NRI: INT: Hybrid Aerial/Underwater RobotiC System (HAUCS) for Scalable, Adaptable Maintenance of Aquaculture Fish Farms: Initial Development

Bing Ouyang, Paul S. Wills, Jason O. Hallstrom, and Tsung-Chow Su, Florida Atlantic University Contacting Information: Email: bouyang@fau.edu; Phone: 772-242-2288

One alarming number: \$14 billion/yr - US trade deficit in seafood products.

One dilemma: Aquaculture farming is labor intensive and timeconsuming; Fish farms have seen limited robotics development...

One Key Bottleneck: Effective monitoring of Dissolved Oxygen (DO) in the fish ponds.

- Traditional approach is slow and labor-intensive.
- State-of-the-arts (float mounted sensors) are costly and inaccurate.

Coastal zone environmental monitoring (i.e., Harmful Algae Bloom): Complementary to other in-situ sensors: boat/AUV based or stationary;

Optical comm. gateway with underwater assets using USV+HAUCS: energy-efficient, longendurance, extended-coverage range;

Offshore aquaculture environmental monitoring: Extending HAUCS to a more challenging environment.

Work done (From Summer 2019 -)

Hybrid Aerial/Underwater RobotiC System (HAUCS):

- Converts aquaculture farm operations to an "Internet of Aauaculture."
- Autonomous Unmanned Platform (AUP), integrated with underwater sensors; land-based infrastructures and machine learning (ML) DO prediction model

Initial Farm Deployment

- At Logan Hollow farm (Gorham, IL) · Objectives:
- √ Test LoRa comm.;
- Acquire data for prediction model;
- **Improving** acceptance of Robotic Tech. on the fish farm.

Map

ML DO Prediction Model

STM DO

- Contribution from a REU intern;
- Robust against incomplete data;
- **Exciting initial results:**
- Average accuracy (4-hr look-ahead): 92% with worst pond at 78%.
- Improves farm acceptance

AUP Development

Coaxial Drone

- Evaluated different platform options;
- · Adopting coaxial-drone as the foundation to develop AUP;
- Working on initial prototype

- Improving the penetration of robotic technology in fish farming industry
 - Deploying intermediate low-cost solutions: Logan Hollow Fish Farm requested a second sensor unit after experienced the success of the first unit!
 - Establishing a pilot HAUCS aquaculture test site at HBOI/FAU;

- Improving undergraduate STEM education:
 - Two NSF REU interns and three HBOI summer interns contributed to the project;
 - Two interns (one female and one minority) contributed to an IEEE IoT Journal paper (invited for revision);

Mitigating biofouling: Avoiding maintaining sensors in bio-productive water.

More accurate monitoring of pond spatial/temporal variations: Capable of sampling multiple pond locations/depths.

Cost Reduction: ~5x reduction of labor and equipment cost.