* is likely to cause
exceedingly high interpolation costs on the cell-border when extended to higher dimensions
(n > 2), since it is necessary to find the minimum of an interpolated n − 1-dimensional
cost-function. Theta* itself relies only on a regular eight-connected grid, even though it’s
parent-connection attempts remain generally applicable to other search space discretization.
If needed, it could be used to reduce the stair-effects that result from small motion primitive
sets. State-Lattice and Hybrid-A* algorithms seem both applicable. However, unfortunate
combinations of exploration order and obstacle configurations might cause a Hybrid-A*
search to become stuck. Therefore, a State-Lattice primitive trajectory set is used. The form
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of the primitive trajectories is independent of the absolute position in x, y and the time t. It
only depends on the vehicle’s orientation ψ and velocity v, the primitive trajectory set has
to contain trajectories for all possible combinations of v and ψ. The original motion prim-
itive set generation algorithm would therefore calculate all trajectories between any start
position [0, 0, i ·∆v, j ·∆ψ, 0] and any goal position [k ·∆x, l ·∆y,m ·∆v, n ·∆ψ, o ·∆t],
which seems unfeasible.

Rather, this huge, high-dimensional set is reduced by limiting goal velocities and orien-
tations to small sets around the initial values. As suggested in [Ferguson et al., 2008],
the discretization of the orientation is selected depending on the velocity. Moreover, the
generated primitive trajectories are limited to a maximum length in the time dimension.
Only trajectories that obey the dynamic constraints are allowed. All generated trajectories
are further tested for path-decomposition and path-equivalence to eliminate unnecessary
motion primitives.

In addition to the mentioned state-lattice approach that is used in this work, the potential
edges could also be generated online by sampling the (a,δ)-command space using the same
local planning method, see [Hesse et al., 2010].

3.1.2. Local Planning Method

The generation of a state lattice requires a local planning method (LPM) that creates primi-
tive trajectories from an initial state qi = [0, 0, 0, ψi, vi]T to a goal state qg = [xg, yg, tg, ψg, vg]T

in an obstacle-free environment, while respecting all kinematic and dynamic constraints. In
general, this involves the solution of a two point boundary value problem. For constraints in
the form of differential equation, mostly this necessitates a numerical solution. However, in
this case a precise modeling of vehicle dynamics is not necessary. The important constraints
rather arise from considerations concerning the numerical stability of the subsequent vir-
tual forcefield optimization. Therefore, a simple nonholonomic vehicle model is applied, as
already used for modeling other traffic participants in Chapter 2.

The control input comprises the bounded longitudinal acceleration amin ≤ a ≤ amax , as well
as the limited steering angle |δ| < δmax. This simple model allows a closed form solution for
the mentioned boundary value problem similar to Dubins curves. Dubins creates minimum
length paths that consist of circular arcs with upper-bounded curvature and straight lines,
[Dubins, 1957].

However, if the lateral acceleration is restricted, the minimum turning radius becomes
velocity dependent. Instead, qi and qg are connected by maximum-curvature paths which
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allow the highest possible velocity. This simplifies to check whether dynamic constraints
can be met. Then the velocity profile is calculated to meet the boundary conditions at qi
and qg.

The construction of maximum curvature paths excludes the combination of curved with
straight pieces. Even further, since only forward motion is of interest, the construction of
the paths is limited to a single right and a single left turn, respectively denoted “R” and
“L”. If the curvature falls below the minimum curvature caused by the limitations in the
steering angle, the goal configuration qg is declared unachievable.

Figure 3.2 shows the construction of an example “LR” path: Relative to the start configu-
ration qi, the target configuration is at qg = [x, y, ψ]T. Knowing that the distance of the
centers of rotation A and B is given as ‖ rA,B‖ = 2r it can be deducted that

(2 · r)2 = (x+ r · sin(ψ))2 + (y − r · (cos(ψ) + 1))2. (3.1)

Hence, the turning radius r for LR is

r = −p/2 +
√

(p/2)2 + q (3.2)

with

p = 2x · sin(ψ)− y · (cos(ψ) + 1)
sin2(ψ) + (cos(ψ) + 1)2 − 4 , (3.3)

q = x2 + y2

sin2(ψ) + (cos(ψ) + 1)2 − 4 . (3.4)

The length l of the “LR” path is

l = r (α + β) (3.5)

with

α = π

2 + γ, (3.6)

β = α− ψ. (3.7)
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The “RL” path is constructed analogously. In case both “LR” and “RL” paths are possible,
the one of shorter length is selected. The selected options depending on the relative goal
orientation are depicted in Figure 3.2 on the right.

Figure 3.2.: Construction of maximum turning radius curve
The maximum turning radius path between an initial state qi and a goal state qg consists
of a maximum of two concatenated circular arcs, one turning left (“L”) and one right (“R”).
(Figure left shows the construction of the “LR” example.) Depending on the relative ori-
entation at the goal, either the combination “LR” or “RL” is to be preferred, see Figure
right.

The velocity profile has to fulfill the given boundary conditions regarding the initial and
goal velocity vi, vg and the duration tg for the given path length l

s(0) = 0, s(tg) = l, (3.8)

ṡ(0) = vi, ṡ(tg) = vg, (3.9)

where s is the arc length along the path. To satisfy these constraints, a simple triangluar
velocity profile is chosen with two phases of constant acceleration. At a turn-around time
tc, the acceleration direction is inverted as illustrated in Figure 3.3. The acceleration is
therefore given as

s̈(t) =

 a, 0 < t ≤ tc

−a, tc < t ≤ tg
(3.10)

with

a = vg − vi
2tc − tg

. (3.11)
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Figure 3.3.: Velocity profile for lattice generation
The velocity profile for each motion primitive consists of a triangular profile with piece-wise
constant acceleration s̈ = ±a to satisfy the goal velocity vg for t = tg.

The turn-around time tc can be solved by solving s(tg) = l

vitg + atc · (tg − tc)− 0.5a · (tg − tc)2 = l, (3.12)

resulting in

tc = −p/2±
√

(p/2)2 + q (3.13)

with

p = − l−tgvg
(2tc−tg)·(vg−vi) , (3.14)

q = 2ltg−t2gvg−t2gvi
(4tc−2tg)·(2vg−2vi) . (3.15)

At least one of the two possible turn-around times must be in [0, tg]. If both are valid, the
velocity profile with the lower acceleration is chosen to minimize longitudinal acceleration.

3.1.3. A Note on Completeness

In [Pivtoraiko and Kelly, 2005b] a similar, yet lower dimensional state-lattice approach is
taken. Therein, motion primitives are generated for the primitive set until it converges,
i.e., until no more motion primitives can be found that cannot be decomposed into already
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Figure 3.4.: Convergence of motion primitives as investgated in [Hess, 2009]
The figure shows the number of included motion primitives versus the number of superfluous
trajectories that could be excluded, because they could be decomposed into smaller, already
existing primitives. (Motion primitive generation was executed with x- and y-discretization
1m, angular discretization 1/16 ·π in angular range [−1/4,+1/4] ·π, time discretization 0.5s,
and constant velocity 10m/s.)

existing ones. It is then believed that the resulting set of motion primitives guarantees a
form of completeness, where in the absence of obstacles any grid position is reachable.

In order to test whether the devised motion primitive set in the defined higher dimensional
search space also converges, a motion primitive generation is started with the following
boundary conditions and parameters: start and goal velocities equal at vi = vg = 10m/s,
maximum allowed offset in y-direction ymax = 10m angular resolution ∆ψ = π/16, angular
range ψ ∈ [−1/8π,+1/8π], resolution of the grid is ∆x = ∆y = 1m and ∆t = 0.5s.

Figure 3.4 displays the number of included (non-decomposable) and excluded (decompos-
able) trajectories. While the number of included trajectories increases very quickly, the
number of the excluded trajectories seems to be level off. However, for any tested maxi-
mum trajectory length still a number of new, non-decomposable trajectories could be found.
These non-decomposable trajectories seem to occur at the dynamic limits, where all poten-
tial composite trajectories just overstep the given dynamic constraints.

For the trajectory initialization algorithm, it was decided to generate a motion primitive set
with a fixed maximum length in time as a compromise between efficiency and resolution.
Therefore, it was not possible to guarantee completeness for the primitive set. The use
of a limited time-length state-lattice can though be treated as another form of resolution-
completeness.
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3.2. Definition of the Goal Region

The goal region Γ is defined as a receding horizon instead of a fixed global (navigation) goal,
as it is common for tactical layer planning algorithms. In general, the receding horizon could
be defined in terms of temporal or spatial distance. A fixed time-horizon, however, creates
problems to find appropriate cost functions: While a time-based cost measure would become
impossible, path length-based measure would then always prefer short paths with very low
velocity over longer (and faster) ones. Hence, a fixed time horizon might be applicable for
planning “last chance” maneuvers in emergency situations but is not suitable for continuous
driving in general.

Therefore, the goal region Γ is defined by a “finish line” in the x-y-plane, placed a cer-
tain planning distance ahead of the vehicle’s current position. Such a planar horizon fits
well to existing perception ranges of vehicle sensors and allows free maneuvers within the
given distance. The limited planning distance further restricts the number of nodes in the
subsequent forcefield optimization and thus prevents exceedingly high execution times.

As alternatives to a moving horizon, a higher level planner could also select a gap in traffic
or a target velocity to define the goal region to create for example emergency evasion or
stopping maneuvers.

3.3. Definition of the Starting Region

At first glance, it seems to be most obvious to select the vehicle’s current position as starting
point for the motion planning. This is indeed suitable when a single trajectory is planned
in static situations and re-planning is not necessary. When the vehicle is moving while
the motion planner is executed, the current vehicle state might not be the optimal start
state anymore. Rather, the predicted vehicle state at the point of time of the planning
algorithm’s deadline might be chosen.

In the intended application to provide guidance to a vehicle through moving traffic, frequent
re-planning is essential to account for changes in the dynamic environment. In this case,
planning from the predicted vehicle state is not always the best option either. Here, the
following properties shall be required: On the one hand, the selection of a starting position
should be flexible enough that plans differing from an old plan can be developed in order
not to hinder the reaction to unforeseen environment or vehicle developments. In this case
it seems prudent to consider the predicted state of the vehicle as start state.
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On the other hand, a previous plan or at least its first part may remain usable if changes
in the environment are limited. If additionally the vehicle’s position did not diverge too far
from the plan, the starting state of a new search should be selected as to ensure consistency
with the previous plan. Essentially, during the trajectory initialization is has to be decided
whether to follow up the previous plan or to develop a completely new one.

In case the former option is selected, all inputs to the trajectory following controller should
be as continuous as possible, since sudden discontinuities may adversely affect both stability
and comfort. This becomes obvious when the closed loop of trajectory re-planning and
trajectory following controller as displayed in Figure 3.5 is considered. Moreover, it becomes
evident that the selection of the vehicle state as start state for each re-planning would
effectively cancel out any control deviation. As the re-planning frequency approaches the
execution frequency of the outer control loop of the trajectory following controller, the
vehicle becomes uncontrollable.

For this reason, the desired vehicle state qdes according to the previously planned initial
trajectory T K−1 is calculated for the point of time corresponding to the planning algorithm’s
deadline

qdes = T K−1(t+ T ) = [xdes, ydes, tdes, ψdes, vdes]T , (3.16)

where T denotes the length of the re-planning interval.

Figure 3.5.: Closed loop of trajectory planning, trajectory following and vehicle
The selection of the vehicle state as starting state would cancel out the control deviation and
might introduce instabilities.

In order to allow variable start states that are selected due to a certain cost function, often
the search direction is inverted and the plan is developed from a static goal state towards
the mobile robot. However, since a moving target region rather than a static target point
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is used for the application to road driving, the inversion of the search direction is not
practical.

Therefore, a method for the selection of start states is developed, see Algorithm 7, which
is able to consider every possible state on a motion primitive. It is essential that the start
state is not restricted to the (coarse) grid in which the search space is discretized, but that
it can be connected to a grid point to assure the compatibility to the devised trajectory
initialization algorithm. This connection shall be achieved by the use of partial motion
primitives.

First, for each motion primitive τi in the used lattice Λ, reference states are identified such
that the motion primitive ends at a time that belongs to the time grid. The relative time
from the beginning of each motion primitive τi to the reference states on τi is given by

trel,j = j ·∆t+ rem(tdes,∆t) ∀ j = 0, 1, 2... with trel ∈ dom(τ). (3.17)

Depending on its length in time and the grid discretization ∆t, each motion primitive
contains several reference states τi(trel,j), see Algorithm 7, line 4.

The start states qstart are generates from all reference states on the motion primitives as
follows, (see also Figure 3.6): First, the motion primitives τ are translated to τfit such that
the reference states are located at the x, y-position of the desired start state qdes (Figure
3.6a and Algorithm 7, line 5). Second, the endpoints of the motion primitives are snapped
to the nearest grid point, translating the primitives τfit to τgrid (Figure 3.6b and line 6 f).

The grid points at the end of the translated motion primitives represent the start states
qstart. They become elements of the set Xs that is used to initiate the OPEN list if the
corresponding motion primitive τgrid fulfill the given constraints, e.g. to be collision-free and
remain on the road. Since every start state qstart can exist multiple times for different τgrid,
only the ones with the lowest cost are added to Xs, (see also Figure 3.6c) and Algorithm 7,
line 9-(line 10)). The cost represents several, linearly weighted aspects and is defined as

g0(qstart) = wc ·
tend − trel
tend

· c(τ) + wp · cp(τ) + wε · cε(q, τ(trel)), (3.18)

where wc, wp, and wε represent the weighting factors for the added costs.
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c(τ) denotes the general cost measure that is used in the subsequent trajectory search
algorithm. It is applied proportional (regarding the time dimension) to the used part of
the motion primitive, c(τ) tend−trel

tend
.

The cost cp favors motion primitives that create trajectories consistent with the previous
one in order to prevent oscillations between different, equally suitable trajectories. The
current motion primitive is compare with the first two segments of the previous trajectory.
A diverging primitive receives cp as a penalty.

cε(q, τ(trel)) is the control error cost that penalizes the distance between the start state
qstart and the desired vehicle state qdes at the point of time of the algorithm’s deadline
(see Figure 3.6c). This distance causes undesired discontinuities in the control error for the
trajectory following controller. the control error cost is currently implemented as the L2

norm in the dimensions x, y, ψ and v.

(a) Place arcs so that error in
x, y, t is zero

(b) Snap endpoints to grid (c) Evaluate position error

Figure 3.6.: Selection of start-vertices for a grid-based planner, compare [Hess, 2009].

3.4. Constraint Validation

The validity of potential trajectory parts is determined by a separate module that ensures
that all constraints are satisfied. As mentioned, these constraints consist of the requirements
to drive on the road, to evade static and mobile obstacles, and to respect kinodynamic
constraints on the motion to foster the numerical convergence of the subsequent trajectory
optimization. While the latter can be easily enforced already within the local planning
method proposed in Section 3.1.2, this section therefore focuses on the question how the
obstacle-constraints can be tested.

The obstacles can be represented in different ways. Most commonly, they are represented
either explicitly, in an object oriented fashion or an implicit, approximate grid-based ap-
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Algorithm 7 Selection of start states in accordance with a set of motion primitives, com-
pare [Hess, 2009]

CalculateStartPositions(Λ,qdes,R,O, C)
Input: A set of motion primitives Λ, a desired start state qdes,

sets of obstacles and constraints R,O, C
Output: A set of start positions Xs, a cost function g0 : Xs → R
Constant: Discretization of the grid, ∆x,∆y,∆t
1 Xs ← ∅; g0 ← ∅.
2 toff ← rem(tdes,∆t)
3 For all τ ∈ Λ
4 For all trel ∈ dom(τi) with rem(trel,∆t) = toff
5 τfit ← translate τ in x and y, so that [τfit,x(trel), τfit,y(trel)] = [xdes, ydes]
6 qstart ← round(τfit(tend),∆x,∆y) to grid-point
7 τgrid ← translate τfit in x and y, so that τgrid(tend) = qstart
8 If Validate(τgrid,R,O, C) Then
9 c← CalculateCost(qdes, τgrid)
10 If qstart /∈ Xs ∨ c < g0(qstart) then
11 Xs ← Xs ∪ {qstart}; g0(qstart)← c.

End
End

End
End

proach is taken. In [Urmson et al., 2008], an object oriented approach is chosen for on-road
navigation, but on a grid-based representation is applied for navigation in parking lots.

Occupancy grids have the advantage of constant query times for collision checking inde-
pendent of the number of obstacles and are easy to generate from sensor data for static
obstacles in an x-y-map. For higher dimensions and moving obstacles though the compu-
tational effort for preprocessing increases exponentially. Due to this reason and in order
to make the trajectory initialization consistent with the subsequent optimization, the same
object oriented approach is taken as in Chapter 2.

To verify in an object oriented fashion that a trajectory is collision-free, the volumes by the
vehicle and all obstacles have to be polygonally represented in the augmented workspace
WT : 〈x, y, t〉 and tested for overlap. The implemented collision checking algorithm follows
a hierarchical Divide & Conquer approach as already described in Chapter 2, similar to e.g.
[Ferguson et al., 2008]: The trajectory is recursively split into half along the time dimension,
which is easy as movement in t-direction is monotonous. For each trajectory part a rough
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test with bounding boxes is performed that can guarantee correctness of negative results,
(no collision found).

For the current implementation the bounding box is an axis aligned box, which extends
through the complete time interval covered by the trajectory, and which would contain the
object at any rotation (see Figure 3.7, left). In narrow situations any type of closer fitting
container, such as OBBs proposed by [Gottschalk, 2000] (see Figure 3.7, right), could reduce
the necessary recursion depth, see Chapter 2.

Figure 3.7.: Conservative Collision Test
Rough and conservative collision tests are executed on bounding-boxes around partial tra-
jectories. On the left is displayed the current method of axis aligned bounding boxes. An
improvement to the precision of the conservative test would be to use tighter bounding boxes
as displayed on the right.

Intersection can be tested with the help of the separating axis test described in [Gottschalk
et al., 1996], as already mentioned in Chapter 2, Figure 2.14.

An exceedingly high recursion depth can be avoided by switching to an iterative test method
when the recursion limit is reached. The iterative test method samples the remaining sub-
trajectories of both obstacle and vehicle at an adequate resolution in time, and simply
compares the position of obstacle and vehicle for each point of time.

As mentioned, the initial trajectory (which is the result of the trajectory initialization
described in this chapter) must obey the constraints posed by the trajectory optimization
presented in Chapter 2. The safest way to achieve this is to apply the same models for
road and obstacles. Regarding the obstacles, this applies especially to obstacles’ motion
extrapolation. While this is indeed the case for the obstacles, regarding the road, currently
still a piecewise linear approximation of the road is used for the trajectory initialization and
its collision checking. However, it can be tuned to ensure that all nodes of the discretized
trajectory for the optimization lie inside the road boundaries. The more detailed road
model is left to the trajectory optimization.
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3.5. Cost Functions

The cost function essentially controls the chosen initial trajectory, as it assigns preference
of one “route” over another in the search algorithm. Therefore, the cost functions should
reflect the main demands to the initial trajectory, which can be summed up with the key-
words safety and comfort.

A cost function which implements the safety requirement is rather elusive: Safety can be
divided into, first, safety from collisions with obstacles and road sides and, second, safety
from unstable vehicle states to avoid overturns or other uncontrollable behavior. Since no
sophisticated vehicle model is used within this search, the latter kind of safety can only be
regarded by a cost function that penalizes high acceleration values.

