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Spending on IoT



• The electric power grid designed by  Edison and  Westinghouse 100 years ago was 
billed  by NAE  the most significant invention of the 20th Century.  The 21st century 
development of the smart grid is the $ 2 Trillion IoT sensoring of the electric utility 
value chain. 

Century of Innovation: Twenty Engineering Achievements That Transformed Our Lives,”NAE 2003.
“Estimating the Costs and Benefits of the Smart Grid,” Electric Power Research Institute (EPRI), March 2011.

The Power Grid Example



• How do AI and edge computing fit into Intelligent Transportation Systems?
– 75% of enterprise-generated data will be created at the edge by 2025
– 4TB data generated by one AV in one day
– 1 in 10 vehicles will be AVs by 2030
– “always-on” supply chains: IoT innovations are driving the future of logistics and supply chain management

Intelligent Transportation and Logistics: 
From Suppliers to the Curb



Sharing Economy: Data as a Commodity



Digital Transformation of Societal Systems



• With “Big Data” we perform calculations on all the data.  This brings “back again” a  
renaissance to the promise of AI to evolve a new kind of CPS  machine learning to 
perform precise predictive analytics.

• At the convergence of IoT, Cloud Computing, Data Analytics, and AI is Digital 
Transformation. 

• The value that industries and governments will create from IoT Digital Transformation 
will range from $3- $11 trillion per year in 2025.  

“The Internet of Things: Mapping the Value Beyond the Hype,” McKinsey Global Institute, June 
2015.

This is Much More than Big Data!!



Economic Impact: Off the Charts!



Issues: Usage Modeling—Disaggregation
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Privacy Contracts
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Humans and Digital Transformation:  Traffic apps  
(courtesy Prof Alex Bayen)
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Initially people “thought” app helped



Until more and more people started using it



Specific apps are identified as responsible



Neighborhoods and cities start to resist



No real policy to help elected officials



But few people are asking the right question



Emerging Data Market—Regulation & Policy



Challenge:
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Intelligent Systems Require Rethinking ML

A Central Tenet of Classical ML

Classical ML assumes the past is representative of the future: When it is 
arduous to model a real phenomena, observations thereof are 
representative samples from static distribution 
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”To Predict and Serve?” Kristian Lum and William Isaac, Royal Statistical Society, 2016

Unintended Consequence: Feedback Reinforced Bias

Actual drug arrests: 
concentrated in “hotspot”

Estimated drug use: not
concentrated in “hotspot”

Take-away: Ill-
designed predictive 
policing algorithms 
can reinforce 
institutional bias



Unmodeled Strategic Behavior: Collusion Triggered Inequities

”Surge” Club

• Drivers “caught” colluding to trigger surge 
prices in high demand locations

• Unintended consequence: increased prices 
get offloaded on passenger side of market

Take-away: Ill-designed pricing 
algorithms can exacerbate inequities



Emerging New Domain: Learning-Enabled Intelligent Systems

Designing AI/ML-Enabled Systems requires tools from several core domains



Today’s Talk: Results on How to Deal with Humans in the 
Loop
• Key issues we are addressing

1. Multiple decision-makers (algorithms) interacting, and potentially competing 
2. Considerations when learning in the presence of dynamically adaptive agents.
3. Robustness to model misspecification

!"#$%&' Game theoretic abstractions and dynamic models of interaction 
are crucial in addressing many of these challenges



Age of algorithmic automation
is here



• Humans, algorithms (acting on their behalf) and automation interact with one another 
in today’s societal scale systems. Eg: transporation network, online marketplaces, 
electric grid, stock exchanges etc. 
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[MCMSR 22] Maheshwari C.*, Chiu C-Y*, Mazumdar E, Sastry S, Ratliff L. Zeroth Order Methods for Convex Concave Minmax problems: Applications to Decision Dependent Risk Minimization. Published in   
proceedings of  AISTATS 2022

[MKWS 22a] Maheshwari C*., Kulkarni K*., Wu M., Sastry S. Dynamic Tolling for inducing socially optimal traffic loads. Published in proceedings of ACC 2022 
[MKWS 22b] Maheshwari C., Kulkarni K., Wu M., Sastry S. Inducing Social Optimality in Games via Adaptive Incentive Design. To appear in CDC 2022
[MWPS 22]  Maheshwari C.*, Wu M.*, Pai D., Sastry S. Independent and Decentralized Learning in Markov Potential Games. Arxiv 2205.14590
[MMS 22]  Maheshwari C., Mazumdar E.., Sastry S. Decentralized, Communication and Coordination free learning in Markov Potential Games. Arxiv 2206.02344
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Key Vignettes

