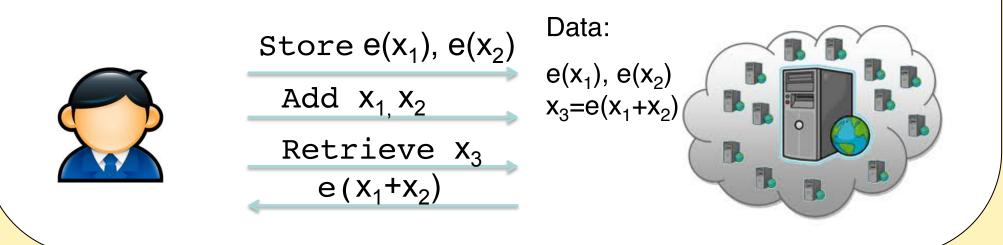
Homomorphic Encryption for Cloud Privacy

Berk Sunar, ECE WPI


Supported by NSF CNS Award #1117590

crypto.wpi.edu

Cloud: Great Idea with Great Challenge

Low costs of the cloud will eventually push data to the server-side Side-effect: to process a document you need to download it first Bandwidth(=\$) and latency problems

Solution: Perform transactions directly on encrypted data on server Retrieve data only when user needs to access it

Eliminating Size Limitation on Additive Schemes

The Boneh-Goh-Nissim (2006) scheme allows efficient evaluation of 2-DNF equations, e.g.

 $f(x_0, x_1, x_2, x_3, x_4) = (x_0 + x_2) \bullet (x_1 + x_2 + x_3) + (x_1 + x_2) \bullet (x_1 + x_4') + \dots$

Extending Partial HE Schemes

Extends additive homomorphic schemes to handle arbitrary number of AND's/OR's

 $f(x_0, x_1, x_2, x_3) = (x_0 \text{ XOR } x_2') \text{ AND } (x_0' \text{ XOR } x_3 \text{ XOR } x_1') \text{ AND } \dots$

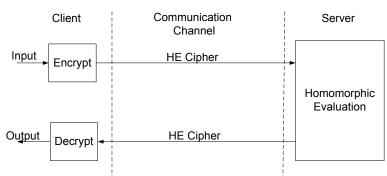
 $f(x_0, x_1, x_2, x_3) = (x_1 \text{ XOR } x_2' \text{ XOR } x_3') \text{ OR } (x_3 \text{ XOR } x_1) \text{ OR } \dots$

Can be used to detect matches in large (conditional) queries

Subtraction (Paillier) can be used to generate the initial x_i values Probabilistic: there is a tiny failure probability $\sim 2^{-w}$ Bandwidth:

Packing trick is used to reduce bandwidth

Ciphertext size remains constant!

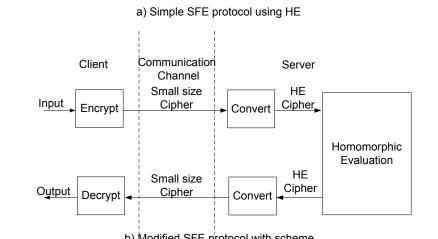

E.g. using Paillier each input is mapped to \sim 4,096 bits

[1] Yin Hu, William J. Martin and Berk Sunar, Homomorphically Evaluating n-DNF Formula. Draft, 2012.

Reducing FHE bandwidth by Scheme Conversion

FHE schemes huge message expansion E.g. the GH-FHE scheme encrypts a single bit into a million-bit ciphertext.

Partial HE and symmetric schemes have Output Decrypt shorter ciphertexts


Useful for vector comparison/determining number of matches, i.e. $f(x,y) = \sum x_i y_i$

Mul:10 ms, Add: <1 ms, Decrypt: DLP in finite field \otimes Final step requires DLP; output must be small for decryption to work Solved using CRT trick (Hu, Sunar, Martin. ACNS 2012)

[1] Yin Hu, William J. Martin and Berk Sunar, Enhanced Flexibility for Homomorphic Encryption Schemes via CRT. Industrial Track, ACNS 2012.

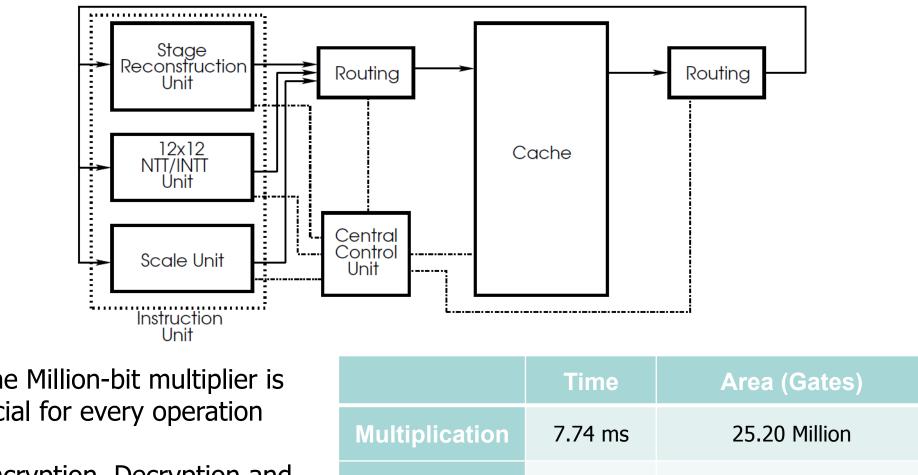
E.g. the Paillier requires \sim 4,096 bits and stream ciphers only need 1 bit. But, are not fully homomorphic.