The safety with regards to obstacles refers to the probability of collision. In many planning
algorithms the collision probability is approximated by the distance to the obstacles. How-
ever, the computation of distances (spatial, temporal or both) to all obstacles along each
potential trajectory segment is very time consuming, even if relatively fast approaches for
a hardware-based computation of distance maps exist, see [Hoff III et al., 2000]. Therefore,
as common to a number of approaches, safety during the trajectory initialization is approx-
imated by the requirement to keep a certain minimum distance to obstacles. To ensure this
minimum distance, the obstacles are enlarged accordingly.

According to [ISO2631, 1997; Smith et al., 1978], comfort for the driver is highly correlated
with the experienced accelerations. Even though other factors such as jerk, see e.g. [Chee
et al., 1994], seem to contribute to the measure of comfort, many trajectory planning
approaches rely on penalizing or limiting accelerations, see for example [Solea and Nunes,
2006].

For the trajectory initialization algorithm devised in this work, the direct consideration
of jerk is not possible due to the setup of the search space and the used local planning
method. The comfort is regarded by a cost function cacc which penalizes high absolute
accelerations

cacc(τ) =
tend∫

tstart

√
τv(t)2/|r|+ a2

long dt. (3.19)

An additional consideration of the jerk is left to the subsequent trajectory optimization
step.
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This cost can be precomputed for all motion primitives and looked-up in constant time.
However, it is hard to acquire an admissible estimate for the remaining acceleration cost.
Unfortunately, without an admissible non-zero estimate for the remaining cost the A*
search would degrade to an uninformed best-first search. Therefore, the acceleration cost is
complemented by a path length based cost measure to a pseudo cost cpseudo, which allows
to calculate a non-zero estimate of the remaining cost,

cpseudo(τ) = clength(τ) + cacc(τ). (3.20)

As depicted in Figure 3.8, the remaining length of the path is estimated as the sum of the
minimum length paths through all remaining street segments. The minimum lengths li,min

for a straight, circular, or clothoid segment R̂i as indicated by bold lines in Figure 3.8 can
be computed according to Equation 2.49 resulting in

li,min =


l̂i straight road segments
l̂i − b

2 κi l̂i for circular road segments

l̂i − b
2

(
κi,0 l̂i + κ′i

(l̂i)2

2

)
clothoid road segments,

(3.21)

where l̂i denotes the segment’s known length along the centerline, b the street width, κi the
curvature of a circular segment, κi,0 the initial curvature of a clothoid segment, and κ′i the
segment’s rate of change of curvature.

For the current implementation of the trajectory initialization, the street is discretized into
a piecewise-linear representation.



120 3. Trajectory Initialization

Figure 3.8.: Estimation of remaining path length
The shortest path to cross each segment is indicated by bold lines. In the current implemen-
tation of the trajectory initialization, a piecewise-linearly discretized version of the street is
used.



CHAPTER 4

Experimental Setup

In order to demonstrate the applicability of the developed trajectory planning approach
presented in Chapters 2 and 3, it is tested in simulations and test drives. Section 4.1 de-
scribes the information processing and gives an overview over the related hardware and the
implemented software structure. Section 4.2 covers the setup of the test vehicle and details
how it has been equipped with additional sensors, actuators, power supply, and information
processing capabilities for automated driving. An integrated trajectory following controller
with several cascaded control loops has been devised that controls lateral and longitudinal
deviations from the planned trajectory and provides input to the additional actuators, see
Section 4.3.

4.1. Information Processing

Except for some subordinate control-loops and the sensor fusion of the satellite-based Global
Positioning System (GPS) and inertial sensors that are discussed in Section 4.2, the infor-
mation processing is performed by a regular PC or laptop. As described in detail in Section
4.1.1, the PC is equipped with several Controller Area Network (CAN) interfaces and a
digital-to-analog (D/A) converter to communicate with the different sensing and automa-
tion hardware modules introduced in Section 4.2.
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Besides the hardware structure and interfaces, also a suitable software structure had to
be devised that is flexible and provides support for simulations, simulator studies, and
experiments, as detailed in Section 4.1.2.

4.1.1. Hardware Interfaces in Test Vehicle

A PC1 was chosen as the central processing and control unit due to cost limitations and the
simplicity of implementation. The PC is connected via CAN busses and a D/A converter
to the different sensing and automation hardware modules, see Figure 4.1.

Figure 4.1.: Block diagram of hardware interfaces to PC
The PC as the central processing and control unit is connected via CAN busses and a D/A
converter to the different sensing and automation hardware modules. As input, the PC
receives the estimated position q and the current steering wheel angle δSW and steering
wheel torques TSW,M , TSW,D, TSW . The output from the PC consists of two control voltages
UDT and UB for a desired acceleration and braking, respectively, and the desired steering
torque TSM,des or steering rate ωSM,des.

As input, the PC receives the estimated vehicle state q from the state estimation module.
Further, the PC receives feedback about the current steering wheel angle δSW and steering
wheel torques caused by the steering motor (TSW,M), the human driver (TSW,D), as well as
the total steering wheel torque TSW . Each automation hardware module is driven by one
control variable. For the acceleration automation hardware module this is the voltage UA
that represents a certain desired throttle flap angle. With regards to braking, the control
variable is the voltage UB that represents a certain desired position of the brake pedal. The
steering automation hardware module receives, depending on the used modus, either the
desired steering torque TSM,des or the desired steering rate ωSM,des via the steering CAN.

1Laptop: Intel Core 2 Duo Mobile T5500; 2x1,67GHz, 1GB RAM
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4.1.2. Software Structure

It is important to implement a software structure that provides support during all phases
of development and testing. More specifically, the software structure should be usable in
simulations, simulator studies, and experiments in a test vehicle and allow the usage of
identical software modules such as the trajectory planning in all cases without any changes
to the code.

The devised software structure consists of separate modules that all communicate via a
single shared memory, as illustrated in Figure 4.2. The foundation to this software structure
is called Straightforward Modular Prototyping Library (SMPL) and was acquired through a
cooperation with the Institute of Transportation Systems of the German Aerospace Center
in Braunschweig.

Figure 4.2.: Software structure
All modules, i.e. the state estimation, the virtual sensors, the trajcetory planning, the
trajectory following controller, and secondary modules such as the visualization and the data
recording, communicate over a shared memory.

The communication is asynchronous which allows each software module to run at a different
frequency as necessary. Further, each software module can even be executed on a different
computer as long as they are connected, e.g. by ethernet. The shared memory is then
synchronized between all computers by a socket-based communication, serializing and then
deserializing all variables.



124 4. Experimental Setup

Figure 4.2 shows the configuration used in the test vehicle. The information about the
environment that consists of obstacles O and the road R is generated based on a digital
map. In future applications, this data can be acquired using external sensors such as
RADAR, camera, or laser scanners. The current dynamic state q of the vehicle is measured
by the state estimation hardware, and simply written to the shared memory by the state
estimation software module. Alternatively, the data fusion of GPS and inertial measurement
unit (IMU) data can be performed in the state estimation software module.

The trajectory planning uses the information about the environment (O,R), the dynamic
state q, and the previously planned trajectory T . First, an initial trajectory Tinit is gener-
ated, according to the trajectory initialization method presented in chapter 3. Second, Tinit
is optimized as described in Chapter 2 to provide the new planned trajectory T .

The trajectory following controller always reads the current planned trajectory T and the
current dynamic state q from the shared memory and determines the desired longitudinal
acceleration steering angle ades and δdes, respectively.

The acceleration is controlled in a subordinate module that decides between using the
brake or the throttle valve to achieve the desired acceleration and then determines the
proper voltages UA and UB to drive the respective hardware modules.

The desired steering angle δdes is controlled in the subordinate steering control module,
where the desired steering rate, i.e. the rotational velocity ωSM,des for the steering motor
is determined based on the control error between the desired and the actual steering wheel
angle δSW . Additionally to what is displayed in Figure 4.2, also a desired motor torque
could be set. The actual steering torques measured by the strain gauges are omitted in this
diagram, since they are not used in any control loop.

In addition, secondary software modules exist to realize the visualization of the current
situation and to record all data for later evaluation.

In order to perform simulations instead of experiments in the test vehicle, basically, only
the real vehicle must be replaced by a vehicle model. Depending on the depth of the model,
some subordinate control loops also have to be eliminated. For example, if the vehicle
model does not contain any drive train model, there is no point in determining a driving
voltage UA to set a certain throttle flap angle. Rather, the desired longitudinal acceleration
ades can be set directly in the model. Figure 4.3 shows the configuration for use with a
simple model.

For simulator studies the steering control can be added again to drive the steering hardware
module of the simulator.
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Figure 4.3.: Software structure for simulations with simple vehicle model
Compared to the configuration for test drives, the test vehicle is replaced by a model and
some subordinate control loops have been eliminated.

4.2. Test Vehicle

The test vehicle is a BMW 540i Touring that has been equipped with additional sensors and
actuators, some of which are displayed in Figure 4.4. Some of the main vehicle parameters
are listed in Table 4.1.

In order to find the best concept of automation, a list of requirements was drawn up, all
options to achieve the desired functionality were considered, different feasible automation
concepts were designed based on the state of the art found in current literature, and finally
short utility analyses were performed to select the best concept for our purpose. The
following Subsections 4.2.1 - 4.2.4 detail the different additions to the vehicle and briefly
discuss the main reasons for the choice of concept.

Note, that no external sensors such as RADAR, laser scanners, or cameras have been
implemented. Instead, external sensor information is simulated online based on the location
of the ego-vehicle in a detailed digital map. This allows to decouple the development,
testing, and demonstration the developed motion planning approach from the quality of
any particular sensors.
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Parameter Value
Vehicle model BMW 540i Touring
Motor power 210kW
Mass mveh 1,845kg
Length lveh 4.805m
Width wveh 1.800m
Height hveh 1.440m
Distance from center of gravity to
front axle lF

1.46m

Distance from center of gravity to
rear axle lR

1.37m

Steering ration i = δSW/δ 17.9
Transmission 5 gear, automatic

Table 4.1.: Main vehicle parameters according to [Presse, 2002] and own measurements

Figure 4.4.: Test vehicle
The BMW 540i Touring is equipped with sensors for state estimation and additional actuators
and sensors for automated steering, braking and accelerating.
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4.2.1. Sensors for State Estimation

For reliable trajectory planning and following it is essential to measure the relevant current
dynamic state (i.e. position, velocity, acceleration, yaw angle and yaw rate) of the vehicle
accurately at a high update rate.

In order to achieve this goal, a number of different sensors can be used, such as sensors
for satellite navigation (using e.g. GPS), optical velocity sensors (e.g. Correvit), inertial
sensors such as accelerometers and gyroscopes, wheel speed sensors, or even a steering angle
sensor.

All sensors can also be used in combination with each other and with prior knowledge
about the vehicle (such as a vehicle model) or the environment (such as a digital map).
The combination of several sensors is called sensor fusion and has the advantage that data
from multiple sources can be used to acquire a better estimate of the vehicle’s dynamic
state. Moreover, that the individual drawbacks of different sensors can be eliminated by
the combination of sensors of complementary characteristics.

Most of the sensors mentioned above cannot measure the vehicle’s absolute position directly.
Rather, measurements of velocities, accelerations, or turning rates must be integrated over
time which requires knowledge of an initial reference state and leads to accumulating errors.
Therefore, the usage of GPS as absolute reference is necessary.

For this test vehicle, the dynamic state is determined by sensor fusion of GPS data with
inertial measurements. This combination has proved successful in a number of applications,
see e.g. [Rezaie et al., 2007; Schubert et al., 2008; Wendel, 2007], due to the complementary
characteristics of the sensors as displayed in Table 4.2.

GPS measurements inertial measurements
Short term error medium low
Long term error low high
Update rate low high

Table 4.2.: Comparison of GPS and inertial measurements

Inertial measurements can be acquired at a very high update rate and give reliable results for
short periods of time. Unfortunately, for longer periods of time, the integration of inertial
measurements leads to accumulating position errors. GPS on the other hand yields errors
in individual position measurements, e.g. due to multipath erros (caused by reflections from
buildings, etc.), atmospheric effects, clock inaccuracies, and satellite visibility [Kaplan and
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Figure 4.5.: Block diagram of state sensing and estimation, adapted from [GeneSys Elek-
tronik GmbH, 2008]
The input to the state estimation are GPS satellite signals and correction data for differen-
tial GPS (DGPS) via a GSM modem. The ouput is the current estimation of the vehicle’s
dynamic state q.

Hegarty, 2006], and is only available at a rather low update rate. However, the position error
does not accumulate over time. Therefore, the GPS measurements can be used to correct
accumulating errors from inertial measurements while the usage of inertial measurements
can provide a higher update rate and mitigate errors in individual GPS measurements.

Figure 4.5 gives an overview of elements involved in the state estimation of the vehicle. The
used GPS receiver is a Novatel ProPak-V3 which uses dual frequency differential GPS with
realtime kinematics (RTK DGPS) to provide measurements with a nominal accuracy of
1cm + 1ppm at 10-20Hz depending on the provided values and the receiver’s configuration,
see [Novatel, 2006a,b]. If the rover is e.g. 10km away from the stationary reference station
for the differential GPS corrections, 1ppm equals 1cm, [Novatel, 2006c]. In addition, it is
important to note that the accuracy is given for a circle of equal probability (CEP), which
means that in the given example 50% of all measurements lie within a circle of 2cm radius
around the real value.

The correction data for the differential GPS is provided by ASCOS, a commercial service
by Axio-net GmbH, via a GSM modem. The position and velocity measurements can be
acquired from the receiver via a serial port. For a detailed explanation of the underlying
principles of differential GPS see for example [Wendel, 2007].

The inertial measurements stem from three accelerometers and three fiberoptic gyroscopes
which are combined into an IMU that provides accelerations a and turning rates ω in all
three axes. The IMU used in the test vehicle is located inside the Automotive Dynamic
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Motion Analyzer (ADMA) from GeneSys GmbH. Most errors such as misalignment errors
or temperature drift are corrected internally. Measurements are provided at an update rate
of up to 400 Hz via a CAN bus interface, [GeneSys Elektronic GmbH, 2008].

A strapdown algorithm corrects for accelerations and turning rates due to gravity, the earth
turning rate, and Coriolis terms when the vehicle is moving and integrates the measurements
to obtain velocity, position, and orientation measurements. GPS and IMU data is fused by
means of an extended Kalman filter (EKF). Both the strapdown algorithm and the Kalman
filter run inside the ADMA which provides readily fused measurements for the vehicle’s
dynamic state at an update rate of 100-200Hz via a CAN bus. The implemented fusion
is called “tightly coupled”, since the determined pseudoranges dpseudo, i.e. the estimated
distances to the satellites in view, are used to enhance the results even for only few visible
satellites. For more details refer to [GeneSys Elektronic GmbH, 2008; GeneSys Elektronik
GmbH, 2008].

Alternatively to the commercial version of sensor fusion, several different Kalman filter
based sensor fusion algorithms (a basic Kalman filter, an error state-space EKF and an un-
scented Kalman filter (UKF)) have been developed in related student theses with promising
results, see [Arronte Arroyuelos, 2006; Lauhoff, 2009; Moreno Schneider, 2007; Othmani,
2009].

4.2.2. Drive Train Automation

Figure 4.6 shows the principal components involved in the acceleration of the vehicle and
offers several points of influence where the vehicle could be altered to automate the accel-
eration.

Changes or additions to the later part of the drive train were not considered due to infeasi-
bility of the necessary constructions. Access to the motor control (as done e.g. in [Schröder
et al., 2006]) was also impossible. The main options included actuating or exchanging the
gas pedal (as e.g. in [Kirchgässner and Tröster, 2006]) or changing the Adaptive Cruise
Control (ACC) motor control. Even though, some disadvantages applied with regards to
the possible development of human-machine interactions (HMI) in the future, it was cho-
sen to use the ACC motor to automate the vehicle’s acceleration, mainly because it was
easier to implement, fulfilled all safety requirements, and offered the freedom of additional
changes to the gas pedal for HMI design later.
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Figure 4.6.: Block diagram of principal drive train components
Possible points of influence are shown to achieve an automated acceleration of the vehicle.
As indicated in bold, it was chosen to change the motor control of the existing ACC motor
in order to automate the drive train.

The existing ACC throttle flap motor was disconnected from the ACC controls and instead
controlled by an analog control circuit to actuate the throttle valve from the PC, as displayed
in Figure 4.7.

The desired throttle flap angle αdes is given as a voltage UDT by a D/A converter, while the
current throttle flap angle α is measured as the voltage Upot by a potentiometer. To control
α, an analog PID controller is used. The control output UTFM in amplified by an opera-
tional amplifier circuit to provide sufficient power to drive the throttle flap motor. This
control loop was implemented outside the PC in order to increase speed and save computa-
tional resources. The analog implementation was chosen mainly due to lower costs and less
implementation effort if compared to an implementation on a separate micro controller.

The throttle flap motor is supplied with up to 24V DC (via the operational amplifier) which
is about twice the motor’s original specification to increase the possible reaction times to set
a certain throttle flap angle. The voltage input to the potentiometer had to be stabilized to
a controlled supply voltage of U ′S,pot = 5V as indicated in Figure 4.7, because the voltage of
12 V provided by the vehicle itself is not steady enough to provide the same voltage range
as provided by the D/A converter.

The throttle flap is also still connected to the driver’s gas pedal, enabling the driver to
open the throttle flap further and increase the vehicle’s acceleration. Further, there is a
clutch between the throttle flap motor and the throttle flap which opens when the power
is cut. Because the throttle flap is spring loaded it then closes to the position given by the
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Figure 4.7.: Block diagram of drive train automation hardware
Input to the drive train automation hardware is an drive train voltage UDT that is produced
by a D/A converter and is proportional to the desired throttle flap angle α. The output is a
force FTF that causes a displacement dTF of a bowden cable that opens the throttle flap by
α to accelerate the car.

gas pedal. To shut off the acceleration automation, an emergency switch cuts the power to
the clutch and activates another relay that shuts off the power supply to the throttle flap
motor. If the throttle motor is disconnected, the vehicle is still allowed to drive on public
streets and does not loose its official approval and homologation for road service.

4.2.3. Braking System Automation

Figure 4.8 shows the principal components involved in the braking of the vehicle and of-
fers several points of influence where the vehicle could be altered to achieve automated
braking.

While the addition of extra brakes or additional actuators directly at the brakes was not
considered due to technical difficulties and legal problems, many other viable options were
taken into account. Concerning a manipulation of the existing Dynamic Stability Control
(DSC) system, the available brake pressure of about 160 bar that can be found in descrip-
tions should suffice even for an emergency brake. However, investigations at Karlsruhe
University revealed that (at least in their case) the equivalent Electronic Stability Program
(ESP) could not produce a sufficiently large deceleration, [Schröder et al., 2006]. Addition-
ally, in oder to gain access to the DSC controls, the control unit would have had to be
replaced with unforeseen consequences for the other connected systems.
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A regulation of the brake pressure by additional pipes, valves, and pumps was readily
designed and taken into account. However, it proved hard to find suitable valves with suffi-
cient reaction times that could withstand the corrosive brake fluid. Further, the technical
realization would have been quite costly and time consuming.