• Vignette 1: How to align societal objectives with selfish objectives by suitably 
modifying the incentives of humans / algorithms (acting on their behalf) 
participating in a societal scale system? [MKWS 22a, MKWS 22b]

• Vignette 2: How does humans /algorithms (acting on their behalf), who act 
independently and in a decentralized manner, make decisions so as to ensure 
“stability” in the system? [MWPS 22, MMS 22]

• Vignette 3: How to ensure societal scale systems be robust to strategic behavior 
of humans/ algorithms (acting on their behalf)? [MCMSR 2022] 

[MCMSR 22] Maheshwari C.*, Chiu C-Y*, Mazumdar E, Sastry S, Ratliff L. Zeroth Order Methods for Convex Concave Minmax problems: Applications to Decision Dependent Risk Minimization. Published in   
proceedings of  AISTATS 2022

[MKWS 22a] Maheshwari C*., Kulkarni K*., Wu M., Sastry S. Dynamic Tolling for inducing socially optimal traffic loads. Published in proceedings of ACC 2022 
[MKWS 22b] Maheshwari C., Kulkarni K., Wu M., Sastry S. Inducing Social Optimality in Games via Adaptive Incentive Design. To appear in CDC 2022
[MWPS 22]  Maheshwari C.*, Wu M.*, Pai D., Sastry S. Independent and Decentralized Learning in Markov Potential Games. Arxiv 2205.14590
[MMS 22]  Maheshwari C., Mazumdar E.., Sastry S. Decentralized, Communication and Coordination free learning in Markov Potential Games. Arxiv 2206.02344



Two Vignettes Today

• Vignette 1: How to align societal objectives with selfish objectives by suitably 
modifying the incentives of humans / algorithms (acting on their behalf) 
participating in a societal scale system? [MKWS 22a, MKWS 22b]

• Vignette 2: How does humans /algorithms (acting on their behalf), who act 
independently and in a decentralized manner, make decisions so as to ensure 
“stability” in the system? [MWPS 22, MMS 22]

• Vignette 3: How to ensure societal scale systems be robust to strategic behavior 
of humans/ algorithms (acting on their behalf)? [MCMSR 2022]

[MCMSR 22] Maheshwari C.*, Chiu C-Y*, Mazumdar E, Sastry S, Ratliff L. Zeroth Order Methods for Convex Concave Minmax problems: Applications to Decision Dependent Risk Minimization. Published in 
proceedings of  AISTATS 2022
[MKWS 22a] Maheshwari C*., Kulkarni K*., Wu M., Sastry S. Dynamic Tolling for inducing socially optimal traffic loads. Published in proceedings of ACC 2022 
[MKWS 22b] Maheshwari C., Kulkarni K., Wu M., Sastry S. Inducing Social Optimality in Games via Adaptive Incentive Design. To appear in CDC 2022
[MWPS 22]  Maheshwari C.*, Wu M.*, Pai D., Sastry S. Independent and Decentralized Learning in Markov Potential Games. Arxiv 2205.14590
[MMS 22]  Maheshwari C., Mazumdar E.., Sastry S. Decentralized, Communication and Coordination free learning in Markov Potential Games. Arxiv 2206.02344



Vignette 1: Dynamic Tolling for Inducing Socially Optimal 
Traffic Loads
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Welfare maximizing incentive mechanism

!"#$$%&'()*+,"-

!"#$%&'()*'+,-.%+/'
01(+/2'34(5,-,4+

v !"#$%&'"($)&**(+&,)&-.)./0&*"1*/)#2)"*&+/,/*')10.&"/')"%/)'"&"/)#2)
$#-3/'"(#-)#-)"%/)"*&22($)-/"4#*5

v 6)$/-"*&,)0,&--/*)4%#)4&-"')"#)7(-(7(8/)"%/)#+/*&,,)$#-3/'"(#-)#-)"%/)
-/"4#*5),/+(/')"#,,')#-)"%/)"*&+/,/*'))

