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1 SUMMARY 

1.1 General 
IBM Research is leading a crack team of researchers with a common goal of defining a common 
language for cyber-physical systems modeling. The main vision that is driving the effort is to 
give the Systems Engineering (SE) community the ability to formally express design models and 
to reason about their interaction on a common semantic basis, eventually allowing automated 
composition and full virtual verification of complete systems. 

1.2 Team 
IBM team’s inspiration comes from Alberto Sangiovanni Vincentelly, a pioneer of Electronic 
Design Automation (EDA) and a universal expert in hybrid systems research. Alberto’s input is 
instrumental in every aspect of our activity and IBM is very fortunate for have him on the team. 

A veteran of European hybrid systems research Advanced Laboratory for Embedded Systems 
(ALES) from Rome (Italy) brings invaluable experience and a broad basis in tool and language 
integration for heterogeneous systems. Represented by Alberto Ferrari and Leonardo Mangeruca, 
ALES team handles the difficult part of defining the mathematical framework for common 
semantics and of integrating the various models in a single tool. 

We are taking our cues on design processes and methodologies from United Technologies 
Research Center (UTRC) team, who also provides us with use cases for our language and tools 
validation and demonstration. UTRC team is represented by Brian Murray and Alessandro Pinto. 

Dr. Michael Masin, from IBM Haifa Research Laboratory (HRL) is the Principle Investigator for 
this activity. Lev Greenberg is leading the contracts language and semantics effort. Henry 
Broodney is in charge of the variability and concise modeling activity. 
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2 INTRODUCTION 
Increased systems complexity is causing schedule and costs overruns in the vast majority of 
defense and aerospace development projects. Despite the wide adoption of  domain specific 
software tools, which are able to model, simulate and verify the most intricate corners of 
mechanics, flow dynamics, thermal interactions, electric power and logic and many more, the 
interaction between those tools, within and across the various domains, remains a thing of the 
future. Modeling, which is ubiquitous in the various domains, focuses on the interaction of object 
within the domain thus not having semantic meaning outside the domain. Also many modeling 
languages do not carry precisely defined semantics, but rather employ execution semantics of the 
specific tools they are used in. Thus integration between two languages and often between the 
same language in two separate tools is impossible. To address the above IBM team, basing its 
effort on the experience of prof. Sangiovanni and of ALES, is working on the definition of an 
integration language with rigorous semantics that would be able to bind the other languages and 
tools together. The work is based on the Tagged Signal Model (TSM)  [1] developed by prof. 
Sangiovanni and his colleague Edward Lee. The specific behavior and the semantics of various 
tools and languages are called Models of Computation and Communication (MoCC). 

Contemporary engineers lack ability to formally express the requirements and components, so 
that composition of the latter would be possible. Furthermore a formal description of both will 
facilitate computer based reasoning about the components’ composition and about the 
satisfaction of the requirements by a specific components’ architecture. IBM proposes to adopt 
an already circulating approach of contract based design (or assume-guarantee reasoning) and 
augment it by a specific contract language definition with a semantics defined using the results 
of the activity outlined in the previous paragraph. 

In addition, for a true computer aided design of complex systems, we would like the software 
tools to help us come up with the best architectures for our systems. In order to do that the new 
language must be able to model systems, their composition rules, constraints, parameter relations 
and more, so that a computer is able to generate architectures from the above inputs, thus 
significantly decreasing system design times, reducing the number of unsuccessful design 
iterations and improving the overall quality of the systems. 

We call our proposed language Lingua Franca. SysML, as the predominant global standard for 
systems modeling, serves as the base for the language. 

2.1 Lingua Franca Ecosystem 
In order for the reader to have perspective about the place of the new language in the Systems 
Engineering ecosystem we bring forth Figure 1 which was the centerpiece of our presentation at 
the 5th META PI meeting (July 2011, Arlington, VA). 

The Tagged Signal Model (TSM) is the core of the language semantics foundation in the 
following onion representation of the ecosystem. The TSM facilitates integration between 
domains and serves as the basis for the rest of the language elements. 

The three sides of the language coin are the MoCC integration language, variability modeling 
package and the contracts language. 

Next are the tools that use the language. The forefathers of those tools are the various prototypes 
that IBM team has demonstrated in the course of the PI meetings. The tools use the language and 
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their prototypes serve as the validators to the language, a sort of assurance that the language can 
express what the design process, via the tools, needs to have expressed. 

