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High-Assurance Design of Learning-Enabled Cyber-Physical Systems with Contracts:
Accomplishments
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The quantitative semantics of StSTL enables quantifying the degree of Stochastic contracts provide the semantic foundation for the automated

satisfaction of an StSTL formula and formulate robust verification, parameter construction of assurance cases, structured arguments about system

synthesis and design space exploration problems dependability, which can accelerate system certification and help transition from

a process-driven to a property-driven certification approach
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