!"#$"%&'$(
)**$+$,(

90.&"/.)'"&"/

Societal Problem à Modeling

:#1"/)
'/,/$"(#-



Key features of the proposed approach 
1. The toll prices are updated at a slower timescale than the dynamically changing 

congestion levels 
2. The toll prices are updated based on marginal increment in travel time at the current 

congestion levels 

Key Question
How to design toll prices on a traffic network which
1. account for dynamically changing congestion levels due to incoming and outgoing traffic 

comprised of myopic and selfish travelers?
2. ensure that eventually the congestion levels are socially optimal 
3. are economically motivated

Overview
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Experiments: No tolls
• Consider quadratic costs ℓ!(𝑥) = 𝑖𝑥" + 𝑖
• We first plot the discrete time update and the socially optimal load levels with no 

tolls (𝑎 = 0) for 𝑅 = 6 and 𝛽 = 100.

𝜆 = 0.1, 𝜇 = 0.05 𝜆 = 0.2, 𝜇 = 0.05



Experiments: With tolls
• For the same quadratic costs ℓ!(𝑥) = 𝑖𝑥" + 𝑖
• We first plot the discrete time update and the continuous time dynamical system 

with no tolls (𝑎 = 0.0015) for 𝑅 = 6 and 𝛽 = 100.

𝜆 = 0.1, 𝜇 = 0.05 𝜆 = 0.2, 𝜇 = 0.05



Experiments: Toll update

• We also plot the toll update for 𝑎 = 0.0015. We see that the tolls updates slowly
as compared to the loads, and reach their equilibria. 

𝜆 = 0.1, 𝜇 = 0.05 𝜆 = 0.2, 𝜇 = 0.05



Vignette 2.1:
Decentralized Communication and Coordination 

free learning in matching markets
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Learning through interaction

𝑡
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… 
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‣ Exploration/Exploitation Trade-offs.

‣ Optimal Algorithms



Learning through interaction
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•Learning through interaction

𝑡
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… 

𝑡𝑡
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Setting
Two-sided Matching markets

When one side of the market needs to learn to match to a desirable 
option while other agents are also competing for it





𝑓! 𝑓" 𝑓1

𝑎! 𝑎" 𝑎9
𝑓! > 𝑓" > 𝑓# 𝑓" > 𝑓! > 𝑓# 𝑓# > 𝑓$ > 𝑓%

𝑎# > 𝑎$ > 𝑎% 𝑎# > 𝑎$ > 𝑎% 𝑎# > 𝑎$ > 𝑎%

Two-sided matching market

𝑀:𝐴 → 𝐹
Ø Injective mapping 
Ø Example 

𝑀 𝑎" = 𝑓"

𝑀 𝑎# = 𝑓#

𝑀 𝑎$ = 𝑓$

Blocking pair
A tuple (𝑎, 𝑓) is a blocking 
pair with respect to a 
matching 𝑀 if both of them 
prefer each other over their 
current match



Stable Matching

Stable matching exists and can be non unique

A matching is called stable if there exists no blocking pairs

𝑓! 𝑓" 𝑓&

𝑎! 𝑎2 𝑎1
𝑓# > 𝑓$ > 𝑓% 𝑓# > 𝑓" > 𝑓$ 𝑓# > 𝑓$ > 𝑓%

𝑎! > 𝑎" > 𝑎# 𝑎# > 𝑎$ > 𝑎% 𝑎# > 𝑎$ > 𝑎%

𝑓! 𝑓" 𝑓1

𝑎! 𝑎" 𝑎9𝑓" > 𝑓# > 𝑓$ 𝑓# > 𝑓" > 𝑓$ 𝑓# > 𝑓$ > 𝑓%

𝑎# > 𝑎$ > 𝑎% 𝑎# > 𝑎$ > 𝑎% 𝑎# > 𝑎$ > 𝑎%

NOT Stable matching Stable matching

[Gale and Shapley 1962]



1. Everyone starts unmatched 

2. Each agent queries  the most preferred firm that has not rejected it 

3. Firm reviews list of queries and gets tentatively matched with best agent 
who queried and rejects other agents 

4. Repeat from step 2

Deferred Acceptance Algorithm: Known preference
[Gale and Shapley 1962]

It is polynomial time algorithm and achieves a stable match



‣ Decentralized

‣ Agents make their own decisions

‣ No Coordination 

‣ Agents do not need to coordinate actions across rounds 

‣ No Communication 

‣ Based only on local past information and does not need to communicate with others 

‣Converges to a stable match

‣ No (agent, firm) pair would abandon their current match for each other and be better off.