An alternative that is used in many automated vehicles is to influence the brake pressure by
changes to the main brake cylinder (see e.g. [Gerdes, 1996]), or the brake booster (see e.g.
[Mauciuca, 1997]). However, it was chosen to actuate the braking pedal instead (similar to
[Schröder et al., 2006]), due to an easier technical realization in our case.

A number of different actuators and constructions were considered and evaluated such as
linear or rotatory-type actuators, hydraulic, pneumatic, electromechanical, or even piezo-
electric actuators, and different types of linkage between the actuator and the pedal. As
the best solution in our case, the brake is actuated by a DC brake motor via a bowden
cable and a lever kinematic as displayed in Figures 4.4 and 4.9.

The motor originates from a handicapped vehicle control system. A second braking motor
exists in parallel to the first to provide redundancy and additional force if needed, but is
currently not in use.

The brake motor possesses an internal position control for the bowden cable, where the
desired position is given by an analog input signal. This signal originates from a D/A
converter and a customized circuit board for necessary voltage adaptations, as illustrated
in Figure 4.10.

Depending on the desired deceleration of the vehicle, a braking voltage UB is produced
by a D/A converter, which is then adapted to a suitable range to the voltage U ′B. This
voltage encodes a desired displacement of the bowden cables by the braking motor, which
is controlled inside the motor. The motor produces a force FBC to achieve the displacement
of the bowden cables dBC which is then translated via the lever kinematic to a brake pedal
displacement dBP and finally the displacement input to the brake booster sB. Together
with the vehicle’s brake booster, the force FBP at the brake pedal produces a certain brake
pressure pB that activates the brakes to decelerate the car.

The brake motor is supplied with 24V DC which is provided from a 12 to 24 V converter.
The voltage input to the brake control circuit board is stabilized, because the voltage of 12
V provided by the vehicle itself is not steady enough.

Because the bowden cables from the brake motor to the lever kinematic can apply forces
only in one direction, the brake pedal can always be pushed down further by a human driver
to increase the deceleration. Additional analog input signals from the D/A converter to
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Figure 4.8.: Block diagram of principal braking system components
Possible points of influence are shown to achieve an automated braking of the vehicle. As
indicated in bold, it was chosen to actuate the brake pedal by an additional motor via bowden
cables.

(a) Foto (b) Drawing

Figure 4.9.: Lever kinematic for braking system automation hardware
One or two DC motors pull bowden cables that turn the displayed vertical lever counterclock-
wise to push down the brake pedal.

Figure 4.10.: Block diagram of braking system automation
Input to the braking system automation hardware is a braking voltage UB that is produced
by a D/A converter and the output is a force FBP on the brake pedal that causes a brake
pedal displacement dBP , which in turn translates to the brake booster input displacement
sB . The brake booster then produces a certain brake pressure pB that activates the brakes
to decelerate the car.
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the brake motor deactivate it. Therefore, the braking automation can be switched on and
off by software. The emergency switch activates a relay that cuts the power supply to the
brake motor, rendering control to a human driver. The lever kinematic can be disconnected
manually from the brake pedal. If this mechanical connection is severed, the vehicle is still
allowed to drive on public streets and does not loose its official approval and homologation
for road service.

4.2.4. Steering Automation

Figure 4.11 shows the principal components involved in the steering of the vehicle and
offers several points of influence where the vehicle could be altered to achieve automated
steering.

Figure 4.11.: Block diagram of principal steering components
Possible points of influence are shown to achieve an automated steering of the vehicle. As
indicated in bold, it was chosen to automate the steering by replacing the steering wheel
with an actuated steering adapter.

An alteration or addition to the steering linkage, the steering transmission or the power
steering was infeasible. Furthermore, the steering wheel could not be eliminated completely,
since the driver had to take over control in case of an automation failure. A motor connected
to the steering column was difficult to mount and would have had legal implications.

Therefore, automated steering is achieved by the introduction of a steering adapter that can
be mounted instead of the regular steering wheel, see Figures 4.4 and 4.12. The detailed
mechanical construction was supported by a supervised student thesis, [Nawroth, 2007].
The main components are a brushless DC steering motor and a steering wheel angle sensor
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(a) Foto (b) Drawing

Figure 4.12.: Steering adapter, see also [Nawroth, 2007]
The steering adapter consists mainly of a steering motor and a steering wheel angle sensor.
It can be attached or removed to restore the original steering wheel.

to control the steering angle. The rotating part of the steering adapter is fixed to the
steering column while the part that includes the motor itself is mounted to the dash board
carrier to provide torque support.

The steering motor is combined with a transmission and provides up to 15 Nm of torque at
about 1.5 rotations per second to turn the steering wheel. It is driven by a motor controller
which combines the necessary power electronics with a microcontroller that can be set to
control either the torque or the rotational velocity of the motor, see Figure 4.13. The
mentioned additionally attached sensor measures the current steering wheel angle at 1 kHz
and a resolution of 0.04◦, [IVO GmbH & Co. KG, 2008]. Both the sensor and motor driving
microcontroller communicate via an additional CAN bus (the “steering CAN”).

In addition, strain gauges have been applied to the steering adapter to both sides of the
pinion where the motor torque is applied. This way the torque applied by the human driver
and the steering motor can be measured as well as the torque “feedback” from the wheels
the driver would ordinarily experience when holding the steering wheel. The strain gauges
are connected to measurement amplifiers which also provide the current measurements
as 32 bit variables to the steering CAN at an update rate of about 1kHz, [HBM, 2008].
Unfortunately, the torque measurements are only accurate to about ±0.1Nm. Therefore,
they cannot be used for feedback control but only for example to recognize when large
torque control errors occur or whether the driver tries to turn the wheel himself.

The steering motor is supplied with 24V DC supplied by a 12V to 24V DC/DC converter.
In case a human driver turns the steering wheel, power might be generated inside the motor
which must be absorbed in a chopper module in order not to damage the motor controller.
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Figure 4.13.: Block diagram of steering automation hardware
The input is a desired torque TSM,des or rotational velocity ωSM,des of the steering motor
which is given via the steering CAN. The ouput is a certain torque TSM that acts on the
steering adapter and turns the steering wheel. Further, feedback about the current steering
wheel angle δSW and the applied steering torques by the steering motor TSW,M , the human
driver TSW,D, and the total torque TSW is also provided via the steering CAN bus.

The steering wheel angle sensor and the strain gauge measurement amplifiers both use a
12V DC supply voltage from the car battery.

The steering motor can be throttled at the motor controller either manually or via the
steering CAN to decrease the maximum torque. If the maximum torque is low enough
(<5Nm), a human driver can forcibly overrule the steering decisions. The steering motor
can be enabled and disabled both by a software switch and a hardware switch at the motor
controller. Further, the emergency switch cuts the power supply to the steering motor via
a relay. Steering is then left to a human driver.

The whole steering adapter can be removed and replaced with the original steering wheel.
Thus, the vehicle is still allowed to drive on public streets and does not loose its official
approval and homologation for road service.

Preliminary tests have shown that the steering angle δ at the tires and the steering wheel
angle δSW have no static relation. Instead, the steering adapter, steering column and
transmission between δ and δSW have a significant compliance and it is hard to determine
the real steering angle δ just by measuring δSW . Therefore, an additional steering angle
sensor was attached directly at the tires, as shown in Figure 4.14.
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Figure 4.14.: Steering angle sensor
The steering angle sensor is attached close to the wheel underneath the car in a
parallelogram-construction due to space constraints. It measures the current steering angle
δ very directly, compared to the steering wheel angle sensor in the steering adapter which
measures δSW .

4.3. Trajectory Following Control

In order to show the applicability of the devised trajectory planning method in test drives,
a trajectory following controller is designed and implemented. As depicted in Figure 4.15,
the controller is structured into several cascaded control loops. In the outermost control
loop, an integrated lateral and longitudinal control generates the desired steering angle δdes
and longitudinal acceleration ax,des depending on the vehicle’s deviation from the planned
trajectory T , see Section 4.3.1. The subordinate lateral and longitudinal controllers are
detailed in Sections 4.3.2 and 4.3.3.

As needed for the controller design, appropriate vehicle models haven been built or selected.
In general, one can differentiate between theoretical and experimental modeling. Theoret-
ical models (often referred to as white box models) represent the system by (differential)
equations that stem from physical relations and may be very complex. Experimental mod-
els (black box models) on the other hand do not offer any insight into the structure of the
system but merely model the overall transfer behavior. The advantage of such models is
that they are often easier to acquire, [Börner, 2003].

The combination of black and white box models, i.e. of theoretical and experimentally
acquired submodels is often referred to as a gray box model, [Schorn, 2007, p. 11]. Gener-
ally, a suitable model is as simple as possible while reproducing all relevant dynamics as
accurately as necessary. Therefore, it is a promising approach to firstly build a theoretical
model which can be deconstructed into smaller parts and then to replace some rather com-
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Figure 4.15.: Blockdiagram Trajectory Following Control
The trajectory following control is organized in several cascaded control loops. The outer
control loop consists of an integrated lateral and longitudinal control (see Section 4.3.1).
Subordinate control loops exist for the control of the steering angle δ and the longitudinal
acceleration ax (see Sections 4.3.2 and 4.3.3) which then drive the respective automation
hardware (AHW) modules.

plex submodels with experimental models that are easier to obtain, [Zambou, 2005, p. 43].
This way, the model becomes simpler and easier to obtain while the basic structure of the
overall system is conserved.

The used models are described in the following sections along with the developed controllers.
While for the outer control loop for the integrated lateral and longitudinal control a simple
white box model (single track model) is used, gray or black box models are used applied in
the modeling of the longitudinal vehicle dynamics.

4.3.1. Integrated Longitudinal and Lateral Motion Control

Based on the literature search presented in Section 1.2 on the state of the art and some own
experiments with different types of controllers (e.g. in related student theses supervised by
this author [Hertkorn, 2008; Niggemann, 2007; Roeser, 2008; Schellenberg, 2007; Wesemeyer,
2008]), it was decided to pursue an integrated lateral and longitudinal control approach.
The chosen controller is based on the method of nonlinear decoupling, which is similiar to
feedback linearization [Freund and Mayr, 1997], see also [Föllinger, 2008; Khalil, 2002] for
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further information. This method needs the system dynamics to be transformed from the
state space representation

ẋ = a(x) + B(x)u, (4.1)

y = c(x) (4.2)

to the equivalent form [Föllinger, 2008]

ỹ = c̃(x) + D̃(x)u(t), (4.3)
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Therein, δi represents the differential order for each output yi,

δi = min{j : ∂

∂x
(N j−1ci)B(x) 6= 0; j = 1, 2, . . . , n}, (4.4)

which signifies the lowest derivative (δi)
yi that depends explicitly on u. The operator Nkci is

recursively defined as

Nkci = [ ∂
∂x

Nk−1ci(x)]a(x) mit N0ci = ci(x). (4.5)

For more details regarding this representation and the determination of the differential
order see for example [Föllinger, 2008].

The basic idea of a nonlinear decoupling controller is to linearize and decouple the dynamic
system such that each output yi or ỹi is only influenced by a single reference input wi. In
order to achieve this property the control law depicted in Figure 4.16 is chosen,

u(t,x) = α(x) + β(x)w(t), (4.6)

where α(x) is similar to a controller matrix and β(x) to a prefilter in linear systems.
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Figure 4.16.: Block diagram of nonlinear decoupling controller for integrated motion control
The controller linearizes and decouples the dynamic system such that each output yi or ỹi
is only influenced by a single reference input wi. The controller consists of a prefilter matrix
β and feedback gain matrix β.

Substituting the control law in Equation 4.6 into the uncontrolled dynamic system as de-
scribed in Equation 4.3 results in the closed loop behavior

ỹ = c̃(x) + D̃(x)α(x) + D̃(x)β(x)w(t). (4.7)

It can be seen that the system output ỹ is influenced by the reference input w(t) via D̃(x)
and β(x). In order to obtain the desired characteristic that each ỹi is only influenced by
wi, the following property must hold:

D̃(x)β(x)w(t) =


λ1w1(t)

...
λqwq(t)

 = Λ̃w(t). (4.8)

Thus, the prefilter matrix β(x) is given as

β(x) = D̃(x)−1Λ̃ (4.9)

and the closed loop behavior becomes

ỹ = c̃(x) + D̃(x)α(x) + Λ̃w. (4.10)

In Equation 4.10 it can be seen that ỹi might still be coupled with other output and
reference elements via the state-dependent terms c̃(x) and D̃(x)α(x). To eliminate this
possible coupling and to create a decoupled linear input-output relationship, the following
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ansatz is chosen, [Föllinger, 1993, Eq. 7.65f,7.86]:

λiwi = (δi)
yi + αiδi−1

(δi−1)
yi + · · ·+ αi1ẏi + αi0yi (4.11)

(δi)
yi + αiδi−1N

δi−1ci + · · ·+ αi1N
1ci + αi0N

0ci. (4.12)

For the whole system of equations the ansatz function therefore reads

ỹ = −


∑δ1−1
k=0 α1kN

kc1
...∑δn−1

k=0 αnkN
kcn


︸ ︷︷ ︸

M̃(x)

+Λ̃w. (4.13)

Comparing Equations 4.10 and 4.13 delivers the necessary form for α(x) to achieve the
desired linear decoupled closed loop system behavior,

α(x) = −D̃(x)−1[M̃(x) + c̃(x)]. (4.14)

Having derived α(x) and β(x), the control law in Equation 4.6 can be rewritten to

u(t,x) = D̃(x)−1[−c̃(x) + Λ̃w(t)− M̃(x)] (4.15)

with

c̃(x) =


N δ1c1

...
N δncn

 ; D̃(x) =


∂
∂xN

δ1−1c1B(x)
...

∂
∂xN

δn−1cnB(x)

 ; u =


u1
...
uq



Λ̃ =


λ1 . . . 0
... . . . ...
0 . . . λq

 ; M̃(x) =


∑δ1−1
k=0 α1kN

kc1(x)
...∑δn−1

k=0 αnkN
kcn(x)

 .

The following sections detail a suitable vehicle model and the application of the nonlinear
decoupling to this model in order to achieve an integrated lateral and longitudinal trajectory
following control.
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4.3.1.1. Vehicle Model

The selected integrated lateral and longitudinal trajectory following control requires the
modeling of the principal vehicle dynamics in the x-y-plane. Vertical dynamics as well as
rolling or pitching motions are neglected. The dynamics of the drive train and the braking
system are regarded only in design the subordinate acceleration controller.

If vertical, rolling, and pitching dynamics are neglected, planar vehicle models result, such
as the two track model. Here the center of gravity is assumed to lie on the surface of
the road and hence only three degrees of freedom remain for the vehicle body. A further
reduction can be achieved by assuming a symmetry along the vehicle’s longitudinal axis
which results in the single track model, where the right and left tires are lumped together
into a single tire per axle, see Figure 4.17. In particular, the single track model eliminates
the distinction between a right and left steering angle δr, δl and only considers a single
steering angle δ.

The Newton-Euler equations of motion for the single track model expressed in the Frenet
frame 6-T : (T ∗, Tet, Ten, Teb) of reference, that is rotated by β with respect to 6-V, are given
by

m ˙E
T v

CG
t = (WRF

WR∗
x − VF

Wind
x ) cos (β) + WFF

WF∗
x cos (δ − β) (4.16)

+(WRF
WR∗
y − VF

Wind
y ) sin (β)− WFF

WF∗
y sin (δ − β),

m ˙R
V v

CG
n = (−WRF

WR∗
x + VF

Wind
x ) sin(β) + WFF

WF∗
x sin(δ − β) (4.17)

+(WRF
WR∗
y − VF

Wind
y ) cos(β) + WFF

WF

y cos(δ − β),

ΘCG
b ψ̈ = −WRF

WR∗
y lR + WFF

WF∗
y lF cos(δ) + WFF

WF∗
x lF sin(δ). (4.18)

Using the relation

˙R
V v

CG
n = E

T v
CG

t

(
β̇ + ψ̇

)
⇒ β̇ =

˙R
V v

CG
n

E
T v

CG
t

− ψ̇ (4.19)

to rewrite Equations 4.16-4.18, the dynamics of the single track model can be formulated
in state space form, where the state vector

q =
[
q1 q2 q3 q4 q5 q6

]T
=
[
β ψ ψ̇ E

T v
CG
t Ex

CG
Ey

CG

]T
(4.20)
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Figure 4.17.: Single track vehicle model
Vertical, rolling, and pitching dynamics are neglected, the center of gravity is assumed to
lie on the surface of the road. Further, the right and left tires are lumped together into a
single tire per axle, eliminating the distinction between the right and left steering angle.

describes the the system in terms of velocities and attitude, see [Mayr, 1991]:

q̇ =



1
mq4

[
(− VF

Wind
y + WRF

WR∗
y )cos(q1) + VF

Wind
x sin(q1) + WFF

WF∗
x sin(δ − q1)

]
− q3

q3
lF

ΘCGz WFF
WF∗
x sin(δ)− lR

ΘCGz WRF
WR∗
y

− 1
m VF

Wind
x cos(q1) + 1

m
(WRF

WR∗
y − VF

Wind
y ) sin(q1) + 1

m WFF
WF∗
x cos(δ − q1)

q4 cos(q1 + q2)
q4 sin(q1 + q2)


︸ ︷︷ ︸

a(q)

+



cos(δ−q1)
mq4

− sin(q1)
mq4

0 0
lF cos(δ)

ΘCGz
0

− sin(δ−q1)
m

cos(q1)
m

0 0
0 0


︸ ︷︷ ︸

B(q)

u. (4.21)
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The input u =
[
WFF

WF∗
y WRF

WR∗
x

]T
to the system is given by the lateral force at the

front axle, WFF
WF∗
y , that results from steering and the longitudinal force at the rear axle,

WRF
WR∗
x , that results from accelerating or braking.

