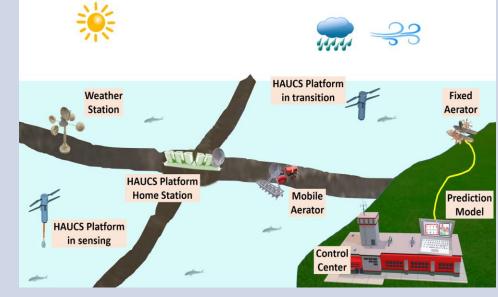
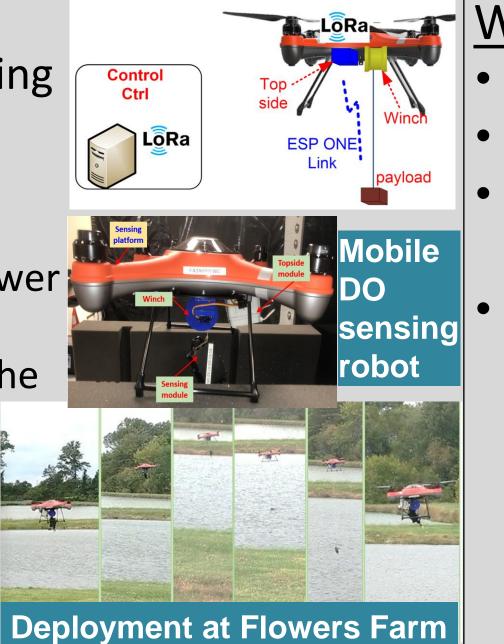
NRI: INT: Hybrid Aerial/Underwater RobotiC System (HAUCS) for Scalable, Adaptable Maintenance of Aquaculture Fish Farms: Year 3 Development

Bing Ouyang, Paul S. Wills, Jason O. Hallstrom, and Tsung-Chow Su, Florida Atlantic University Contact Information: Email: bouyang@fau.edu; Phone: 772-242-2288


Motivation

An alarming number: \$14 billion/yr. – US trade deficit in seafood. **A dilemma:** Limited robotics adoption in the fish farm industry suffers from laborious, time-consuming operations and labor shortage. **A Key Bottleneck:** Effective monitoring of Dissolved Oxygen (DO) in fishponds.

Traditional approach is slow and labor-intensive and the state-of-the-arts are costly/inaccurate and difficult to maintain


Hybrid Aerial/Underwater RobotiC System (HAUCS):

- Converts aquaculture farm to an "Internet of Aquaculture."
- Autonomous Unmanned Platform (AUP) integrated with underwater sensors + landbased infrastructures and machine learning (ML) DO prediction model.

Field Deployment (L. Lopes)

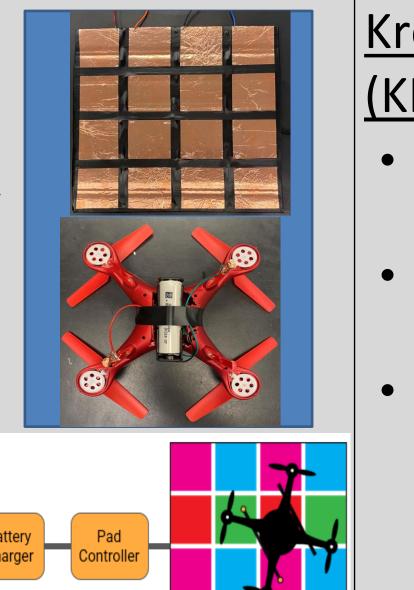
- First-of-the-kind mobile DO sensing robotic system for pond farms.
- Drone moves into place based on routing from HPP;
- GPS position activates a winch to lower payload into water to gather data; Data is transferred to topside using the ESP-NOW link, then to base station. using the LoRA link.
- **Demonstrated on our collaborative Fish farms**

2022 NRI & FRR Principal Investigators' Meeting April 19-21, 2022

Algorithms Development

Path Planning (T. Davis, S. Mukherjee)

- Developed HAUCS Path Planning Algorithm (HP) A two-step heuristic to produce efficient route for farm monitoring.
- Compared HPP against two Vehicle Routing Problem solutions: Graph Attention Model (GA and Google Linear Optimization Package (GLOP)
- HPP outperforms in efficiency and run time for instances larger than 200 ponds.


GAM

Platform/Infrastructure Development

HPP

Wireless Charging (W. Fairman) Extend the range of HAUCS AUPs; Critical for fully automated sensing; • A novel design that is much simpler than the existing designs;

- Adaptive wireless drone charging;
 - Employs a chessboard-style contact
 - A controller determines which 'color' pads are in contact with the battery.
 - Then routes +/- wires of the charger to the contacted pads and initiating charge.

GLOP

PP) es	 Pond Farm Phone App (R. Pugh) First-of-a-kind phone app for pond farm operations. 	Login FLOWERS FISH FARM POND VIEWER
(M) P).	 Act as the information center for pond and environmental data, and status of farm equipment. Extracting the pond condition from AWS forecasted by the prediction model. 	<text></text>

Kresling-kirigami-Inspired Robotic ExtensioN (KIREN) (C. Den Ouden)

 Current payload extension for DO sensing does not require precise motion control

KIREN will support sophisticated operations requires high stability, i.e., underwater cameras.

• Actuated by a micro-gear system, KIREN has a fold-flat

design that can expand multiple times of the collapsed height.

Initial lab prototype supports 4x expansion

Award ID#: 1830227 (USDA 2019-67022-29204)