Deferred Acceptance Algorithm: Known preference
[Gale and Shapley 1962]



‣Decentralized

‣ Agents make their own decisions based on their own (local) information.

‣Communication and Coordination-Free

‣ Agents do not need to coordinate or communications their actions across rounds.

‣Partial Information

‣ Agents do not need to see who they collide with or know the firms’ preferences.

‣Convergent to a stable match

‣ No (agent, firm) pair would abandon their current match for each other and be better off.

•Full Information Solution: Deferred Acceptance

Develop an algorithm that learns agents preferences and quickly 
identifies stable match in a 
๏ decentralized,
๏ communication-free and 
๏ coordination free manner



Setup

• Firm queried by agent 𝑎 at time 𝑡 be 𝑓:(𝑡)

• Set of agents who query firm 𝑓 at time 𝑡 is given by 𝐴((𝑡) = {𝑎 ∈ 𝐴: 𝑓)(𝑡) = 𝑓}

‣ Agents have fixed but unknown preferences over firm 

Agent 𝑎 ∈ 𝐴 Firm 𝑓 ∈ 𝐹

‣ Firms have a fixed known preference on agents

𝑈:,; = 𝑢:,; + 𝜖:,; Unknown

‣ Agents repeatedly query firms in order to learn preferences 

‣ Agent 𝑎 receives a noisy utility on successfully interacting with firm 𝑓

‣ Set of agents 𝐴 and a set of firms 𝐹 form a market ℳ = 𝐴 ∪ 𝐹



Setup continued…

• Let the stable matching firm for agent 𝑎 be denoted by 𝑓:⋆

‣ At time 𝑡 if agent 𝑎 queries firm 𝑓 it gets a utility 𝑈&(𝑡) = 𝑌&(𝑡)𝑈&,(!(*)
‣ 𝑌:(𝑡) = 1 if agent 𝑎 is most preferred amongst 𝐴((𝑡) by firm 𝑓*(𝑡) [Matching]

‣ 𝑌:(𝑡) = 0 otherwise [Collision]

𝑅6(𝑇) = 𝔼 ∑
789

:
𝑢6,<,⋆ − 𝑈6(𝑡)Performance measure (Regret)

‣ Assume that there is a unique stable matching



Challenges

𝑈*(𝑡) = 𝑈*,+'(,)𝑌*(𝑡)

Uncertainty Non-stationarity

Collision with other agentsNoisy feedback

Decentralized 
Communication free 

Coordination free

Privacy, Scalability, Robustness



Challenges

𝑈*(𝑡) = 𝑈*,+'(,)𝑌*(𝑡)

Uncertainty Non-stationarity

Adversarial Bandit ModuleStochastic Bandit Module 

Decentralized 
Communication free 

Coordination free

Novel Algorithmic Design



‣ Failure: Move to next best firm (Prune)  

Failure

Algorithm

• If all the firms fail at time 𝑡 then pick best firm 
from ordering 

‣ Agent considers firms as per 
ordering one by one

‣ Success: Query the current firm and obtain 
reward to update the ordering and the 
success probability Success

Failure Failure

Success Success

Adversarial bandit 
algorithm

𝑝(
(*,,!) 𝑝(

(*,,")

Adversarial bandit 
algorithm

‣ Flips a coin with a success probability 

𝑝=
(:,;)

associated with firm 𝑓
Adversarial bandit 
algorithm

𝑝(
(*,,#)

At every time t = 1,2,….

‣ Each agent maintains an ordering of firms 
based on past rewards and confidence

𝑓" 𝑓" 𝑓6

Stochastic Bandit based ordering 

𝑎



Algorithmic Paradigm



Exp3 based adversarial bandit module

𝑝=(𝑡 + 1) =
1

1 + exp(𝜂(H𝐿>?@AB 𝑡 − H𝐿CA?5@ 𝑡 ))

Loss estimators

Two actions

Query the firm Prune the firm

𝑖!