In order to use this model in the controller design, Equation 4.21 is simplified and partly
linearized analogously to [Freund and Mayr, 1997; Mayr, 1991] under the following assump-
tions: The angles β and δ are small, drive train and braking forces are applied only to
the rear axle, and the lateral tire forces WRF

WR∗
y , WFF

WF∗
y have no direct influence on the

longitudinal acceleration ˙E
T v

CG
t . The resulting simplified nonlinear system of equations is

given by

q̇ = a (q) + B (q) u, (4.22)

y = c (q) (4.23)

where q and u are the same as before, and a (q), B (q), and c (q) are simplified to (compare
[Mayr, 1991, Eq. 4.73], [Freund and Mayr, 1997, Eq. 2])

a (q) =



1
mq4 WRF

WR∗
y + 1

mq4 VF
Wind
x q1 − q3

q3

− lR
ΘCGz WRF

WR∗
y

− 1
m VF

Wind
x

q4 cos(q1 + q2)
q4 sin(q1 + q2)


,B (q) =



1
mq4

− q1
mq4

0 0
lF

ΘCGz
0

0 1
m

0 0
0 0


, c (q) =

q5

q6

 .(4.24)

4.3.1.2. Controller

In order to apply the control principle of nonlinear decoupling from Section 4.3.1, the
simplified single track model in Equation 4.24 is first transformed into the form of Equation
4.3 resulting in

ỹ = c̃(q) + D̃(q)u(t) (4.25)
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with

u =
[
WRF

WR∗
x WFF

WF∗
y

]T
,

ỹ =
[
Eẍ

CG
Eÿ

CG

]T
,

c̃(q) =
 1
m

(cos(q1 + q2)− q1 sin(q1 + q2)) VFWind
x − 1

m
sin(q1 + q2)WRF

WR∗
y

1
m

(sin(q1 + q2) + q1 cos(q1 + q2)) VFWind
x + 1

m
cos(q1 + q2)WRF

WR∗
y

 ,
D̃(q) =

− 1
m

sin(q1 + q2) 1
m

(q1 sin(q1 + q2) + cos(q1 + q2))
1
m

cos(q1 + q2) 1
m

(−q1 cos(q1 + q2) + sin(q1 + q2))

 ,

Then the derived control law from Section 4.3.1, Equation 4.15 is applied yielding

u(t,q) = D̃(q)−1[−c̃(q) + Λ̃w(t)− M̃(q)] (4.26)

with

u =
[
WRF

WR∗
x WFF

WF∗
y

]T
,

w =
[
Ex

CG
ref Ey

CG
ref

]T
,

D̃−1(q) =
−m(−q1 cos(q1 + q2) + sin(q1 + q2)) m(q1 sin(q1 + q2) + cos(q1 + q2))

m cos(q1 + q2) m sin(q1 + q2)

 ,
c̃(q) =

 1
m

(cos(q1 + q2)− q1 sin(q1 + q2)) VFWind
x − 1

m
sin(q1 + q2)WRF

WR∗
y

1
m

(sin(q1 + q2) + q1 cos(q1 + q2)) VFWind
x + 1

m
cos(q1 + q2)WRF

WR∗
y

 ,
M̃(q) =

α10q5 + α11q4 cos(q1 + q2)
α20q6 + α21q4 sin(q1 + q2)

 ,
Λ̃ =

λ1 0
0 λ2


The combination of the controller and the vehicle is depicted later in Figure 4.18. As derived
earlier in Section 4.3.1, the closed loop input-output behavior is given by

ỹ = −M̃(q) + Λ̃w, (4.27)

which in this case yields

¨
Ex

CG + α11 ˙
Ex

CG + α10 Ex
CG = λ1 Ex

CG

ref , (4.28)
¨

Ey
CG + α21 ˙

Ey
CG + α20 Ey

CG = λ2 Ey
CG

ref . (4.29)
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As can be seen in Equations 4.28, the closed loop system dynamics are now linear and lateral
and longitudinal motions have been successfully decoupled. The equations still contain six
parameters that have to be chosen to tune the trajectory following controller that can
be used to ensure a certain system behavior. As first approach, lateral and longitudinal
dynamics can be weighted equally,

λ1 = λ2 = λ, (4.30)

however, λ1 and λ2 will also be considered separately further on to preserve the possibility
to tune lateral vs. longitudinal dynamics later on. Further, in order to obtain stationary
accuracy, it must be demanded that

α10 = λ1 (= λ), (4.31)

α20 = λ2 (= λ). (4.32)

Finally, the system behavior can be analyzed analogously to a general PT2 element which
has the form

ÿi +Dω0ẏi + ω2
0y = ω2

0wi. (4.33)

Following this comparison, critical damping D = 1 is desired, yielding

α11 = 2
√
λ1 (= 2

√
λ), (4.34)

α21 = 2
√
λ2 (= 2

√
λ). (4.35)

Following this proposed parametrization, the system has two double Eigenvalues at −
√
λ1

and −
√
λ2 on the negative real axis and only two parameters λ1 and λ2 have to be tuned.

(In case λ1 = λ2 = λ, a quadruple Eigenvalue at −
√
λ results and only a single parameter

λ has to be tuned.) Therefore, (within the limited posed by the underlying assumptions of
the model) the system is input-output stable as long as λ1 > 0 ∧ λ2 > 0, [Föllinger, 2008].
Within given hardware constraints, the reactivity of the system can be tuned by adapting
λ1, λ2.

Note, that since the differential degree δ = 4 is smaller than the order of the nonlinear
system n = 6, there exist “hidden” internal dynamics which are not observable anymore
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in the linearized and decoupled closed-loop system, [Khalil, 2002, p. 517], which are not
covered by the stability analysis above. A special case of these internal dynamics is also
known as zero dynamics, [Svaricek, 2006, Def. 3.1]. As suggested for practical applications
for this case by [Föllinger, 1993, p. 315], the feasibility of the control approach was tested
in simulations and experiments and no unbounded increase in any of the system states was
observed. Future research could examine this in more depth.

The trajectory following controller as designed so far produces a desired linear and decoupled
closed loop system behavior and tracks a given reference

[
Ex

CG
ref Ey

CG
ref

]T
without stationary

error for E
V v

CG
t = 0, EV v̇CGt = 0. However, depending on velocity and acceleration, a lag error

elag occurs in both lateral and longitudinal direction,

elag,x = Ex
CG

ref − Ex
CG = 1

λ1
( ¨E
V x

CG + α11 ˙E
V x

CG), (4.36)

elag,y = Ey
CG

ref − Ey
CG = 1

λ2
( ¨E
V y

CG + α21 ˙E
V y

CG). (4.37)

This lag error can be compensated by adapting the reference variables and replacing Ex
CG
ref

and Ey
CG
ref in the control law by Ex̂

CG
ref and Eŷ

CG
ref , respectively, where

Ex̂
CG

ref = Ex
CG

ref + 1
λ1

( ¨E
V x

CG
ref + α11 ˙R

V x
CG
ref ), (4.38)

Eŷ
CG

ref = Ey
CG

ref + 1
λ2

( ¨E
V y

CG
ref + α21 ˙E

V y
CG
ref ). (4.39)

Reformulating Equations 4.38 and 4.39 in terms of the vehicle’s reference tangential velocity
EvCGt,ref yields

Ex̂CGref = ExCGref + α11
λ1

EvCG
t,ref cos (νref) + 1

λ1
Ev̇CGt,ref cos (νref)− 1

λ1
EvCGt,refν̇ref sin (νref), (4.40)

EŷCGref = EyCGref︸ ︷︷ ︸
position

+ α21
λ2

EvCGt,ref sin (νref)︸ ︷︷ ︸
velocity

+ 1
λ2

Ev̇CGt,ref sin (νref)︸ ︷︷ ︸
long. acceleration

+ 1
λ2

EvCGt,refν̇ref cos (νref)︸ ︷︷ ︸
lat. acceleration

, (4.41)

where νref denotes the reference course angle of the planned trajectory. Applying Equations
4.34, 4.35 the closed loop system dynamics (compare Equations 4.28f) now read

¨
Ex

CG + 2
√
λ1 ˙

Ex
CG + λ1 Ex

CG = λ1 Ex̂
CG

ref , (4.42)
¨

Ey
CG + 2

√
λ2 ˙

Ey
CG + λ2 Ey

CG = λ2 Eŷ
CG

ref . (4.43)



148 4. Experimental Setup

As can be seen, the control law in Equation 4.26ff contains the longitudinal tire force at the
rear axle WRF

WR∗
x as well as the lateral tire forces at front and rear axle WFF

WF∗
y , WRF

WR∗
y .

Even though these forces can be expressed in dependence of the system state q using a
tire model, such a substitution has not been necessary until this point. This property is
valuable since at this point any desired tire model can be used.

One way to describe the tire characteristics is to employ experimental tire data. The
drawback of this method is that data for all environmental conditions are necessary. For
this reason, the use of models that describe the physics of tire road interaction is common
and many different tire models for different fields of application exist and are still subject
to numerous research activities.

Frequently used models include the Pacejka’s magic tire formula, see [Bakker et al., 1989;
Pacejka, 2006; Pacejka and Bakker, 1992], which essentially is a curve fitting approach to
tire test data with a rather high number of parameters to be fitted. Another widespread
approach, with less parameters, is the tire model of Burckhardt, see [Burckhardt, 1993].
Even less parameters (and, according to a comparison made in [Halfmann, 2003], less com-
putational effort) are necessary for the Dugoff model, a physical model of the tire road
interaction introduced by Dugoff, Fancher and Segel, [Dugoff et al., 1970].

In this case, an even simpler linear tire model is used for the lateral tire forces,

αWq = 1
Cq
α
WqF

Wq∗

y , q ∈ {R,L} . (4.44)

In unstable situations, where the rear tire slip angle αWR becomes high and leaves the linear
region, the lateral tire force at the rear axle WRF

WR∗
y in the control law is overestimated,

however, according to [Mayr, 1991] this has a positive effect on the controlled vehicle, since
∂u1/∂ WRF

WR∗
y < 0. Therefore u1 is reduced, the vehicle becomes more stable and the tire

slip angle leaves the nonlinear region.

The front tire slip angle αWF is substituted according to the kinematics

αWF = β + lF
R
V v

CG
t

ψ̇ − δ. (4.45)

Substituting Equation 4.44 into 4.45 yields

δdes = β + lF
R
V v

CG
t

ψ̇ − 1
CF
α

u1. (4.46)
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The conversion between u2 = WRF
WR∗
x and ax,des is given by

ax,des = 1
m
u2. (4.47)

Note, that the real relation between the two would have to include additional components
such as the rotational inertia of wheels and axles or the transfer function of the torque
converter, see Section 4.3.3.1. However, since the controller was designed based on the
single track model, Equation 4.47 produces the desired acceleration that coincides with the
desired closed loop vehicle dynamics.

As a further substitution, the force VF
Wind
x , which is caused by the air resistance, can be

expressed in terms of the vehicle’s longitudinal velocity as

VF
Wind
x = 1

2cwρairAw ( EvCGt cos(β))2 . (4.48)

Therein, cw denotes the drag coefficient, ρair the air density, and Aw denotes the reference
area.

The complete control structure is displayed in Figure 4.18 and the integrated lateral and
longitudinal control is summarized in the following box.

Figure 4.18.: Block diagram of implemented integrated motion control
The controller linearizes and decouples the dynamic system. The controller consists of a
prefilter matrix β and feedback gain matrix β.
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Inputs to Trajectory Following Controller

reference: Ex
CG

ref , Ey
CG

ref ,
EvCGt,ref,

Ev̇CGt,ref, νref, ν̇ref from T

vehicle state: q =
[
Ex

CG
Ey

CG EvCGt ψ ψ̇ β
]T

Outputs of Trajectory Following Controller

reference for subordinate control: δdes, ax,des

Parameters

vehicle parameters: m, lF , lR, C
F
α , C

R
α , cw, Aw

controller parameters: λ1, λ2

other parameters: ρair

Reference Input

ŵ1 = Ex̂
CG

ref = Ex
CG

ref + 2√
λ1

EvCGt,ref cos (νref) + 1
λ1

Ev̇CGt,ref cos (νref)−
1
λ1

EvCGt,refν̇ref sin (νref)

ŵ2 = Eŷ
CG

ref = Ey
CG

ref + 2√
λ2

EvCGt,ref sin (νref) + 1
λ2

Ev̇CGt,ref sin (νref) + 1
λ2

EvCGt,refν̇ref cos (νref)

Control Law

u1 = WFF
WF∗
y = −CR

α

(
β − lR

EvCGt
ψ̇

)
+m[(β cos(β + ψ)− sin(β + ψ))y1pp

+(β sin(β + ψ) + cos(β + ψ))y2pp]

u2 = WRF
WR∗
x = 1

2cwρairAw ( EvCGt cos(β))2 +m[cos(β + ψ)y1pp + sin(β + ψ)y2pp]

with

y1pp = λ1 ( Ex̂CGref − Ex
CG)− 2

√
λ1

EvCGt cos(ψ + β)

y2pp = λ2 ( EŷCGref − Ey
CG)− 2

√
λ2

EvCGt sin(ψ + β)

Translation of Controller Output

δdes = β + lF
E
V v

CG
t

ψ̇ − 1
CF
α

WFF
WF∗
y = β + lF

E
V v

CG
t

ψ̇ − 1
CF
α

u1

ax,des = 1
m WRF

WR∗
x = 1

m
u2
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4.3.2. Subordinate Lateral Control

A subordinate control loop ensures that the desired steering angle δdes is set. As shown
in Figure 4.19, depending on the difference eδ between the desired steering angle δdes and
the measured one δ, a desired rotational motor velocity ωSM,des is set as the input to the
steering automation hardware (AHW) module. There, two further cascaded control loops
exist to control the motor torque TSW,M in such a way that the desired rotational velocity
is achieved.

Figure 4.19.: Block diagram of steering control
The subordinate lateral control comprises a steering controller that sets a desired rotational
motor velocity ωSM,des depending on the steering angle error eδ.

Even though the steering hardware shows some compliance, the connection is still very
direct and the closed loop dynamics of steering hardware and steering automation hardware
module are sufficiently fast. For the design of the steering controller, a detailed modeling
was not performed. Therefore, a PID-type controller was selected and tuned experimentally
supported by a student thesis, see [Hesse, 2007].

4.3.3. Subordinate Longitudinal Control

The model of a vehicle’s longitudinal dynamics can be separated into three main parts: the
vehicle body, the drive train, and the braking system.

For the design of the integrated lateral and longitudinal control in the outer control loop
only simplified dynamics of the vehicle body have been regarded.In order to implement an
effective subordinate longitudinal control, however, that controls the desired longitudinal
acceleration ax,des, also the dynamics of the drive train and the braking system have to be
included.
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4.3.3.1. Drive Train and Braking System Model

A detailed theoretical modeling of the longitudinal dynamics can be found for example in
[Germann, 1997]. Germann concludes that the resulting model is much too complicated to
be used for most applications. Therefore, he devises a simplified longitudinal model which
is shown in Figure 4.20.

Three main parts comprise the model: the drive train, the braking system, and the vehicle
body. Further, the slope of the street is regarded as external influence. The central idea is
to determine the different longitudinal forces that act on the vehicle body and accelerate it.
Besides the gravity force Fg for slopes αslope 6= 0, drive train and braking system generate
the forces FDT and FB depending on the throttle flap angle α and the brake pressure pB
in the main brake cylinder as respective model inputs. In addition, the vehicle body itself
causes a force FV B due to its inertia and wind and roll resistance. The output of the model
is the vehicles longitudinal acceleration ax that is then integrated over time to acquire the
current velocity vx.

The drive train model includes the dynamics of the throttle flap, the intake manifold,
and the motor. At low velocities, when the torque converter clutch (TCC) is still open,
the torque converter is also accounted for. The stationary transfer behaviors of intake
manifold/motor and converter are modeled as nonlinear maps depending on the rotational
velocities ωM , ωT of motor (driveshaft) and turbine (driven shaft), respectively. If the TCC
is closed, the turbine torque TT is equal to the motor torque TM . The dynamics are modeled
by PT2 second order delay elements. The torque TT is converted into a force FDT depending
on the gear ratio iGear, the rear axle transmission ratio iRAT , and the dynamic roll radius
Rdyn.

The braking system is modeled linearly as a PT2 second order delay element. The dynamic
roll radius Rdyn translates the braking torque TB into the braking force FB that decelerates
the car.

The total longitudinal force Fx, comprised of FB, FDT , Fg, and FV B, is the input to the
vehicle body. To calculate the acceleration ax of the vehicle body from the total force at
the vehicle tires, a proportional element is used that contains the effective vehicle mass
meff, the moment of inertia Θ∗ of the motor, the gear ratio iGear, and the torque converter
efficiency F (ωT/ωM). The velocity depending vehicle body force FV B models the aerody-
namic resistance cxv2

x and the roll resistance kRvx which decelerate the vehicle, where kR
and cx = cw

ρA
2 represent the roll and drag coefficients, respectively. Θ∗ = i2RAT

R2
dyn

ΘM depends
on the motor moment of inertia ΘM , iRAT , and Rdyn. The effective mass meff allows to
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Figure 4.20.: Simplified theoretical model of longitudinal vehicle dynamics according to
[Germann, 1997, p. 77]
The model determines the acceleration resulting from different longitudinal forces by the
drive train, the braking system, the slope of the street, and the vehicle body (wind and
friction forces).

describe the longitudinal inertia of the vehicle in a simple single term. It lumps together
the real vehicle mass and the moments of inertia of all rotating elements that are directly
connected to the wheels.

The above model offers some valuable insight into the (simplified) structure of the longi-
tudinal dynamics. Unfortunately, it was not possible to obtain data about the nonlinear
characteristics of the engine and the torque converter for the BMW 540i test vehicle. As
investigated in supervised student theses, they could not be measured separately and the
model was simplified even further in to an almost purely experimental model, [Büchsen-
schütz, 2009; Hesse, 2008].

The transfer characteristic between the inputs UDT (to the drive train) and UB (to the
braking system) and the acceleration ax as output is modeled by velocity dependent char-
acteristic maps, as displayed in Figure 4.21.

The drive train map models the static transfer characteristic from UDT to ax when only the
drive train is used and UB = 0. It includes the drive train AHW, the drive train, and the
vehicle body. The map differs for each gear and it is velocity dependent for two reasons:
First, it includes the velocity dependent wind resistance that is modeled in the vehicle body
in Figure 4.20. Second, the torque converter behavior and the point where the TCC closes
depend on the rotational velocities ωM , ωT of motor (driveshaft) and turbine (driven shaft),
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Figure 4.21.: Characteristic maps model of longitudinal vehicle dynamics
The experimentally recorded characteristic maps model the static transfer characteristics
of different parts of the longitudinal dynamics.

respectively. These in turn mainly depend on the throttle flap angle α which depends on
the input UDT and the vehicle’s velocity v.

The braking system map models the static transfer characteristic from UB to ax when the
brake is used and UDT = 0. In contrast to the drive train map, UDT = 0 does not mean that
the drive train has no effect anymore, because it is still connected to the tires. Therefore,
it decelerates the car at higher velocities (engine brake). Further, the drive train still
accelerates the car at low velocities even at UDT = 0, α = 0 due to the idling mixture
supply. (Even when the throttle flap is closed completely, a small stream of air accesses
the motor through a bypass to prevent the motor from stalling.) The braking system map
includes the drive train AHW (UDT = 0), the drive train (α = 0), the braking system AHW,
the braking system, and the vehicle body. Compared to the model of Germann in Figure
4.20, the braking system includes not only the pipes and brakes but also the brake pedal,
brake booster and main brake cylinder. Therefore, the input to this part is now the brake
pedal position sB instead of the brake pressure pB.

The influence of the current slope is not included in either map as both maps model
αslope = 0. Instead, the slope of the track is regarded as a disturbance.

The maps have been acquired by extensive experiments carried out, see [Büchsenschütz,
2009]. To obtain the braking system map, test drives where made with step inputs of
varying amplitude UB = UB,i at a certain initial velocity, see Figure 4.22.
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Figure 4.22.: Experiment for braking system map
During braking at constant input voltage UB , the vehicle’s (negative) acceleration is
recorded depending on the velocity.

Figure 4.23.: Braking system map for second gear
The recorded curves for ax(v) for different constant voltages UB are put together to a three
dimensional map ax(v, UB).

The vehicle decelerates until it stops. The initial transient and the measured oscillations
after stopping, which are due to pitching movements of the vehicle body, are disregarded.
The remaining measurements within the evaluation period provide map data for the velocity
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Figure 4.24.: First experiment for drive train map
The vehicle decelerates at a constant voltage UDT and the vehicle’s (negative) acceleration
is recorded depending on the velocity.

dependent (negative) acceleration for a constant UB = UB,i. Combining the measurements
for several amplitudes and interpolating between them provides a three dimensional map
as shown for second gear in Figure 4.23.

In order to obtain the drive train map, two different kinds of experiments had to be per-
formed, since the drive train can cause positive and negative accelerations depending on
the current velocity and the throttle flap angle. For high velocities and small throttle flap
angles, the vehicle decelerates. This part of the drive train map is explored as shown in
Figure 4.24.