The Solution: Scheme Conversion FHE for computation Others for communication

[1] Yin Hu and Berk Sunar, *Reducing the bandwidth of FHE schemes*. In progress, 2012.

Implementing the Gentry-Halevi FHE

Computations in GH-FHE primitives requires costly modular additions and multiplications. Optimizations


- FFT based multiplication algorithms \bullet
- GPUs and hardware for better parallelism. \bullet
- Delayed modular reductions to reduce the number modular reductions and IFFT computations.

Software Implementation with GPUs

Platform	running at 3.5 GHz with 8 GB RAM Build with NTL/GMP	3072 CUDA core 1.02 GHz, 4GB GDDR5* memor			Scale Unit Instruction Unit	Control Unit		
Encryption	1.08 sec	6.2 ms	x174		The Million-bit multiplier is		Time	Area (Gates)
Decryption	14 ms	1.84 ms	x8		crucial for every operation	Multiplication	7.74 ms	25.20 Million
Recryption	17.8 sec	1.3 sec	x14		 Encryption, Decryption and Recryption uses the same 	Encryption	31.09 ms	0.206 Million + Multiplie
[1] Wei Wang Yin F	Iu, Lianmu Chen, Xinming Hua	ng and Berk Sunar Accel	erating Fully Homomo	rnhic	multiplier	Decryption	23.22 ms	1000 + Multiplier
•	<i>PU</i> , Proceedings of 2012 IEEE	-	e .	<u>^</u>	[1] Yarkin Doroz, Erdinc Ozturk and Berk Sunar, <i>An Efficient Architecture for</i>	Recryption*	~10 sec	~2 Million + Multiplier
Homomorphic Encry			sed Mult	ikey	FHE scheme	-		plementation for B = 4
Implem ne multikey F fers better p		ITRU-Bas romer and Vaik	untanathan ameters are	Break Time (minutes) 1000000	FHE scheme Search Time	N=512, q	=256 bit, significar	B = 4 Int speedup with
Implem ne multikey F fers better po cking.	Enting the N HE by Lopez-Alt, Tossibilities. Howeve	ITRU-Bas romer and Vaik	untanathan	Break Time (minutes) 1000000 000 000		N=512, q We expect	=256 bit, significar	B = 4 Int speedup with
Implem ne multikey F fers better po cking. sing NTL/LL	Enting the N HE by Lopez-Alt, Tossibilities. Howeve	TRU-Bas romer and Vaik er, concrete para	untanathan ameters are Estimated Break Time	Break Time (minutes) 1000000 000 000 100 100		N=512, q We expect further opti	=256 bit, significar mizations	B = 4 nt speedup with s on GPUs
Implem ne multikey F fers better po cking. sing NTL/LL e time requir	Enting the N HE by Lopez-Alt, Tossibilities. However L we evaluated red to break the	STRU-Bas Fromer and Vaik er, concrete para Dimension	untanathan ameters are Estimated	Break Time (minutes) 1000000 000 000	Search Time	N=512, q We expect further opti KeyGen	=256 bit, significar mizations	B = 4 nt speedup with s on GPUs 0.84 sec
Implem ne multikey F fers better po cking. sing NTL/LL e time requir cheme for va	Enting the N HE by Lopez-Alt, Tossibilities. Howeve	STRU-Bas Fromer and Vaik er, concrete para Dimension	untanathan ameters are Estimated Break Time 17 days	Break Time (minutes) 1000000 000 000 100 100		N=512, q We expect further opti KeyGen Encryption	=256 bit, significar mizations	B = 4 Int speedup with on GPUs 0.84 sec 1.08 ms
Implem he multikey F fers better po cking. sing NTL/LL he time requir	Enting the N HE by Lopez-Alt, Tossibilities. However L we evaluated red to break the	JTRU-Bas Tromer and Vaik Tromer and Vaik or, concrete para Dimension 256 384	untanathan ameters are Estimated Break Time 17 days 117 years	Break Time (minutes) 1000000 000 000 100 100 10 10 10 10 0.1	Search Time	N=512, q We expect further opti KeyGen Encryption Multiplicatio	=256 bit, significar mizations n	B = 4 Int speedup with on GPUs 0.84 sec 1.08 ms 1.5 ms

Hardware Implementation

Our current implementation focuses on low-cost and smallfootprint. However, the architecture is flexible and the operations can be speedup further by using more hardware resources for computations and higher bandwidth for data transactions.

National Science Foundation WHERE DISCOVERIES BEGIN

Nov. 27 - 29th 2012 National Harbor, MD