𝑄 𝑃

ℓ;<=> = 0.5
Loss structure 

ℓ/&01 =
0 : successful match
1 : collision -𝐿$%&'( 𝑡 + 1 = -𝐿$%&'( 𝑡 + 1 −

𝕀(𝑖)*! = 𝑄)(1 − ℓ+,-.(𝑡 + 1))
𝑝/(𝑡 + 1)

-𝐿0'%1& 𝑡 + 1 = -𝐿0'%1& 𝑡 + 1 −
𝕀(𝑖)*! = 𝑃)(1 − ℓ2,-.(𝑡 + 1))

1 − 𝑝/(𝑡 + 1)



Modular Algorithmic Structure



Definition: A tuple (𝑎, 𝑓) is called fixed pair if 𝑓 is most preferred by 𝑎 and vice 
versa

𝑓! 𝑓" 𝑓1

𝑎# 𝑎$ 𝑎1

𝑓$ > 𝑓' > 𝑓& 𝑓$ > 𝑓# > 𝑓% 𝑓# > 𝑓$ > 𝑓%

𝑎# > 𝑎$ > 𝑎% 𝑎# > 𝑎$ > 𝑎% 𝑎# > 𝑎$ > 𝑎%

𝑓2

𝑎'

𝑓$ > 𝑓% 𝑓' > 𝑓&

𝑎' > 𝑎& 𝑎' > 𝑎&

𝑎&

𝑓1

𝛼-reducible markets

Definition: A market is 𝛼 −reducible if every submarket has a fixed pair.

𝑓$ 𝑓&

𝑎&

𝑓1

𝑎&
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<-"&'".$=+1%&'.()> Under 𝛼 −reducibility assumption the regret 

𝑅7(𝑇) ≤ 𝒪
1

(Δ∗)2
𝑇𝐶 ( 𝐹 , |𝐴|)

Δ ∗= 𝑚𝑖𝑛
%,':)3,5*+

Δ%,' = 𝑢%(𝑓%⋆) − 𝑢%(𝑓)where
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Main Results
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<-"&'".$=+1%&'.()> Under 𝛼 −reducibility assumption the regret 

𝑅7(𝑇) ≤ 𝒪
1

(Δ∗)2
𝑇𝐶 ( 𝐹 , |𝐴|)

Δ ∗= 𝑚𝑖𝑛
%,':)3,5*+

Δ%,' = 𝑢%(𝑓%⋆) − 𝑢%(𝑓)where

<-"&'".$=+1%&'.()> Under 𝛼 −reducibility assumption the regret 

𝑅7(𝑇) ≤ 𝒪
1

(Δ∗)2
𝑇𝐶 ( 𝐹 , |𝐴|)

Δ ∗= 𝑚𝑖𝑛
%,':)3,5*+

Δ%,' = 𝑢%(𝑓%⋆) − 𝑢%(𝑓)where

Curse of multi-agents

Can we at least improve 
dependence on T? 

Key idea

Collisions are not 
adversarial
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<-"&'".$=+1%&'.()> Under 𝛼 −reducibility assumption the regret 

𝑅7(𝑇) ≤ 𝒪
1

(Δ∗)2
log 𝑇 𝐶 ( 𝐹 , |𝐴|)

Δ ∗= 𝑚𝑖𝑛
%,':)3,5*+

Δ%,' = 𝑢%(𝑓%⋆) − 𝑢%(𝑓)where



•Numerical Experiments
‣ 5 agents with randomly generated preferences. 7 firms with fixed preferences. 

‣ Each agent is randomly chosen to use either Thompson sampling or UCB.

‣ All agents use mirror-descent with the log-barrier regularizer.
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Vignette 2.2:
Independent and decentralized learning in Markov 

Games

N7;?>&>?A6?2G&DA.6:./:?&.4& 944C8HII.>J6AG1>@I./8I''(KG('LMM



AboutCivil.org

ScienceDirect.com

Key Characteristics
๏ Non-myopic strategic agents 

๏ Uncertain and dynamic environment 

๏ Limited communication or coordination
between agents 

๏ Limited knowledge about other agents 

Question
How can agents make decisions in 
such environment by effectively 
exploring and exploiting in presence 
of other agents?