First the vehicle accelerates to an initial velocity by fully opening the throttle flap. Then the
throttle flap is closed again partly according to a step downwards to a certain UDT = UDT,i

which is then kept constant. As a consequence, the vehicle slows down until the deceleration
declines and a final velocity is approached. Again the initial transient is disregarded. The
measurements recorded during the evaluation period provide map data for the velocity
dependent (negative) acceleration for a constant input UDT = UDT,i.

The second experiment investigates positive accelerations due to the drive train, see Figure
4.25. This time the vehicle drives slowly due to the idling mixture supply at UDT = 0 and
then a step function with the amplitude UDT = UDT,i is applied to accelerate the vehicle
until a final velocity is approached or the experiment is aborted because the end of the test
track is reached. Again discarding the initial transient, the measured data provides velocity
dependent accelerations for a constant input UDT = UDT,i.
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The data from these two types of experiments is joined and interpolated to create a three
dimensional map as shown for second gear in Figure 4.26.

Figure 4.25.: Second experiment for drive train map
The vehicle accelerates at a constant voltage UDT and the vehicle’s acceleration is recorded
depending on the velocity.

Figure 4.26.: Drive train map for second gear
The recorded curves for ax(v) for different constant voltages UDT are put together to a
three dimensional map ax(v, UDT ).
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4.3.3.2. Controller

The subordinate longitudinal control consists of an acceleration controller and a mode
selector.

Figure 4.27.: Block diagram of subordinate longitudinal control
The subordinate longitudinal control consists of an acceleration controller and a mode se-
lector. The mode selector decides if the desired longitudinal acceleration ax,des is achieved
using the drive train or the braking system. The acceleration controller has separate con-
trollers for drive train and braking system and complements the feedback control with a
feedforward part each to enhance reaction times.

For example, a small negative acceleration at higher speeds can also be achieved without
braking, just “getting of the gas” and closing the throttle valve. On the other hand, on
a downhill slope an acceleration can be achieved by only braking less. Hence, the mode
selection between braking system and drive train depends not only on ax,des, but also on
the current velocity v and external factors such as the slope of the track and wind.

With regards to the velocity, the inverse extended drive train and braking system maps
introduced earlier can be used to check whether they contain a valid input UDT/B for the
desired acceleration ax,des at the given velocity v. However, the external factors such as the
slope or wind currently cannot be measured.

Therefore, the mode selection is twofold. For sudden steps in ax,des, the mentioned maps
are used as a decision basis, collapsing the maps down to a single decision curve, displayed
in Figure 4.28. The curve is identical to coasting with neither braking nor opening the
throttle flap. A hysteresis is added not to change hastily from one mode to the other.
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(a) Mode selector state diagram (b) Mode selector decision curve

Figure 4.28.: Mode selector

For gradually varying control inputs, this decision curve is no longer used. The curve is
valid for certain conditions during the experiments such as an even terrain and hence it is
possible that for changed conditions, another mode must be chosen to achieve the desired
acceleration. For example, if the vehicle is driving downhill, the low deceleration that
would usually require only to close the throttle flap now necessitates the use of the braking
system.

Therefore, the mode is selected depending on the control outputs UDT/B as depicted in
Figure 4.28. As soon as UDT drops below UDT,switch = UDT,min−∆U , this means that ax,des
cannot be achieved by means of the drive train any longer and the mode selector switches
to the braking system. (The integrator in the brake feedback control is reset at this point.)
Also, if UB exceeds UB,switch = UB,max + ∆U , this means that ax,des cannot be achieved by
means of the braking system and the mode selector switches to the drive train instead.

The acceleration controller determines the current input voltage UDT or UB for the drive
train or braking automation hardware, respectively. This voltage results as the sum of a
feedback and a feedforward part

Uq = Uq,FB + Uq,FF , q ∈ {DT,B} . (4.49)

The feedback part Uq,FB results from a PID control law applied to the acceleration error

Uq,FB = kP ea + kDėa + kI

∫
eadt. (4.50)
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The feedforward part Uq,FF is taken from the inverse of the drive train or braking system
map that was built in Section 4.3.3.1

Uq,FF = M−1
q (ax,des, v, Gear) . (4.51)

The inverse maps are illustrated in Figure 4.29; for their use in the feedforward control they
have been slightly smoothed to enhance the control stability.

(a) Inverse drive train map M−1
DT (b) Inverse braking system map M−1

B

Figure 4.29.: Inverse maps for feedforward control (shown for second gear)
The illustrated inverse drive train and braking system maps for second gear are built from
the maps shown in Figure 4.23 and 4.26. For their use in the feedforward control part
(Uq,FF ) they are slightly smoothed to enhance control stability.



CHAPTER 5

Results

This chapter shows and discusses some results of the devised trajectory planning algorithm.
Therein, emphasis is placed on the proposed force field trajectory optimization, see Section
5.1. Section 5.2 contains some results for the trajectory initialization, while experimental
results for demonstration of applicability of the taken approach can be found in Section
5.3.

5.1. Trajectory Optimization

This section demonstrates the functionality and results of the virtual force field trajectory
optimization for several example scenarios. In each scenario, the initial trajectories are man-
ually given such that they are not smooth and may have sharp corners to better show the
effect of the optimization and its principle functionality. First, Section 5.1.1 demonstrates
and discusses some basic features in an overtaking and a vehicle-following scenario where
either a pure path or a velocity planning alone would suffice and no integrated lateral and
longitudinal planning would be necessary. Then in Sections 5.1.2 and 5.1.3, more compli-
cated scenarios are demonstrated, where a pure path planning would be insufficient and a
combined lateral and longitudinal planning approach is needed. This includes overtaking
scenarios with oncoming traffic and the avoidance of cross traffic.
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5.1.1. Overtaking and Vehicle Following

First, some basic properties of the devised force field trajectory optimization algorithm
shall be demonstrated for the evasion of a static obstacle and the following of a lead vehicle.
Among others, these two scenarios are suitable to show the forces and deformations in the
x-y-plane for the evasion maneuver and the x-t-plane for the following maneuver.

5.1.1.1. Evasion of Static Obstacle

For the evasion of a static obstacle, a pure path planning would still suffice, however, this
example scenario is suitable to demonstrate the forces resulting from the different virtual
force fields and the effect they have over the course of several iterations to deform the
trajectory from an initial to an optimized one, see Figure 5.1. Further, for this scenario
some replanning characteristics are discussed, see Figure 5.2.

In Figure 5.1, the optimization of a given initial trajectory is shown in several iterations
in the x-y-plane. For each of the discrete nodes of the trajectory the internal and external
forces are displayed as gray and black arrows, respectively. The external forces here include
the preview forces. As can be seen, the initial trajectory is deliberately chosen to be
discontinuous which causes high internal forces at the two places where the trajectory
changes the lane. In front of and behind the obstacle O1, the effect of the road side force
fields can be seen that produces forces that push the trajectory back to the middle of the
right lane. Further, the obstacle forces push the trajectory away from the obstacle in lateral
direction. Due to the preview forces, the maximum lateral external forces appear in front
of the obstacle O1.

It can be seen that the trajectory in this scenario is already very smooth after only a single
iteration and then smaller incremental changes are applied during the remaining iterations,
until after seven iterations an optimized trajectory is obtained, where the external and
internal forces cancel each other out at all nodes.

From the results in Figure 5.1 it can be seen how the different forces are superimposed and
how a smooth equilibrium solution is successfully reached in only few iterations even for a
very rough initial trajectory. Further it can be observed that in this scenario the trajectory
optimization could still produce meaningful results if it had to be aborted prematurely for
example due to time constraints, since the main deformation of the trajectory was achieved
in the first iteration.
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Figure 5.1.: Overtaking static obstacle: Iterations of the Trajectory Optimization
Internal forces are displayed as gray and and external forces as black arrows. The exter-
nal forces in this figure include the preview forces. The rectangular obstacle (inner black
rectangle) is enlarged by the length and width of the ego vehicle (outer rectangle) to better
illustrate the distance in which the ego vehicle is planned to pass the obstacle.

While Figure 5.1 only illustrated the optimization of a single trajectory, it is interesting to
analyze the behavior of the force field trajectory optimization for repeated replanning. The
effect of replanning and different planning distances is demonstrated in Figure 5.2 for the
same scenario as before, where the overtaking maneuver of a static obstacle is planned.

As shown in Figure 5.2, a new trajectory is planned about every twelve meters to pass the
static obstacle O1. All these single trajectories (thin lines) have a length of L = 100m. Each
new trajectory starts from the new position along the previously planned one. Again very
simple starting solutions were used, similar to Figure 5.1. The used parts of the different
trajectories are concatenated to create the combined trajectory (thick line) that would be
the reference trajectory for a trajectory following controller.
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Figure 5.2.: Overtaking static obstacle: Replanning
A new trajectory is planned about every twelve meters to pass the static obstacle O1. All
these single trajectories (thin lines) have a length of L = 100m. Each new trajectory starts
from the new position along the previously planned one. The used parts of the different
trajectories are concatenated to create the combined trajectory (thick line) that would be
the reference trajectory for a trajectory following controller. Note, that the last 100 m of
this combined trajectory consist of the last single trajectory. This combined trajectory from
multiple subsequently planned single trajectories is compared to a single trajectory with a
length of L = 250m (x-markers).

It can be seen that as soon as the obstacle lies within the planning range, an evasion maneu-
ver is planned. The endings of the single trajectories differ somewhat due to different forces
on these trajectories, but the combined trajectory is very smooth. This is also due to the
fact, that not only the new starting positions are fixed on the previously planned trajectory
but also a starting orientation is regarded within the optimization that is equivalent to the
orientation of the previously planned trajectory at the new starting point.

In Figure 5.2 the combined trajectory from multiple subsequently planned single trajectories
(where the last 100m consist of the last single trajectory) is compared to a single trajectory
with a length of L = 250m (x-markers). Although it is not a proved general characteristic,
it can be observed that these two trajectories are almost identical for many scenarios. This
characteristic of the force field trajectory optimization is very desirable since for frequent
replanning the resulting combined reference trajectory does not heavily depend on the
length L of each trajectory.

Nevertheless, a sufficient planning distance and replanning frequency is necessary in order
to develop a meaningful plan, as can be seen by the first single trajectory with L = 100m
which is not yet long enough to pass the obstacle. There, first no evasion maneuver is
planned and the planned maneuver changes significantly from the first to the second single
trajectory.
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5.1.1.2. Following of Lead Vehicle

In this section, the basic properties in the added dimension, the time-dimension, are demon-
strated using a simple vehicle following scenario. Analogously to the evasion scenario in
Section 5.1.1.1, the forces and deformations of the trajectory from the initial to the opti-
mized trajectory are shown, see Figure 5.3. Further, the resulting profiles of distance to
lead vehicle, velocity and acceleration are shown in Figure 5.4, and the effect of different
discretizations is discussed.

Figure 5.3 shows the initial and optimized trajectories in the x-t-plane and the resulting
external (black) and internal (gray) virtual forces in time-direction. Again, a rather poor
initial solution is selected to better show the effect of the optimization. The initial solution
has a very sharp bend where the ego vehicle suddenly changes velocity to avoid a collision
with the slower lead vehicle (obstacle O1). Here, high internal forces result (which are
scaled down here to fit in the Figure).

For the trajectory optimization algorithm, the lead vehicle exists from the point of time
when it is first detected, in this example scenario t = 0s, about 60m ahead of the ego vehicle.
All nodes above the representation of the lead vehicle are affected by an external force that
pushes them away from the obstacle and shifts the nodes to later points of time to slow the
ego vehicle down.

After eight iterations, the optimized trajectory is smooth, the distance to the lead vehicle
has increased and the internal and external forces cancel each other out at all nodes. Note
that the internal forces here consist not only of acceleration or jerk forces to counteract
longitudinal accelerations but also the forces Fvel

t to return to the desired traveling velocity.
Without the latter force component, following at a constant distance would be impossible,
since for a constant velocity and a constant distance, no internal forces would exist to cancel
out the external forces that push the trajectory away from the obstacle, see Section 2.6.

Whereas Figure 5.3 shows the optimized trajectory in the x-t-plane, it is hard to judge
distances, velocities or even acceleration. Therefore, these values are displayed in Figure
5.4 to further analyze the properties of the optimized solution. Distance to the lead vehicle,
velocity of the ego vehicle and acceleration of the ego vehicle along the planned trajectory
are shown for the initial trajectory (broken lines) and the optimized trajectories for different
discretizations of ∆L = 1 m (solid line) and ∆L = 5 m (x-markers). This allows further to
shed some light on the effect of the discretization for this scenario.
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Figure 5.3.: Follow lead vehicle: Iterations
The figure shows the initial and optimized trajectories in the x-t-plane and shows the resulting
external (black) and internal (gray) virtual forces in time-direction. The obstacle (lead
vehicle) exists from the point of time when it is first detected, in this example scenario t = 0
s, about 60 m ahead of the ego vehicle. The obstacle representation is enlarged by the ego
vehicle’s length to better illustrate the distances between ego vehicle and obstacle.

In Figure 5.4, it can be seen that distance, velocity, and acceleration profiles are smoothed
during the optimization from a deliberately non-smooth initial trajectory. A stationary
distance of about 20 m to the lead vehicle is approached, however, this distance first falls
below this value, which allows less deceleration. The velocity smoothly changes from 20
m/s to 10 m/s to match the speed of the lead vehicle, while the maximum deceleration is
about -1.7 m/s2.

This example scenario is used to show the effect of different discretization. As can be seen,
the optimized trajectories for the two different discretizations are almost identical. Only
at the beginning, where the nodes are not yet directly affected by obstacle forces, small
discrepancies can be detected. This result is true for all vehicle following scenarios. For
other maneuvers, there can be slightly larger differences, especially if only small portions
of the trajectory are in the vicinity of an obstacle. In these cases a change in discretization
has a large impact on the number of nodes with high obstacle forces. Therefore, slightly
different trajectories can result.
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Figure 5.4.: Follow lead vehicle: distance, velocity and acceleration
Distance to the lead vehicle, velocity of the ego vehicle and acceleration of the ego vehicle
along the planned trajectory are shown for the initial trajectory (broken lines) and the
optimized trajectories for different discretizations of ∆L = 1 m (solid line) and ∆L = 5
m (x-markers).

Note, that the planned trajectory only follows the lead vehicle because the initial trajectory
does. In case the initial trajectory would overtake the lead vehicle, a different optimized
trajectory would result.
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5.1.2. Overtaking with Oncoming Traffic

Building on the results shown in the previous section, now more complicated scenarios are
discussed that demonstrate the usefulness of an integrated trajectory planning versus a
pure path planning or a sequential path and velocity planning. As example scenario, an
overtaking maneuver of a slower lead vehicle with oncoming traffic is chosen. In this context
also the effect of homeotopically different initial trajectories on the optimized trajectory is
shown: Whether the lead vehicle is passed before or after the oncoming vehicle, solely
depends on the initial solution. These two alternatives are elaborated in Sections 5.1.2.1
and 5.1.2.2. Further, if the initial solution would follow the lead vehicle, so would the
optimized trajectory as already shown above in Section 5.1.1.2.

5.1.2.1. Overtaking Before Oncoming Traffic

In this section an overtaking scenario with oncoming traffic is analyzed. It consists of a lead
vehicle and an oncoming vehicle that drive at constant velocity. The ego vehicle overtakes
the lead vehicle before the oncoming vehicle approaches. The scenario is shown in the
augmented workspace 〈x, y, t〉 in Figure 5.5 and then analyzed in snapshots for different
points of time in Figure 5.6. Figure 5.7 shows the velocity and acceleration profiles for the
resulting optimized trajectory.

Figure 5.5 shows the representation of the optimized trajectory T and the two obstacles
O1 (lead vehicle) and O2 (oncoming vehicle) in the augmented workspace 〈x, y, t〉. Further,
the projection of the trajectory to the x-y-plane is shown.

As can be seen, both lead vehicle and oncoming vehicle move at constant velocity. The
optimized trajectory is not in collision with either of the obstacles and is “below” the
oncoming vehicle O2, which means that it overtakes the lead vehicle O1 before O2 arrives.

Figure 5.6 shows how the scenario progresses in a sequence of snapshots to illustrate that
the planned trajectory is collision free. The scenario is illustrated in the x-y-plane at four
consecutive points of time t1 to t4. The planned trajectory for this scenario is represented
by a solid line. As comparison, the planned trajectory for the same scenario (and the same
initial trajectory) but without the oncoming vehicle O2 is shown as broken line.
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Figure 5.5.: Overtake lead vehicle before oncoming traffic: Trajectory
The figure shows the optimized trajectory T and the two obstacle O1 (lead vehicle) and
O2 (oncoming vehicle) in the augmented workspace 〈x, y, t〉 and the projection of T to the
x-y-plane. The rectangular obstacles (inner black rectangles) are enlarged by the length and
width of the ego vehicle (outer gray rectangles) to better illustrate the distance in which the
ego vehicle is planned to pass the obstacles.

Figure 5.6.: Overtake lead vehicle before oncoming traffic: Snapshots
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Figure 5.7.: Overtake lead vehicle before oncoming traffic: Velocity and acceleration
The solid lines represent the planned profiles for the overtaking scenario with oncoming traffic,
as shown in Figure 5.5, while the broken lines show the planned profiles in case the oncoming
vehicle was not there as comparison.

At t1, the ego vehicle is still in its lane behind the lead vehicle, but the overtaking maneu-
ver is already planned, taking the movements of both obstacles into account. Then the
overtaking maneuver starts and the snapshot at t2 shows the point of time when the ego
vehicle is right beside O1. It can be seen that the trajectory’s maximum lateral deviation
from the right lane is reached where the lead vehicle is passed, as expected. Next the ego
vehicle returns to the right lane before the oncoming vehicle approaches, as illustrated in
snapshots t3, where it can be observed that a head-on collision with the oncoming vehicle
is successfully avoided. In snapshot t4, the ego vehicle is back to the right lane and the
overtaking maneuver is completed.

The difference in the planned trajectory that is caused by the oncoming vehicle, i.e. the
difference between the solid and broken line, is evident. The overtaking maneuver is initi-
ated a little earlier and is primarily shorter, such that the ego vehicle returns to the right
earlier to avoid a collision with the oncoming traffic, which would still occur for the broken
line as can be seen for t3.

While Figure 5.6 illustrates the planned path as the trajectory’s projection to the x-y-
plane for different points of time, it does not contain any information about the velocity or
acceleration along the trajectory. These are detailed in Figure 5.7.
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Figure 5.7 shows the planned velocity v, longitudinal acceleration ax, and lateral accelera-
tion ay over the distance along the street x. The solid lines represent the planned profiles
for the overtaking scenario with oncoming traffic, as shown in Figure 5.5, while the broken
lines show the planned profiles in case the oncoming vehicle was not there as comparison.

As can be seen, without the oncoming vehicle (broken lines), the initial velocity of 28 m/s is
first reduced a little when the ego vehicle approaches the lead vehicle. When the overtaking
maneuver starts and the ego vehicle changes to the left lane at about 70 m, the ego vehicle
accelerates to overtake. As can be seen by the broken line, for the overtaking scenario
without oncoming traffic, a maximum velocity of about 32 m/s is reached at about 250 m
when the ego vehicle is already back to the right lane.

