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Human-in-the-loop real-time optimization of exercise trajectory and resistance
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Real-Time Model-Free Optimization with Extremum 
Seeking Control

• Machine / musculoskeletal system interaction simulations 
inform optimal exercise or rehabilitation protocols to be 
implemented. 

• A new approach based on differential flatness in combination 
with semidefinite programming (SOS polynomial optimization) 
produces extremely fast solutions which are biomechanically 
meaningful [1].

• We consider a prototype exercise or rehabilitation concept 
where a planar 2 DOF  exercise machine is coupled to a human 
arm (blue). Interaction forces result from the machine’s 
selectable impedance and its reference trajectories.

• The human is assumed to accurately track some ellipse, 
regardless of the required effort. Cartesian impedances are set 
against the deviation from the machine’s reference (a circle) and 
the ellipse. Both the ellipse parameters (tilt and eccentricity) and 
the impedance parameters are to be optimized.

• The objective function is a weighted sum of muscle activation 
integrals over one period. Weights reflect training / rehab needs.

• Biogeography-Based Optimization was used, with 5 Monte Carlo 
trials with 50 candidate solutions over 200 generations to 
optimize shoulder muscles.

• Endpoint force limited to 45 N magnitude
• Anterior deltoid emphasis weights:

𝑊 = 1 − 1 − 1 − 1 − 1 − 1 𝑇

• Posterior deltoid emphasis weights:
𝑊 = −1 1 − 1 − 1 − 1 − 1 𝑇

Simulation Results
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Ant. 
Deltoid 0.15 0.10

−0.2 0.40 0.23 0.13 0.08 −0.1 0.13 0.38 0.25 CW 77.2 139.6 85.70 64.02 267.1 11.79

Post. 
Deltoid 0.03 0.02

0.33 0.25 1.36 0.02 0.06 0.41 0.42 1.75 0.18 CCW 48.58 84.48 288.5 196.0 3.501 122.3

• The concept was implemented in real-time using a 4 DOF haptic 
robot (Barrett WAM arm). 

• Only gravity compensation was used in the WAM. Human effort is 
due to overcoming the muscle’s own passive resistance and 
weight as the ellipse is tracked.

• Extremum Seeking control was used to modify ellipse parameters 
to maximize a weighted measure of muscle effort.

• The objective function was computed with a moving average, 
based on EMG sensor data.

Results demonstrate strong influence of exercise trajectories and impedances 

on the distribution of muscular effort, justifying the experimental phase.
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