http://AboutCivil.org
http://ScienceDirect.com


Setup
[Markov Game] The game 𝐺 = ⟨𝐼, 𝑆, (𝐴")"∈$ , (𝑢")"∈$ , 𝑃, 𝛿⟩ where 

Ø𝐼 : finite set of players  

Ø𝑆 : finite set of states 

Ø𝐴: is the set of available actions to player 𝑖

Ø𝑢:: 𝑆×𝐴 → ℝ is the one-stage payoff of player 𝑖 encodes preferences

Ø𝑃(𝑠;|𝑠, 𝑎) denote the transition probability to 𝑠; from state 𝑠 under action 𝑎

Ø𝛿 ∈ (0,1) is the discount factor



:;04<$+.=(2>?$#%&'$@(A&'$"(%7$(&"&%&40(.%4%$(,&.%+&>/%&2"(𝜇 ∈ Δ(𝑆) %7$(02"3B+/"(
$1C$#%$,(C4<2**(2*(4"<(C04<$+(𝑖 ∈ 𝐼 &.(3&'$"(4.

57$+$(𝑠F = 𝑠, 𝑎G ∼ 𝜋(𝑠G), and𝑠G ∼ 𝑃(⋅ |𝑠GHI, 𝑎GHI)

Setup
[Policy class] We restrict the players’ policy to be stationary Markovian. 

Ø 𝜋:(𝑠, 𝑎:) be a stationary Markov policy for player 𝑖 which states the probability that 
player 𝑖 chooses action 𝑎: in state 𝑠

Ø Joint policy profile of players is 𝜋 = (𝜋:):∈=

𝑉2(𝑠, 𝜋) = 𝔼 ∑
345

6
𝛿3𝑢2(𝑠3 , 𝑎3)



Solution Concepts
Nash equilibrium A policy 𝜋∗ is stationary Nash equilibrium if for any player 𝑖, 𝜋: and 
initial state distribution 𝜇

𝑉2(𝜇, 𝜋2∗, 𝜋82∗ ) ≥ 𝑉2(𝜇, 𝜋2 , 𝜋82∗ )

𝜖 −D4.7($E/&0&>+&/8 F(C20&#<(𝜋∗ &.(.%4%&2"4+<(D4.7($E/&0&>+&/8(&*(*2+(4"<(C04<$+(𝑖G(
𝜋: 4",(&"&%&40(.%4%$(,&.%+&>/%&2"(𝜇

𝑉2(𝜇, 𝜋2∗, 𝜋82∗ ) ≥ 𝑉2(𝜇, 𝜋2 , 𝜋82∗ ) − 𝜖

H7$2+$8
F(.%4%&2"4+<(D4.7($E/&0&>+&/8(4054<.($1&.%.(*2+(4(I4+62'(348$(5&%7(*&"&%$(.%4%$(
4",(*&"&%$(4#%&2".



Solution Concepts
Nash equilibrium A policy 𝜋∗ is stationary Nash equilibrium if for any player 𝑖, 𝜋H and 
initial state distribution 𝜇

𝑉2(𝜇, 𝜋2∗, 𝜋82∗ ) ≥ 𝑉2(𝜇, 𝜋2 , 𝜋82∗ )

𝜖 −D4.7($E/&0&>+&/8 F(C20&#<(𝜋∗ &.(.%4%&2"4+<(D4.7($E/&0&>+&/8(&*(*2+(4"<(C04<$+(𝑖G(
𝜋H 4",(&"&%&40(.%4%$(,&.%+&>/%&2"(𝜇

𝑉2(𝜇, 𝜋2∗, 𝜋82∗ ) ≥ 𝑉2(𝜇, 𝜋2 , 𝜋82∗ ) − 𝜖

H7$2+$8
F(.%4%&2"4+<(D4.7($E/&0&>+&/8(4054<.($1&.%.(*2+(4(I4+62'(348$(5&%7(*&"&%$(.%4%$(
4",(*&"&%$(4#%&2".