For the scenario with the oncoming vehicle (solid lines), the overtaking maneuver starts a
little bit earlier and the ego vehicle’s velocity is hardly reduced at all before the lane change
is initiated. Then the ego vehicle accelerates earlier and a little bit stronger to reach a
maximum velocity of about 33 m/s.

The longitudinal and lateral acceleration profiles are very similar with or without the oncom-
ing vehicle, they are mainly shifted because the overtaking maneuver starts a little earlier
with oncoming traffic and is also finished earlier. The maximum longitudinal acceleration
of about 1.6 m/s2 is only minimally higher with than without oncoming vehicle. The main
difference between the two scenarios can be seen in the lateral acceleration when the ego
vehicle returns to the right lane after the overtaking maneuver. Since this must happen
earlier and more abruptly with oncoming traffic, there is a higher peak of about 2.9 m/s2,
compared to only about 1 m/s2 without the oncoming traffic.

It can be seen that the force field optimization successfully generates a trajectory with
a smooth path and velocity profile and continuous acceleration profiles for an overtaking
maneuver with oncoming traffic. As given by the initial solution, the lead vehicle is passed
before the oncoming vehicle approaches. The integrated planning in the 〈x, y, t〉 workspace
results in a meaningful maneuver which does not require much higher velocities or accelera-
tions compared to the same scenario without oncoming traffic. This is one of the advantages
of integrated planning of path and velocity. In case the velocity was planned in a second
step, taking the path represented by the broken line in Figure 5.6, much higher accelerations
would have been required to prevent a head-on collision with the oncoming traffic.
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5.1.2.2. Overtaking After Oncoming Traffic

In this section again an overtaking scenario with oncoming traffic is analyzed, as in Section
5.1.2.1, however in this case, the oncoming vehicle is closer and an initial trajectory is
selected such that the ego vehicle overtakes the lead vehicle after the oncoming vehicle has
passed. The scenario is shown in the augmented augmented workspace 〈x, y, t〉 in Figure
5.8 and then analyzed in snapshots for different points of time in Figure 5.9. Figure 5.10
shows the velocity and acceleration profiles for the resulting optimized trajectory.

Figure 5.8 shows the representation of the optimized trajectory T and the two obstacless
O1 (lead vehicle) and O2 (oncoming vehicle) in the augmented workspace 〈x, y, t〉. Further,
the projection of the trajectory to the x-y-plane is shown. As can be seen, the optimized
trajectory is not in collision with either of the obstacles and is “above” the oncoming vehicle
O2, which means that is overtakes the lead vehicle O1 after O2 arrives.

Figure 5.9 shows in a sequence of snapshots how the scenario progresses to illustrate that
the planned trajectory is collision free. The scenario is illustrated in the x-y-plane at five
consecutive points of time t1 to t5. The planned trajectory for this scenario is represented
by a solid line. As comparison, the planned trajectory for the same scenario but without
the oncoming vehicle O2 is shown as broken line.

At t1, the ego vehicle is still in its lane behind the lead vehicle, but the overtaking maneuver
is already planned, taking the movements of both obstacles into account. From t1 to t2, the
ego vehicle decelerates and follows the lead vehicle until the oncoming vehicle has passed
to prevent a head-on collision. Then the overtaking maneuver starts and the snapshot at
t3 shows the point of time when the ego vehicle is beside O1. Next, the ego vehicle returns
to the right lane as illustrated in snapshot t4. Snapshot t5 shows the ego vehicle back to
the right lane and the overtaking maneuver is completed.

The difference in the planned trajectory that is caused by the oncoming vehicle, i.e. the
difference between the solid and broken line, is evident. The overtaking maneuver is ini-
tiated much later and a little more abruptly. The higher curvature of this lane change to
the left results partly from the lower velocity which allows higher curvatures and partly by
the necessity to change the lane more quickly since the ego vehicle is already rather close
to the lead vehicle. The lane change back to the right lane happens later than without the
oncoming traffic but is very similar.
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Figure 5.8.: Overtake lead vehicle after oncoming traffic: Trajectory
The rectangular obstacles are enlarged by the length and width of the ego vehicle to better
illustrate the distance in which the ego vehicle is planned to pass the obstacles.

Figure 5.9.: Overtake lead vehicle after oncoming traffic: Snapshots
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Figure 5.10.: Overtake lead vehicle after oncoming traffic: Velocity and acceleration
The solid lines represent the planned profiles for the overtaking scenario with oncoming
traffic, as shown in Figure 5.8, while the broken lines show the planned profiles in case the
oncoming vehicle was not there as comparison.

While Figure 5.9 illustrates the planned path as the trajectory’s projection to the x-y-
plane for different points of time, it does not contain any information about the velocity or
acceleration along the trajectory. These are detailed in Figure 5.10.

Figure 5.10 shows the planned velocity v, longitudinal acceleration ax, and lateral acceler-
ation ay over the distance along the street x. The solid lines represent the planned profiles
for the overtaking scenario with oncoming traffic, as shown in Figure 5.8, while the broken
lines show the planned profiles in case the oncoming vehicle was not there as comparison.

As can be seen, without the oncoming vehicle (broken lines), the initial velocity of 28 m/s is
first reduced a little when the ego vehicle approaches the lead vehicle. When the overtaking
maneuver starts and the ego vehicle changes to the left lane at about 70 m, the ego vehicle
accelerates to overtake. As can be seen by the broken line, for the overtaking scenario
without oncoming traffic, a maximum velocity of about 32 m/s is reached at about 250 m
when the ego vehicle is already back to the right lane.

For the scenario with the oncoming vehicle (solid lines), the ego vehicle first decelerates
stronger with a maximum deceleration of about 2.4 m/s2 compared to about 1.4 m/s2 to
reduce the velocity to about 22 m/s. Then at about 110 m the overtaking maneuver starts
and as the ego vehicle changes the lane to the left it also begins to accelerate. The maximum
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longitudinal acceleration is about 2.6 m/s2 to accelerate to about 32 m/s at the end of the
overtaking maneuver.

The lateral acceleration shows a high peak of about 4.3 m/s2 when the ego vehicle changes
to the left lane. As discussed before, this higher lateral acceleration results from the fact,
that the ego vehicle changes the lane with a rather high curvature to avoid a rear-end
collision with the lead vehicle without having to brake much more and first increase the
distance to the lead vehicle. However, the lateral acceleration profile still shows room for
improvement as it is not very smooth during the overtaking maneuver.

It can be seen that the force field optimization successfully generates a trajectory with
a smooth path and velocity profile and continuous acceleration profiles for an overtaking
maneuver with oncoming traffic. As given by the initial solution, the lead vehicle is passed
after the oncoming vehicle approaches. In order to do that, the ego vehicle is first slowed
down to follow the lead vehicle and then initiate the lane change at a later point when
the oncoming vehicle has passed. Again the integrated planning in the 〈x, y, t〉 workspace
demonstrates the advantage of integrated planning of path and velocity. In case the velocity
was planned in a second step, taking the path represented by the broken line in Figure 5.9,
much higher decelerations and accelerations would have been required to prevent a head-on
collision with the oncoming traffic and still overtake after the oncoming traffic has passed.
A pure path planning would not have been able to generate a valid solution at all in this
case.

As shown by the combination of Figures 5.5-5.10, the qualitative solution of the force
field optimization depends on the initial solution. As demonstrated, two homeotopically
different initial solutions produced two different optimized trajectories, overtaking a lead
vehicle either before or after an oncoming vehicle. As mentioned before, this is a very
desirable characteristic since the optimization regards the choice given by the trajectory
initialization. This way, either several different initial trajectories for different maneuvers
could be optimized and compared or a certain maneuver can be achieved, e.g. if the driver
has a certain preference.
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5.1.3. Cross Traffic

After the demonstration of the trajectory optimization in challenging scenarios with longi-
tudinal road traffic, now a scenario with lateral traffic is discussed, where again a pure path
planning would not suffice to generate a collision free motion plan. Figure 5.11 shows the
representation of the scenario in the augmented workspace 〈x, y, t〉, including the obstacle
O1 that crosses the street and the resulting optimized trajectory T . Further, the projection
of the trajectory to the x-y-plane is shown.

As can be seen in Figure 5.11, the optimized trajectory is not in collision with the crossing
obstacle but passes “above” its representation in the augmented workspace 〈x, y, t〉, which
means that it passes after the obstacle has crossed the street.

Figure 5.12 shows in a sequence of snapshots how the scenario progresses to illustrate that
the planned trajectory is collision free. The scenario is illustrated in the x-y-plane at three
consecutive points of time t1 to t3. The ego vehicle V and the cross traffic O1 are drawn
as rectangles. The planned trajectory for this scenario is represented by a solid line. As
comparison, for the second snapshot t2, the position of the ego vehicle is indicated as empty
rectangle if it followed the lane at constant velocity.

At t1, the obstacle O1 is detected and the according trajectory is planned. At this point
the vehicle is moving at a velocity of 28 m/s in the right lane. The planned path itself is
hardly changed and almost remains in the middle of the right lane. Only a slight lateral
deviation to the right can be seen. But the velocity is adapted: Between t1 and t3 the ego
vehicle decelerates to let the crossing obstacle pass and avoid a collision. Snapshot t3 shows
that the collision is successfully avoided. Snapshot t2 shows that a collision would result if
the ego vehicle does not decelerate, as indicated by the empty rectangle.

To complement the above illustrations, Figure 5.13 shows the planned velocity v, longitu-
dinal acceleration ax, and lateral acceleration ay over the distance along the street x. As
soon as the crossing obstacle is detected, i.e. from the beginning of this planned trajectory,
the ego vehicle brakes with a constant deceleration of about -5 m/s2 to avoid the collision.
It thereby decreases its velocity from 28 m/s to about 20 m/s. As soon as the obstacle has
passed, the ego vehicle slowly accelerates back to its desired traveling velocity. Hardly any
lateral acceleration is planned, as only a slight swerve to the right is planned to help in
avoiding the collision.
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Figure 5.11.: Avoid collision with cross traffic: Trajectory
The figure shows the optimized trajectory T and the obstacle O1 that crosses the street in
the augmented workspace 〈x, y, t〉 and the projection of the trajectory to the x-y-plane is
shown. The rectangular obstacle is enlarged by the length and width of the ego vehicle to
better illustrate the distance in which the ego vehicle is planned to pass the obstacle.

Figure 5.12.: Avoid collision with cross traffic: Snapshots
The planned trajectory for this scenario is represented by a solid line. As comparison, for
the second snapshot t2, the position of the ego vehicle is indicated as empty rectangle if it
followed the lane at constant velocity.
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Figure 5.13.: Avoid collision with cross traffic: Velocity and acceleration profiles

As demonstrated, the force field trajectory optimization successfully adapted the trajectory
to avoid a collision with a crossing obstacle. To do so the velocity profile was altered signif-
icantly and also a slight adaptation of the path aided in the collision avoidance maneuver.
In order to prevent the collision, a relatively high deceleration was planned, however, as
can be seen by the constant profile this deceleration is necessary to achieve the collision
avoidance with the demonstrated safety margin.

It can be seen that a path planning (at constant velocity) alone would not have sufficed to
avoid a collision, since even for extreme maneuvers to the right or left in this case a collision
would have resulted.

The jerk, i.e. the change of acceleration could be improved as there are large changes at
the very beginning and at about 40 m. The large jump at the very beginning is caused by
the fact that no initial acceleration is regarded since only the first two nodes are fixed and
therefore only initial position, orientation, and velocity are taken into account.
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5.2. Trajectory Initialization

As mentioned before, the force field trajectory optimization algorithm requires an initial
guess. Therefore, the motion planning approach that has been devised in this work is
comprised of two steps, as detailed before: In the first step, the trajectory initialization, a
collision-free and dynamically favorable trajectory Tinit is generated by a grid-based tree-
search algorithm. In the second step, the trajectory optimization, local trajectory deforma-
tions are applied with the help of the virtual force field algorithm, resulting in an improved
solution trajectory T . As previously discussed, this initial trajectory determines the nature
of the optimized solution, e.g. whether to pass a lead vehicle or whether to follow it.

Even though the trajectory initialization is not the main focus of this work, some exemplary
results shall be presented at this point. Figure 5.14 depicts the basic trajectory set for all
valid edges of one velocity profile for a given starting point and orientation from which
edges are selected in each step of the tree search. Some of the depicted edges must still be
removed after collision checks with the sides of the road.

Figure 5.14.: Trajectory Initialization: Basic trajectory set for tree search

Figure 5.15 shows the result of the trajectory initialization for a curved road and two
obstacles as projection to the x-y-plane. The edge color signifies the total accumulated
cost along the planned trajectory, where darker colors symbolize a higher cost. It can be
seen that the road is searched thoroughly and a meaningful and smooth initial trajectory
is produced.

Figure 5.15 also illustrates the anytime-characteristics of the devised AWA*-based starting
solution. The intermediate solution shown in the figure represents the first found solution.
During the remainder of the allotted time it was enhanced until finally the indicated solution
trajectory resulted. As can be seen, a premature termination of the trajectory initialization
would have still produced a viable input to the trajectory optimization step, even though
a larger deformation and therefore maybe more iterations would have been necessary.
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Figure 5.15.: Trajectory Initialization: Explored edges and solution of grid-base tree-search
The edge color corresponds to accumulated path cost: the darker the higher the accumulated
cost

Figure 5.16.: Initial and optimized trajectory for curved road with obstacles

Figure 5.16 then shows how this initial trajectory is deformed by the trajectory optimization
algorithm. It can be seen that the optimized trajectory passes the obstacleO1 with a greater
safety margin. In the curve, the optimized trajectory briefly leaves the right lane to reduce
the lateral acceleration. This effect could be eliminated, i.e. the trajectory could be forced
to stay in the right lane if the force field parameters were tuned accordingly. In addition
to the evident effects of the trajectory optimization, some discontinuities or “steps” (often
called aliasing) in curvature and velocity profile in the staring solution were eliminated to
create a smoother whole trajectory. These “steps” stem from the creation of the initial
trajectory as concatenation of certain trajectory pieces.
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5.3. Experimental Results

In order to show the applicability of the devised trajectory planning method - the virtual
force field trajectory optimization in combination with the AWA*-based tree search trajec-
tory initialization, test drives with a fully automated passenger car were carried out. The
following test vehicle setup and system architecture have been used (for more details refer
to Section 4.2):

The test vehicle is a modified BMW 540i Touring. For automated lateral guidance a steering
wheel-adapter has been designed and integrated, and for automation of the braking system
an additional actuator moves the pedal via levers and bowden cables. The throttle valve
is activated via a modified cruise control system. The vehicle state, (position, orientation,
yaw-rate and accelerations), is estimated by a Kalman filter, fusing measurements from an
inertial navigation system and a DGPS receiver. Position estimates are available with a
nominal accuracy of about 0.01-0.02 m at a rate of up to 400 Hz.

All test drives are carried out on an empty air-strip, (which is the reason why curved
roads could until now only be tested in simulations). Obstacles are simulated and virtually
inserted into the environment estimation of the autonomous vehicle.

The tree-search algorithm used for the trajectory initialization is run with a 0.2 s upper
bound on computation time, the force-field based optimization is limited to five iterations.
Re-planning is initiated as soon as the previous planning process has terminated. The
planning horizon is set to 140 m in front of the current vehicle position.

For trajectory tracking the nonlinear decoupling controller presented in Section 4.3.1 gener-
ates steering angle and acceleration set values, which are executed by subordinate controllers
for steering, throttle and brake, see Chapter 4.

5.3.1. Overtaking Static Obstacle

The test scenario consists of a straight two-lane road with a single lead vehicleO1 that moves
with a constant velocity of 5 m/s. The desired traveling velocity of the ego vehicle V is set to
vdes = 14 m/s. The ego vehicle starts at v = 0, accelerates to vdes, then approaches the lead
vehicle O1 and finally overtakes it. Figure 5.17 illustrates the overtaking maneuver in five
snapshots. As can be seen, the overtaking maneuver is planned and executed successfully.
Both the planned and the driven path are collision-free and smooth.
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Figure 5.17.: Test drive overtaking moving lead vehicle: Snapshots
The autonomous vehicle safely overtakes the lead vehicle (obstacle O1). The thin line repre-
sents the planned trajectory (as concatenation of the parts used as input to the trajectory
following controller), the thick line represents the actually driven trajectory.

Figures 5.18, 5.19, and 5.20 present the desired and measured values for the trajectory
following control and the subordinate control loops.

The trajectory following control is analyzed by comparison of the planned and driven tra-
jectory in Figure 5.18. Since the planned trajectory is repeatedly updated during the test
drive, the (total) planned trajectory is composed of those parts of the planned trajectories
that were used as reference for the trajectory following controller. The middle and bottom
diagrams of the figure show the control error in lateral (∆y) and longitudinal (∆x) direction
evaluated for the trajectory’s given time reference for each point (x, y, t).

As can be seen, the planned trajectory is followed very well with a maximum position
error of little over 0.5 m at a velocity of about 50 km/h. The lateral control error ∆y is
greatest at the beginning of each lane change (first to the left lane and then back to the
right). The course of the lateral control error is smooth. This is remarkable because the
reference trajectory changes frequently due the performed planning updates. It shows that
the selection of the start states in the trajectory initialization (see Section 3.3) to reduce
discontinuities in the control error was successful.

The longitudinal control error ∆x is also remarkably small, especially since the reference
velocity is not constant, see Figure 5.21. However, it is not as smooth as the lateral control
error and small discontinuities of several centimeters can be seen for many of the planning
updates, wherever a newly planned trajectory is taken as new reference.
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Figure 5.18.: Test drive overtaking moving lead vehicle: Deviations from planned trajectory
Upper diagram shows planned and driven trajectory in x-y plane. The planned trajectory is
composed of those parts of the planned trajectories that were used as reference for the tra-
jectory following controller. Middle and bottom diagrams show the control error in lateral
(∆y) and longitudinal (∆x) direction evaluated for the trajectory’s given time reference for
each point (x, y, t).

In order to compensate any control error in x and y, the integrated lateral and longitudi-
nal trajectory following controller generates a desired longitudinal acceleration ax,des and a
desired steering angle δdes. The longitudinal acceleration is realized by the subordinate lon-
gitudinal controller by setting desired values for the throttle flap angle αdes and brake pedal
position sB,des as inputs to the control of the drive train and braking system, respectively.

The desired throttle flap angle αdes is given in terms of the control voltage UDT , where a
higher voltage correlates to a larger throttle flap angle and therefore a higher acceleration of
the vehicle, see Figure 5.19. The desired brake pedal position sB,des is given in terms of the
control voltage UB, where a lower voltage correlates to stronger braking of the vehicle.

As shown in Figure 5.19, the longitudinal acceleration is rather low and barely exceeds 1
m/s2. The ego vehicle slows down a little bit before the overtaking maneuver is initiated
and during the lane change to the left lane. During the lane change back to the right the ego
vehicle accelerates back to the desired traveling velocity. The vehicle’s actual longitudinal
acceleration follows the desired value, even though a time delay of 0.5 to 1 s can be observed
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Figure 5.19.: Test drive overtaking moving lead vehicle: Desired and measured longitudinal
acceleration ax, throttle flap angle α and brake pedal position sB
The desired longitudinal acceleration ax,des is an output of the trajectory following controller.
In order to achieve ax,des, the subordinate controller generates desired values for the throttle
flap angle αdes and brake pedal position sB,des as inputs to the control of the drive train
and braking system, respectively.

that results from the dynamic limitations of the drive train and the delay of the controller
until switching to the braking system for low decelerations.

