High-level perception and control for autonomous reconfigurable modular robots

Pls: Hadas Kress-Gazit (Cornell), Mark Campbell (Cornell), Mark Yim (UPenn)
Students: Yunkai Cui, Jonathan Daudelin, Jay

Davey, Gangyuan Jing, Daniel Lee, Tarik Tosun

More Specifically...

Given a set of modules:

- And a high-level task:
- "Bring me the can that is on the table"
- Automatically synthesize: locomotion, perception and reconfiguration commands to achieve the task

Simulation Results (Year 1)

Novelty/Challenges

- Correct-by-construction control synthesis
 - Both control and configuration (and number)
 - Tasks include Locomotion, Active Sensing / Information Gathering, Grasping, etc.
- Library of controllers/configurations
 - "Crowd sourced" (education/outreach)
 - Composed in a probabilistic verified way
 - e.g. 4 legs and a body: no collisions, stability, etc.
- Novel self reconfigurable hardware

Active Information Gathering

• Single-line laser+camera sensor

Active Information Gathering

Single-line laser+camera sensor

 Configuration and locomotion for active sensing

Hardware

- 4 DOF
- Electro-magnets
 allow autonomous
 connection/
 disconnection
- Specialized modules:
 - Sensor
 - Brain
 - Passive

Hardware

- 4 DOF
- Electro-magnets allow autonomous connection/ disconnection
- Specialized modules:
 - Sensor
 - Brain
 - Passive

Crowd-Sourcing Controllers/Configurations

Using GAZEBO: tools for creating a library of

configurations/controllers:

- Configuration Editor
- Gait Recorder
- Simulation Controller

Future Plans

- Year 2
 - Crowd-sourcing
 - Library development
 - Synthesize and verification
 - Brain, sensor, structure
 and motion modules

- Year 3
 - Full hardware
 - Integration of perception with synthesis
 - Probabilistic verification
 - Complex tasks, leading to final demo

Final Demo: Two very different applications, same modules, within an hour:

Car inspection and personal robot delivery