,-.-%&/)%-01#"#2)34#05"67)'8"68)8-%/7)/%04-17)%-01#)09&:;):#3-1%4"#2)-#."1&#5-#;)
0#3)807)$&%%&'"#2)/1&/-1;"-7)
๏ ,-6-#;10%"<-3 0#3)"#3-/-#3-#; "5/%-5-#;0;"&#)
๏ =->:"1-7 #&)"#$&150;"&# 09&:;);8-):#3-1%4"#2)7;1:6;:1-)&$);8-)205-)
๏ ?&#.-12-7);&)@078)->:"%"91":5





Prior Work
• (Borkar 02) proposed an actor-critic based algorithm with similar timescale 

separation and showed weighted empirical distribution of actions of players 
converge to generalized Nash equilibrium

• (Arslan and Yüksel 16) proposed decentralized algorithm in the context of 
acyclic Markov games which required coordination between players 

• (Perolat et al 18) proposed decentralized actor-critic algorithm for finite 
length cooperative multistage games

• (Daskalakis et al 20) proposed decentralized learning dynamics for zero-sum 
games but requires one player to update slower than another

• (Sayin et al 21) proposed a decentralized and independent learning dynamics 
in the context of zero-sum games but with reversed timescale separation 







Learning about
environment

Non-stationarityChallenges

Perturbed 
Game

Fast q-learning

Approach

Ensures that players can 
learning about the q-function by 
considering the policy as static

Slow policy update
Ensures that the players update 

the policies using perturbed 
best response based on 

converged q-function







Learning Dynamics



Assumptions
๏ (A1) [Initial state distribution] Initial state distribution 𝜇 has full support 

๏ JFKL :H+4".&%&2"(6$+"$0@(H7$+$($1&.%.(4(?2&"%(4#%&2"(C+2*&0$(𝑎 ./#7(%74%(%7$(
84+62' #74&"(&",/#$,(><((𝑃(𝑠%|𝑠, 𝑎))&,&9 &.(&++$,/#&>0$(4",(4C$+&2,&#

๏ JFML :N$4+"&"3(+4%$.@(H7$(.%$C(.&O$(.$E/$"#$((𝛼 𝑛 , 𝛽(𝑛)) .4%&.*<(%7$(*20025&"3(

! !"#$%#%&'(&)*+',(*#-(-'.*/%#01(∑
?
𝛼(𝑛) = +∞,∑

?
𝛽(𝑛) = +∞, 𝑙𝑖𝑚

?→A
𝛼(𝑛) = 𝑙𝑖𝑚

?→A
𝛽(𝑛) = 0

! !2*3%#0(&4'(*5/#.4)6#%.%&/1(76)(*#/(𝑥 ∈ (0,1)8( 𝑠𝑢𝑝
)
𝛼([𝑥𝑛])/𝛼(𝑛) + 𝛽([𝑥𝑛])/𝛽(𝑛) < ∞

! !2%3'(5.*,'(5'9*)*&%6#1 𝑙𝑖𝑚
?→A

𝛽(𝑛)/𝛼(𝑛) = 0



Main Result

Theorem: Under (A1)-(A3), given any 𝜖 > 0 and any 𝜏 ∈ (0, 𝜏() the sequence of 
policy profiles (𝜋I)IJKL converges to 𝜖 −Nash equilibrium with probability 1. 

𝜏G =
𝑒𝜖(1 − 𝛿)
2𝑚𝑎𝑥H|𝐴H|

Define



Application Area: Mobility Systems

Deployment of autonomous vehicles
into mobility infrastructure by 
effectively incorporating 

–Continuous state and action spaces 

–Partial information about state of 
the system 

–Communication with neighbors 

–Bounded rationality of human 
decision making 



Inventing the Future

• Deep Technology Design Innovation
– Robotics and Intelligent Machines -- Advancing the state of art in robots working with humans, 

unmanned vehicles, air and ground,  deep learning, new transportation methodologies, 
– Augmented Reality/Virtual Reality – Augmenting Cognition, redefining the future of brain machine 

interfaces, the future of performance, educational delivery. 
– IoT and Next Generation Infrastructure – Swarms of Sensors in Cyber Physical Systems creating the 

sharing economy. 

• Driving Societal Change
– Better Health – Saving and extending lives with new tools for better diagnosis and care 24/7 in the 

hospital, clinic, and home
– Improving the Human Experience – Enhancing the quality of life in work, family, and society with human-

centered technology solutions 

• Societal Concerns
– Collective Good and Individual Utility :  – Individual utlility and societal good.  How do you incentivize 

players to do  the right thing.
– Should the Future be like the Past – All supervised learning will incorporate the biases of “past” training 

data into predictions of the future
– Humans Adapt to Automation -- Should machine learning algorithms be robust to human adaptation



Thank you!