In order to decelerate, the throttle flap is closed (UDT = 0 V) and the brake pedal is
pushed (UB < 2.5 V). The middle and bottom diagrams of Figure 5.19 show that the
subordinate control loops make α and sB follow the desired values well. Note, that any
value of UB greater than about 2.5 V has no further effect. Due to inaccuracies in the
analogue measurements of the brake pedal position sB, the desired value UB = sB,des is
set to 3.0 V in case no braking is desired. As the middle diagram shows, the dynamical
limitations of the throttle flap motor cause greater control errors where step-like changes
occur in UDT .

The desired steering angle δdes is controlled in the subordinate lateral control loop. The
results are displayed in Figure 5.20. To compensate the control error δdes − δ a desired
steering motor velocity ωSM,des is set as input to the steering automation hardware module,
see Figure 4.19 in Section 4.3.2.
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Figure 5.20.: Test drive overtaking moving lead vehicle: Desired and measured steering
angle δ and steering motor velocity ωSM
The desired steering angle δdes is an output of the trajectory following controller. In order
to achieve δSM,des the subordinate steering controller generates a desired steering motor
velocity ωSM,des.

As can be seen in the bottom diagram of Figure 5.20, the desired steering motor velocity
is followed well. Only at some peaks a relevant deviation is observable. Maybe, in these
instances the required torque exceeded the steering motor’s limit to cause the deviations.

The measured steering angle δ follows the desired steering angle δdes, even though a certain
time delay of about 200ms can be seen. Part of the reason for this effect lies in a lack
of mechanical stiffness of the steering adapter construction, see torque support in Figure
4.12 in Section 4.2.4. The resulting distortion hinders quick reactions, especially when the
steering direction is reversed.

To eliminate any resulting measurement error in the actual steering angle, the additional
steering angle sensor was placed next to the tires, see Figure 4.14. Therefore, the mechanical
distortion does not cause any error in the displayed steering angle measurement and only
degrades the steering dynamics. Future improvement could include an enhancement of
the mechanical construction to include additional torque support and thereby increase to
overall mechanical stiffness.
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While the overall lateral control quality is satisfactory and produced low deviations from
the planned trajectory during the overtaking maneuver, it was not very comfortable due to
a slightly “twitchy” behavior of the steering wheel with a high frequency of corrections of
the steering angle. Further, during lane following of a straight road, slight oscillations of
the lateral vehicle movement could be observed in some of the test drives that could cause
an instable behavior at higher velocities. As potential alternative that could be explored for
future improvement, for example Werling suggests not to use the steering angle as control
variable but to control a certain steering rate δ̇ instead [Werling, 2010].

Besides the analysis of the control variables and deviations at various levels of the cascaded
control loops as performed above, the measured velocity and acceleration shall be compared
to the planned velocity and acceleration profiles, see Figures 5.21 and 5.22. The planned tra-
jectory, and therefore also the planned longitudinal velocity and acceleration vx,traj., ax,traj.,
is composed of those parts of the planned trajectories that were used as reference for the
trajectory following controller during the test drive.

It is important to note that vx,traj. and ax,traj. are no direct reference inputs to the trajectory
controller, see Section 4.3.1. They are only regarded in the prefilter-part of the trajectory
following controller and the compensation of accumulated position errors in x or y might
necessitate deviations from the planned velocity and acceleration profiles.

The planned velocity profile is followed with a maximum deviation of about 0.5 m/s. The
planned velocity profile shows only minimal discontinuities where the planned trajectory
was updated.

These discontinuities cause small spikes in the planned acceleration profile, see Figure 5.22.
An additional discontinuity of the planned acceleration profile occurs where the slope of the
planned velocity profile is reversed at around t = 4 s upon a planning update. Besides the
small “spikes” that occur at planning updates, the measured acceleration profile resembles
the planned one, especially before and after the overtaking maneuver.

Concluding, the trajectory following control proved very successful and allowed only devi-
ations in position of less than 0.5 m from the planned trajectory. The mentioned disconti-
nuities in planned velocity and acceleration that occur at planning updates influence the
trajectory following control as they are an input to the pre-filter, see Section 4.3.1. There-
fore, if the same or a similar trajectory following controller is used, future improvement
could target to reduce the observed discontinuities at planning updates.
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Figure 5.21.: Test drive overtaking moving lead vehicle: Planned and measured longitudinal
velocity vx and difference ∆vx

Figure 5.22.: Test drive overtaking moving lead vehicle: Planned and measured
longitudinal acceleration ax and difference ∆ax
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Figure 5.23.: Test drive overtaking moving lead vehicle: Planned and measured longitudinal
velocity vx and difference ∆vx

In addition, while even velocity (and acceleration) follow the planned profiles, the longitudi-
nal control still shows suboptimal results in some cases, as can be seen during first phase of
the test drive while accelerating from standstill to the desired traveling velocity, see Figure
5.23.

While accelerating to the desired traveling velocity, the vehicle’s velocity oscillates around
the planned ramping profile. The amplitude of the oscillation decreases and the velocity
finally settles after only a small overshoot. Nevertheless, the oscillation and overshoot
produce unnecessary accelerations which reduce the comfort and show room for potential
future improvement.
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5.3.2. Overtaking with Oncoming Traffic

In addition to the simple overtaking scenario presented in the previous section, the appli-
cability of the devised trajectory planning algorithm and implemented trajectory following
is demonstrated in two additional overtaking scenarios with oncoming traffic.

The test scenario consists of a straight two-lane road with one lead vehicle O2 and one
oncoming vehicle O1. O1 moves with a constant velocity of 15 m/s, O2 with 5 m/s. The
driven trajectories of these two obstacles and the ego vehicle are shown in Figure 5.24
as projections to the x-t-plane, where the black line indicates the movement of the ego
vehicle.

Figure 5.24.: Test drives: Results in x-t-plane
Driven trajectory of autonomous vehicle and obstacle movements are projected unto the
x-t-plane. The autonomous vehicle is depicted in black, obstacle swaths are gray.

In this representation a lower slope corresponds to a higher velocity. Obstacle O2 was set
to drive slower than the desired traveling speed 25 m/s of the ego vehicle, therefore the
lead vehicle should be passed. Depending on the timing when the ego vehicle starts, it
is advantageous to either drive somewhat slower when following the lead vehicle and wait
until the oncoming vehicle has passed, or to accelerate and pass the lead vehicle before the
oncoming traffic has approached. These two options were tested and are shown in Figure
5.24.
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Figure 5.25.: Test drives: Snapshots Scenario A
The autonomous vehicle overtakes obstacle O2 while avoiding collisions with the oncoming
traffic O1.

Figures 5.25 and 5.26 show snapshots that detail the driven trajectory of the ego vehicle in
the x-y-plane (thick line) as well as the total planned trajectory (thin line) as concatenation
of the planned trajectories from one planning update to the next. The illustrations at
different instances of time show the scenario progress.

In scenario A, Figure 5.25, it can be seen that the ego vehicle successfully overtakes the
lead vehicle before the oncoming vehicle approaches, while in scenario B, Figure 5.26, it
can be seen that the ego vehicle plans and executes its motion such that it waits for the
oncoming traffic and then overtakes.

The two-step trajectory planning successfully developed drivable and collision-free trajecto-
ries to follow the road and overtake a slower lead vehicle while avoiding oncoming traffic.
In doing so, the trajectory planning created suitable paths and velocity profiles to either
accelerate or decelerate before and during the overtaking maneuver.

In scenario A the test vehicle achieves a traveling velocity of about 15 m/s at t = 0 before it
arrives behind obstacle O2. To execute the overtaking maneuver, the test vehicle accelerates
to 18 m/s at t = 3.2 s. Right after having passed O2, the vehicle brakes down to 11.5 m/s
at t = 5.7 s to avoid a collision with the oncoming traffic while swerving to the right lane.
After completion of the maneuver and until the end of the experiment the test vehicle
accelerates to 22 m/s at t = 22 s.
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Figure 5.26.: Test drives: Snapshots Scenario B
The autonomous vehicle overtakes obstacle O2 while avoiding collisions with the oncoming
traffic O1.

Scenario B starts with a higher traveling velocity. The maximum traveling velocity of 25
m/s is attained at t = 0.6 s before the test vehicle closes up to the preceding obstacle O2.
The vehicle has to slow down to a minimal velocity during this test drive of 7.5 m/s, waiting
to let the oncoming traffic O1 pass until t = 15 s. To overtake obstacle O2 afterwards, the
test vehicle again accelerates and achieves a velocity of 13.5 m/s at t = 20 s.

As can be seen in Figures 5.25 and 5.26, the trajectory following controller manages to make
the vehicle follow the planned trajectory, but a maximum lateral deviation of 1.4 m can
be observed at the beginning of the overtaking maneuver in Figure 5.25. As the analysis
shows, here, the trajectory following controller still has to be improved.
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CHAPTER 6

Conclusion and Future Prospects

As evidenced, the increasingly complex task of driving might be alleviated by further assis-
tance and automation systems. For the development of such future assistance systems and
vehicle automation a motion planning algorithm is a key module. Most of today’s plan-
ning algorithms for road-based autonomous vehicle navigation plan ahead simple swerving
maneuvers and select longitudinal velocity profiles in a decoupled manner. For complex ma-
neuver execution these algorithms have to rely on emergent behavior and are thus limited
in solution-space and foresightedness.

In this contribution, a trajectory planner specialized to the domain of road-based navi-
gation is presented, which facilitates the generation of complex long distance maneuvers,
including combined planning of steering and throttle / brake. To maximize the exploita-
tion of a-priori domain knowledge, a two-step approach is employed: An initial trajectory
is computed in x, y, ψ, v and t using an A* derivative, afterwards a force-field based local
optimization algorithm deforms a discrete x-y-t-representation of the trajectory depending
on the representation in the augmented phase space XT in x, y, t, ψ, v, ax, ay, ȧx and ȧy.

The two-step algorithm combines the advantages of an efficient coverage of the search space
and the resolution completeness of the A* based graph search in the trajectory initialization
with the intuitiveness of the environment representation of potential field approaches in the
optimization step.
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During the optimization step, the planned trajectory remains homeotopically equivalent,
i.e. the “kind” of trajectory is selected in the initialization. Hence, the devised planning
algorithm can be easily extended to plan ahead several alternative trajectory simultaneously
or regard higher level decisions in the selection of the planned maneuver. These decisions
could stem from central traffic management centers, “negotiations” with other vehicles
in the context of cooperative driving, or detected driver intentions. The possibility of a
combination with a behavior-based maneuver decision module or a rule-based approach for
cooperative riving of several vehicles or robots has been demonstrated in several supervised
student works, [Knolle, 2007, 2008; Welzel, 2009].

Compared to many other potential field or force field methods, the approach is predictive,
since the force field acts on the planned trajectory and not the vehicle itself. The added
dimensionality allows an integrated lateral and longitudinal, i.e. an integrated path and
velocity planning.

Both the trajectory initialization and optimization have anytime characteristics which al-
lows to set constraints on the algorithms execution time even in environments of vary-
ing complexity. For the trajectory initialization this is realized by extending an Anytime
Weighted A* (AWA*) variant. For the trajectory force-field optimization, an Armijo step-
size control guarantees a monotonous decrease of the forces with each iteration.

The trajectory planning algorithm regards dynamic obstacles and extrapolates their motion,
either along or exiting the road. The restriction to limited curvatures has been lifted by
the application to local reference frames along the road.

A further enhancement compared to earlier predictive potential field trajectory optimization
algorithms like the elastic bands, the vehicle dynamics are taken into consideration in terms
of lateral and longitudinal velocity, acceleration, and jerk. This is true also at the beginning
of the trajectory, where the initial orientation and velocity are regarded. This characteristic
is important also for frequent planning updates.

As shown, the formulation of the internal forcefields in terms of these dynamic variables
also allows a variable discretization without a large effect on the planned trajectory. Also it
was demonstrated that the resulting trajectory does depend heavily on the chosen planning
distance.

The characteristics of the planned trajectory depend on a number of parameters. In order
to simplify the tuning problem, some basic considerations and rules have been devised in
this work.
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Potential future improvement of the trajectory planning approach include the a reduction
of the needed computational resources to speed up the motion planning. In this work the
implementation of the trajectory planning was not optimized in this regard and a speedup
by a factor of 5-10 should easily achievable. Further improvement could be accomplished
by employing a more detailed motion model in the optimization step or even a closed-loop
“pre-simulation” could be tested inside the trajectory planning. For a pure path planning
variant of this force field trajectory planning (without the extension to the time dimension
and the integrated planning of a velocity profile), the exploitation of an inverse vehicle
model to define the internal force fields and to test for drivability has already been devised
and tested successfully, supported by a diploma thesis, [Kahl, 2007].

In addition to the development of the motion planning approach, a test vehicle was set
up. A series vehicle was equipped with the necessary sensors, actuators and information
processing capabilities for autonomous driving.

The dynamic state of the vehicle is determined by a Kalman-filter based data fusion of
a differential GPS with inertial measurements. External sensors for the detection of the
environment are simulated online based on digital maps. In order to allow automated
steering, a removable steering adapter was constructed. The braking system was automated
by a construction of levers and bowden cables to actuate the brake pedal. The drive train
was automated by an adaptation of the existing cruise control units.

A trajectory following controller was implemented. Upon a comparison of several different
controllers an integrated lateral and longitudinal control approach based on the concept of
nonlinear decoupling was chosen. A subordinate acceleration controller decides between the
use of the braking system versus the drive train and exploits recorded maps to approximate
their static transfer behavior. For steering, braking system, and drive train automation
hardware modules further subordinate control loops were implemented.

The devised trajectory planning approach was implemented ans tested in various scenarios,
planning single trajectories as exemplified in Sections 5.1 and 5.2 as well as in closed-
loop simulations using the configuration illustrated in Section 4.1.2, Figure 4.3. In these
simulations a large variety of scenarios, including curved roads such as in the example in
Figures 5.15 and 5.16 and higher velocities of the ego vehicle could be tested successfully,
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planning and executing drivable, collision-free trajectories and the properties described
above could be demonstrated.

The algorithm was then deployed in the built test vehicle and test drives with simulated
static and moving obstacles were carried out. The suitability to online planning was suc-
cessfully demonstrated, including traffic situations where combined manipulation of both
steering and throttle/brake was necessary to resolve imminent conflicts. This constitutes a
considerable improvement compared to similar earlier algorithms with sequential path and
velocity planning.

During the test drives, the reoccurring update of the planned trajectory produced a con-
tinuous reference in lateral direction and only very small discontinuities on the order of
several centimeters in longitudinal direction. The resulting planned velocity profile is rather
smooth, however, these small discontinuities in the planned position caused some spikes in
the planned acceleration. As a potential future improvement, these small discontinuities
might be reduced or the planned acceleration that is an input to the prefilter part of the
trajectory following controller, could be filtered to create a smoother control input.

The trajectory following behavior of the test vehicle was satisfactory, but still shows some
room for future improvement. While the control error in the avoidance of a static obstacle
was less than 70 cm in lateral direction and below 50 cm in longitudinal direction, this
performance is not yet very consistent, especially at higher velocities, as evidenced in other
test runs for overtaking with oncoming traffic. Here, a delay in vehicle response led to a
larger lateral deviation of 1.4 m from the path (although a collision was not entailed). The
oscillations observed during the acceleration phase from standstill further show potential
for improvements for the longitudinal control.

As detailed, the performance of the trajectory following control might be enhanced also by
improvements in the construction of the automation hardware modules. For the steering,
the mechanical stiffness of the steering adapter could be increased to reduce the mechan-
ical distortions. The steering motor could be replaced by a direct drive, to eliminate the
transmission and thus reduce mechanical friction and play. For the acceleration, the cruise
control motor that was used to operate the throttle flap could be replaced by an actuator
of higher performance to enable quicker reaction times.

For applications like future driver assistance systems, the proposed trajectory planning
approach could possibly be used as a basis to achieve a more flexible and foresighted artificial
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decision making and trajectory planning - especially in more complex situation where a
simple braking or lane change maneuver is not sufficient anymore.

Nonetheless, for the application in future driver assistance systems, it would be important to
regard not only the technical applicability and performance, but to include the human driver
in the system design. To enable an optimal interplay between driver and automation, the
automation (including the trajectory planning and following) should be compatible with the
drivers’ expectations. In order to achieve this, further adaptation of the trajectory planning
might be necessary, e.g. to increase safety distances or make the trajectory optimization
more comfort-oriented. The implemented trajectory following controller was only intended
for the demonstration of fully automatic driving and would probably have to be redesigned
if a human driver entered the control loop.





APPENDIXA

Research Vehicles

Organized by the American Defense Advanced Research Projects Agency (DARPA) the
robotic competition Urban Challenge was held in the year 2007. The contestants had to
build autonomous vehicles that were able to drive in an urban scenario with other moving
traffic-participants. The three major situations the cars had to handle were

• driving along roads,
for which GPS-coordinate based road definitions were supplied in a road network
definition file (RNDF),

• correct handling of preference rules at crossroads and intersections,

• navigation in unstructured areas, such as parking lots.

The following sections review the first three cars of the competition:

• Boss, Carnegie Mellon University,

• Junior, Stanford University

• Odin, Virginia Polytechnic Institute and State University

and additionally

• Annieway, University of Karlsruhe,
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one of the two German cars, which made it to the finals of the competition.

They stem from [Hess, 2009], a diploma thesis supervised by the author. It has to be
pointed to the fact that the publications of the four groups have different levels of detail
for the different aspects. Therefore, this review cannot give a one-to-one comparison of the
concepts.

A.1. Boss, Carnegie Mellon University

The soft- and hardware-components of the DARPA Urban Challenge (DUC) winning vehicle
Boss (Carnegie-Mellon University) are described in [Urmson et al., 2008]. The behavioral
architecture of Boss aims to reduce the complexity of planning, by identifying the behavior
which is most fitting to the current situation, (the “driving context”). A restricted motion
planning problem is solved, which takes into account only the environmental constraints
relevant to the “driving context”. The behaviors used to handle the situations generate
goals, which are then sent to one of the two motion-planning subsystems responsible for
road-based navigation and navigation in unstructured environments.

The behaviors for road-following are concerned with distance keeping to preceding vehicles
and lane-change planning. Distance keeping is achieved with a linear control-law, setting
the commanded velocity proportional to the difference between desired and actual vehicle
distance. The lane-change planner is rule-based and analyzes for single merge maneuvers
into all available gaps in traffic, so-called slots, whether time, velocity and acceleration
constraints can be met and whether safety distances to other traffic participants can be
maintained.

All traffic-participants’ movements are predicted along their associated lane. In uni-directional
multi-lane roads a feasible merge which is furthest down the road is selected for execution,
to make fast progress. For bi-directional two-lane roads the closest feasible slot is chosen,
to minimize the time spent in a wrong-direction road. For such standard situations the
road-following behaviors generate commanded velocity and a goal position in a lane as in-
put to the road-based motion planner. Error recovery behaviors allow to identify blocked
roads. In such a case the motion planner for unstructured environments is used to calculate
U-turns or to wander indefinitely along the road.

The behaviors for intersection handling analyze the geometric structure of intersections for
precedence rules and monitor the traffic in intersections to generate goals which comply to
the traffic rules. If an intersection is free and if Boss has precedence over other waiting
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vehicles, goals are generated for the road-based navigation system. When the intersection
is occupied, a time-out allows to identify deadlocks caused be broken-down vehicles. In
such a case goals for the unstructured motion planner are generated.

During zone-navigation the behavior-system specifies only a single goal-position, such as
a parking slot. The plan from the current vehicle position to the goal-position has to be
created by the motion planner for unstructured environments.

A.1.1. Road-Based Motion Planner

Instead of sampling the command space, as in the case of the other three reviewed cars ,
around the lane-center trajectory, the state space along the lane is sampled. The motion
planner generates curves to a set of goals at a certain planning distance along the lane,
varying the lateral offset from the lane-center. For each goal one smooth and one sharp
trajectory are generated. The smooth trajectory has an initial curvature as predicted by the
vehicle state, whereas the sharp trajectory exhibits a constant curvature offset to produce
a quick initial action when the vehicle starts following the trajectory.

A constant, linear, ramp or trapezoidal velocity profile is calculated for each trajectory, tak-
ing into account the decision of the behavioral system, the road’s speed limit, the limitation
by the curvature of the trajectory and the desired goal velocity. Each trajectory is evaluated
against proximity to static and dynamic obstacles, lateral offset from the lane-center, and
smoothness. The feasibility is verified with the help of an accurate vehicle model.

A.1.2. Unstructured-Environment Motion Planner

As described in [Ferguson et al., 2008], the algorithm Anytime-Dynamic-A* (AD*), a com-
bination of ARA* and D*Lite (see Section 1.1), is employed for planning of complex, long
distance maneuvers in unstructured environments. As the search is performed in a backward
direction from the target location and orientation towards the vehicle state, the changes
perceived in the environment of the vehicle can be efficiently integrated into existing plans.
The vehicle state used during planning, (x, y, ψ, v), contains position and heading of the
car, as well as the longitudinal velocity. To represent possible movements, the lattice gener-
ation algorithm offline generates one high-resolution and one low-resolution primitive path
set. The high-resolution set is applied in the vicinity of vehicle and goal, whereas the
low-resolution set saves computation time in between.
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A combination of two heuristics guides the search: The first heuristic takes the motion
model of the vehicle into account and disregards obstacles. The cost of a feasible path
from the robot to any position in a limited environment is precomputed offline with an
uninformed search algorithm and stored in a look-up-table for on-line access. The second
heuristic gives the cost of a 2D path from the robot to any position in the zone, regarding the
perceived obstacles. It is calculated before execution of the AD* algorithm by a Dijkstra’s
search. The final heuristic of the AD* algorithm is the maximum of both heuristics. To
avoid moving obstacles, the complete short term prediction of any obstacle’s path in the
robot’s vicinity is marked blocked in the static obstacle map.

A.2. Junior, Stanford University

Junior’s navigation module consists of several motion planners plus a hierarchical finite state
machine (FSM), which invokes different behaviors and prevents deadlocks, [Montemerlo
et al., 2008]. The FSM contains states for intersection handling, one state for road-based
navigation (forward driving, lane keeping and obstacle avoidance), which is preferred when
not in parking lots, several states for handling of blocked roads (U-turns, divider crossing
and free-form navigation to handle difficult road-blocks) as well as one state for navigation
in parking lots.

A.2.1. Road-Based Motion Planner

As base trajectories the lane-center trajectories defined by the RNDF in global coordinates
are used. For each lane and base trajectory a set of trajectories with differing lateral shifts at
the end-points are generated by simulating a vehicle model for different steering parameters.
The preference between the different trajectories is decided based on the required execution
time, cost along the trajectory and remaining cost to the goal-location, which is estimated
by a global planning system that analyzes the RNDF. Trajectories are generated for all
accessible roads splitting at a junction to allow the local execution costs to influence the
global routing of the car. The planner was found to work well in “well-defined traffic
situations”, planning smooth motion along unobstructed roads and handling simple passing
and evasion maneuvers.
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A.2.2. Unstructured-Environment Motion Planner

A free-form planner is responsible for navigation in parking lots, U-turns and traversal of
blocked intersections and one-way roads. The hybrid A* method is employed to plan a path
towards a static goal location, such as the next GPS waypoint or a parking box. The vehicle
is modeled by a four-dimensional state-vector (x, y, ψ, v) containing the x- and y-position,
the orientation of the vehicle and the longitudinal direction of motion. (The velocity v has
only two possible values: forward and backward.)

Two heuristics help the A* planner to find a path to the goal: A “holonomic-with-obstacle”
heuristic (h1) ignores the vehicle-model’s nonholonomic constraints and generates a path
in the x- and y-dimension as an admissible estimate of the remaining distance to the goal.
This heuristic is better informed than the euclidean-distance estimate, as it prevents the
planner to enter local deadends. A “nonholonomic-without-obstacles” heuristic (h2) helps
to estimate the amount of maneuvering necessary to approach a goal-position with the
required orientation. The heuristic h1 is calculated on-line with a dynamic-programming
method to incorporate the environmental constraints perceived by the vehicle. The heuristic
h2 is context-insensitive and thus can be accessed from a pre-computed data structure.

The free-form planner has to post-process a path to the goal as the small number of discrete
actions available to the hybrid A* algorithm results in rapid steering angle changes. A not
precisely specified “conjugate gradient smoother” modifies controls and moves way points
locally, using an objective function which penalizes steering-wheel motion and curvature.

A.3. Odin, Virginia Polytechnic Institute and State Uni-
versity

The planning component of Odin’s software suite is described in [Bacha et al., 2008] with
the help of a hierarchical architecture. Ordered from global and strategic to local and
tactical, the layers of the architecture are:

1. A deliberative route planner working on the RNDF, which generates a sequence of
lane-exits leading to the goal location.

2. A set of reactive driving behaviors producing a short-term goal. The short-term goal
comprises six target locations in global coordinates, a desired maximum speed, zone
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and safety-area flags, and for each location the travel lane, the driving direction, a
desired heading, as well as a stop flag.

3. A deliberative motion planner, which analyzes feasible trajectories and sends motion
commands to the vehicle interface that are best fitted to reach the short-term goals.

The reactive second layer consists of seven driving behaviors that send their desired short-
term goal to an arbitration unit. The arbitration unit selects the short-term goal with
the maximum benefit. The driving behaviors Route, Passing and Blockage Driver handle
road-based navigation, intersections are managed by the Precedence, Left Turn and Merge
Driver, for navigation in parking lots and unstructured environments the Zone Driver is
responsible.

The Route Driver follows a lane according to the route planner, when no obstacles or traffic
are encountered. In case of slow moving obstacles the Passing Driver analyzes whether
the situation’s parameters such as left lane type (oncoming or forward lane) permit an
overtaking maneuver and generates the necessary short-term goals for the motion planner,
(the algorithm is not specified). The Blockage Driver analyzes the drivable state of all
available lanes and requests the route planner to update the sequence of lane-exits, when
all forward lanes are blocked. The details of how a U-turn has to be executed seem to be
handled by the third motion planning layer.

The behaviors responsible for intersections monitor critical areas for traffic and calculate
whether turning maneuvers can be executed safely. If the vehicle has to wait, the stop flag
is set for a target-point before the entrance of the intersection. The Merging Driver controls
the vehicle speed in such a way that the vehicle is able to merge into gaps in the traffic.

For parking lot navigation it was initially attempted to automatically infer a regular struc-
ture from the a priori environment information, which would have then enabled a behavior
to drive on lanes between parking rows. Because that approach was not judged realizable,
the team had to manually specify “control points” in zones. The route planning layer gen-
erates a list of control points leading to the goal location on the parking lot. The Route
Driver simply follows the list of control points. The Zone Driver detects situations in which
the goal is not reachable via the list of control points, then disconnects links between con-
trol points and requests a new route. Obstacle avoidance is solely managed by the motion
planning layer.
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A.3.1. Motion Planner

Odin relies on a single motion planner which is configured differently for road- and zone-
based navigation. For road-based navigation planning of acceleration and steering are
decoupled. A speed limiting module analyzes the traffic in the future path of the vehicle
and takes stop commands into account to generate a maximum velocity. This enables Odin
to wait for the passage of oncoming traffic or to follow preceding cars.

Inside zones, the speed-limiter is disabled and the motion planner has to handle dynamic ob-
stacles all by itself. An ego-graph approach is employed to plan a series of motion commands,
which specify desired curvature, curvature rate of change, desired velocity, maximum accel-
eration and time duration. Sets of trajectories are precomputed for initial steering angles
varied at 0.25◦ increments. Possible commands are steering angle velocities of {0, 6, 12, 18} ◦

s

combined with longitudinal velocities of {2, 5.5, 9, 12.5} m
s
.

The trajectory search seems to use an objective function based on execution time and
obstacles distance. “While traveling in segments, trajectory search chooses goals that travel
down a lane. In contrast, zone traversal is guided by target points along with goal criteria
and search heuristics to produce different behaviors.” ([Bacha et al., 2008])

A.4. AnnieWay, University of Karlsruhe

Team AnnieWay was one of the two German teams qualified for the DUC finals. The publica-
tion [Kammel et al., 2008] describes the responsibility for motion control in the autonomous
vehicle as sub-divided between a reactive and a deliberative component. The reactive com-
ponent receives trajectories from the deliberative component and decides whether any tra-
jectory can be safely executed given the latest environment information. If such a trajectory
is not obstacle-free, the reactive component resorts to a command-space approach.

Similar to all three above mentioned autonomous vehicles, AnnieWay’s deliberative compo-
nent comprises aMission Planner, which generates a global RNDF-based strategic plan, and
a Maneuver Planner, which handles the local planning by following the RNDF-based trajec-
tory, applying traffic rules and deciding for driving maneuvers. The Maneuver Planner is im-
plemented as a hierarchical state machine that groups and organizes driving behaviors. The
three top-most behaviors responsible for driving realize the division into road-driving, zone-
driving and intersection-handling, familiar from above mentioned vehicles. Road-driving
includes special behaviors for lane-following, lane-changing and direction-changing with a
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“k-turn”. Zone-driving includes approaching, entering, parking and driving to the exit. The
intersection behavior manages approaching, queuing, waiting and traversal.

A.4.1. Road-Based Motion Planner

For road-based navigation through moving traffic a special algorithm is employed, which
calculates velocity profiles for merging and intersection-crossing. Velocity profiles are re-
stricted to a set of two-phase linear ramp profiles, where a desired velocity vd is reached by
applying the maximum acceleration asat in phase one and vd is held constant in phase two.
The resulting velocity profiles have one degree of freedom, vd. The algorithm, of which a
detailed description can be found in [Werling et al., 2008], operates on a set of obstacles,
(other traffic participants with right of way), whose movement is extrapolated along the
middle of their associated lane with constant velocity.

Traffic scenarios are represented by equivalence graphs which model conflict free parts of
extrapolated paths (time independent) as edges associated with their respective length, and
conflict positions, where paths intersect and possible collisions could occur, as vertices. To
ensure that paths are collision free, the passage of two vehicles along the same equivalence
graph vertex is inspected for time and spacial gaps. Spacial gaps are more relevant at lower
velocities, whereas time gaps ensure safety at higher velocities. A maneuver of overtaking
one moving obstacle can be represented in an equivalence graph by considering not absolute,
but relative velocities between the planning vehicle and the obstacle, effectively abstracting
the dynamic passing maneuver to a static passing maneuver.

A.4.2. Unstructured-Environment Motion Planner

In unstructured environments an A* planning algorithm[Ziegler and Werling, 2008] with
command-space discretization is used. The vehicle state is modeled by a four dimensional
vector (x, y, ψ, delta), which contains the position in the plane, the orientation and the
steering angle, respectively. The steering angle dimension is discretized as D = {δ1, . . . , δn}.
For each known configuration q the set of reachable states is enumerated by simulating a
kinematic vehicle model with q as initial state and a constant steering rate δ̇ = (qδ − δi) /s
for the fixed arc-length s and any terminal steering angle δi ∈ D. The resulting clothoid-like
arcs are precomputed for all possible steering angles and accessed on-line by translation and
rotation of the arc to fit the position and orientation of an initial state.
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The cost function employed by the A* algorithm seems to be based on a pseudo-cost combi-
nation of path length and obstacle distance: A Voronoi-diagram of the grid-represented, two
dimensional workspace is created and a graph search algorithm is used to trace the shortest
distance along Voronoi-edges from the goal towards any position on a Voronoiedge. The cost
of any position outside a Voronoi-edge is calculated with the help of the nearest position
on the Voronoi-edge to create a cost function which is sloped towards the Voronoi-edges.
The obstacle-aware distance-to-goal computed from the Voronoi-diagram is combined with
a “non-holonomic-without-obstacles”-distance by taking the maximum of both distances.
How the aggregated path cost of a clothoid-arc is actually calculated, (whether from all
positions in the arc’s swath, or only from the arc’s endpoint), is not apparent.

A.5. Conclusion

The similarities between the approaches are striking: Similar architectures were used to
create a hierarchy of software components for vehicle control. At the highest layer always
resides a behavior- or rule-based decision unit, which selects the appropriate planner accord-
ing to the context. These contexts are roughly road-based driving, intersection handling,
road-blockage resolution and driving in unstructured environments.

In all cases the road-based driving is solved with a motion planner that generates simple
trajectories for road-following. In case of AnnieWay, Odin, and Junior, command-space
search algorithms were employed. In the vehicle Boss a state-space search method was
employed, which though produces trajectories of great resemblance to the trajectories of a
road-based command-space method.

AnnieWay, Junior, and Boss solved planning in unstructured environments and during road-
blockages with an A* state-space search, which employs the combination of a kinematic
distance estimate and an obstacle-regarding 2D distance estimate as a heuristic. Odin
applied the command-space search even in unstructured environments. Junior applied a
“conjugate gradient smoother” as post processing or second planning step that modifies
controls and moves way points locally.
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APPENDIXB

Calculations regarding Road Segments

B.1. Clothoids

As illustrated in Figure B.1, for each infinitesimal segment of a clothoid the following
relation holds

dφ (s) = κ (s) ds. (B.1)

Integrating Equation B.1 from s0 = 0 to s for a clothoid that starts in CL∗ in CLex-direction,
φ (0) = 0, with κ (0) = 0 using Equation 2.32 yields

φ (s) =
s∫

0

κ (s̄) ds̄ = 1
2κ
′s2. (B.2)

As can be seen in Equation B.2 and Figure B.1, the angle φ (s) is equal to the orientation
ψ of the clothoid with regards to CLex

ψ (s) = φ (s) . (B.3)
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Figure B.1.: Clothoid segment

The differential changes CLdr = [CLdx, CLdy]T in the clothoid coordinates are given by

CLdr (s) =
CLdx (s)
CLdy (s)

 =
cos (φ (s))ds

sin (φ (s))ds

 . (B.4)

Therefore, the position vector CLrCL
∗,P = [CLx, CLy]T in 6-CL to any point P on the clothoid

is acquired by integration of Equation B.4 from φ (0) = 0 to φ, exploiting Equation B.2.
This yields

CLrCL
∗,P (s) =

CLx (s)
CLy (s)

 =
∫ s0 cos

(
1
2κ
′s̄2
)
ds̄∫ s

0 sin
(

1
2κ
′s̄2
)
ds̄

 . (B.5)

The integrals in Equation B.5 are known as Fresnels integrals and cannot be solved in
closed form, [Bronstein and Semendjajew, 1991]. However, they can be approximated with
an arbitrary accuracy by using series expansions for the sine and cosine functions in the
integrands, see for example [Wang et al., 2001], which yields

CLrCL
∗,P (s) =

CLx (s)
CLy (s)

 =

 ∑∞
n=0

(−1)n
(2n)!(4n+1)s

4n+1
(

1
2κ
′
)2n

∑∞
n=0

(−1)n
(2n+1)!(4n+3)s

4n+3
(

1
2κ
′
)2n+1

 . (B.6)

Since a clothoid street segment does not necessarily start with κ = 0, the reference frames
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6-CL and 6-R̂
k are generally not the same, as shown in Figure B.1. The curvature of a clothoid

segment R̂k is therefore given by

κk (ŝk) = κk,0 + κ′kŝk. (B.7)

Comparing Equations 2.32 and B.7 yields the relation between the clothoid arc length s

and the segment arc length ŝk

s (ŝk) = ŝk + κk,0
κ′k

. (B.8)

Knowing the starting point R̂k∗ of the clothoid segment relative to the clothoid reference
frame 6-CL, the segment’s centerline is first computed in 6-CL and than transformed into the
segment fixed reference frame 6-R̂

k by

R̂k
rR̂k∗,R̃∗ (ŝk) = CCL,R̂k

(
CLrCL

∗,R̃∗ − CLrCL
∗,R̂k∗

)
︸ ︷︷ ︸

CLrR̂k∗,R̃∗ (ŝk)

. (B.9)

Both CLrCL
∗,R̂k∗and CLrCL

∗,R̃∗ can be found by the evaluation of Equation B.6 for s = κk,0
κ′
k

and s = ŝk + κk,0
κ′
k
, respectively, see Equation B.8. This results in

CLrR̂
k∗,R̃∗ (ŝk) =


∑∞
n=0

(−1)n
(2n)!(4n+1)

((
ŝk + κk,0

κ′
k

)4n+1
−
(
κk,0
κ′
k

)4n+1
)(

1
2κ
′
k

)2n

∑∞
n=0

(−1)n
(2n+1)!(4n+3)

((
ŝk + κk,0

κ′
k

)4n+3
−
(
κk,0
κ′
k

)4n+3
)(

1
2κ
′
k

)2n+1

 .(B.10)

CCL,R̂k denotes the transformation matrix between 6-CL and 6-R̂
k

CCL,R̂k =
 cos CLψR̂k sin CLψR̂

k

− sin CLψR̂
k cos CLψR̂k

 , (B.11)

where CLψR̂
k represents the rotation angle between the two reference frames. It can be

found by exploiting the clothoid properties given in Equations B.2 and B.3 for s = κk,0
κ′
k
, see
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Equation B.8, to be

CLψR̂
k =

κ2
k,0

2κ′k
. (B.12)

The orientation at the end of the clothoid segment is given by

CLψR̂
k+1 =

(
κk,0 + κk

′l̂k
)2

2κ′k
. (B.13)

The orientation of the road centerline of a clothoid segment with regards to the segment
fixed reference frame can be found by integrating Equation B.7 to

R̂kψR̃ (ŝk) = κk,0ŝk + 1
2κ
′
kŝ

2
k. (B.14)

B.2. Relation of Arclengths of Paths with Lateral Off-
sets

For straight segments s̃Oj and sOj are identical. For any curved segments the differential
changes in arc length of the centerline s̃Oj and the offset path sOj are governed by

ds̃Oj =
(

1
κk (s̃Oj)

)
dφ and (B.15)

dsOj =
(

1
κk (s̃Oj) + y

Oj
off

)
dφ, (B.16)

where 1
κ(s̃Oj) represents the instantaneous radius of curvature of the road centerline Rc.

Plugging Equation B.15 into Equation B.16 yields the relation

dsOj =
(
1 + κk

(
s̃Oj

)
y
Oj
off

)
ds̃Oj . (B.17)

For circular segments the curvature is constant, κk
(
s̃Oj

)
= κk = const., while for clothoid

segments the curvature varies linearly with the arc length, κk
(
s̃Oj

)
= κk,0 +κ′ks̃

Oj , compare
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Equation B.7. Using these expressions for the curvature, Equation B.17 can be integrated
from s̃

Oj
0 = 0 to s̃Oj and sOj0 = 0 to sOj .
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