And the most important layer is the participants of the design process. There are three levels of 
designers in the ecosystem, ones that do the actual designs (System Engineers), ones that develop 
the tools and lastly the ones that develop the methods and deal with the Tagged Signal Model. 
This situation is very similar to what is happening in electronic design. 

In addition to designers there are several other, no less important groups, that affect the process 
and are going to use and benefit greatly from the enhanced formality of the language. These are, 
for example, Marketing people, Customers and other non-engineering stakeholders. 

 

 
Figure 1 - Lingua Franca Ecosystem 

 

2.2 Common Semantics 
Models of cyber-physical systems, or parts thereof, whether geometrical, behavioral, thermal, 
mechanical, etc., are formalized with respect to a precise mathematical framework that we call 
the model’s semantics. The focus is on the unification of the relevant semantics (e.g., 3D 
geometry, spatiotemporal ordinary and partial differential equations, stochastic processes, 
discrete systems, hybrid systems) for cyber-physical modeling, while retaining their analytical 
power. 

The unification of semantics has the purpose of enabling integrated cross-domain formalization, 
analysis and synthesis (Sinnig 2007) (Q. D.-V. Zhu 2006) (Q. Zhu 2007) (Madl 2006). While 
different unifying semantics are used for different analytical purposes, an overarching semantic 
unification is still required to provide the general meaning of integrating different domain 
specific models, so that all analytical results, possibly obtained over different semantics, concur 
to a consistent interpretation and understanding of the overall system. To take advantage of the 
analytical power of the different semantics, the approach described in the present document also 
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advocates the specification of different semantics as libraries within the META language to 
enable both domain specific and integrated cross-domain analytical flows. 

The semantics concept has two facets – Denotational and Operational. Denotational semantics 
attempts to formalize the meaning of a language in mathematical terms, which provide meaning 
to the language constructs. Operation semantics is the definition of how execution results are 
obtained from the model. Having defined Denotational semantics allows formal verification and 
optimization, whereas Operational only allows joint execution of models. 

In the approach described in the present document, and detailed in Appendix B the common 
semantics is fine-grained so that that all domain specific semantics relevant for the META II 
project can be represented. The common semantics may evolve over time, if needed to account 
for new semantics.  

The current status of the proposed common semantics can represent physical modeling over 
space and time (ordinary and partial differential equations, hybrid systems) as well as for timed 
and untimed digital systems and their integration with physical systems. The common semantics 
can and will be extended to probabilities and stochastic processes over space and time.  

The structural representation of the cyber-physical design is captured by the approach presented 
in the present document in the META integration language. This language is designed to specify 
the integration of models defined using different domain specific languages and semantics. The 
language only captures integration aspects, which include also the original domain specific 
semantics in which the models are defined. Semantic annotations enable the user to be aware of 
semantic integration aspects and explicitly introduce appropriate semantic adaptation 
components. The effects of the integration can be verified using the analysis tool chain, that is 
also aware of the semantic integration made explicit in the integration language. The integration 
language supports both denotational and operational semantics, so that the integration of 
analysis tools is systematic and semantically robust. The analysis tools chain is not necessarily 
targeting the common foundational semantics, whose purpose is to provide rigorous 
mathematical definition of the meaning of the overall system model. On the contrary, the 
analysis tool chain exploits the analytical power of the different semantic domains supported by 
the integration language. 

The main differentiation of the proposal outlined here with respect to existing approaches to the 
modeling of heterogeneous systems is the focus on the integration of existing domain specific 
languages and semantics and corresponding analysis and synthesis capabilities. The proposed 
language is used to define a semantically robust integration of IPs and analytical methods and 
results provided using several domain specific languages and tools. 

2.2.1 Common Semantics Comprehension 
As stated previously, most tools have no formally (mathematically) defined semantics and the 
only semantics they have is defined, often incidentally, by the actual functionality of the 
simulators and solvers. These semantics are generally undocumented and are difficult to 
discover. Hence only black box interactions are possible, when the integrating tool is not aware 
of the nature or the behavior of the black box component, but rather only of the component’s 
boundary. An integration tool with understanding of the internal semantics may achieve different 
results. 
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Another aspect of semantics is its importance in the eyes of the very people who need it. The 
word means different things to different people and we’ve seen such differences even in the PI 
meeting workshops. The regular model transformation today is purely syntactic and thus non-
generic and sometimes flawed, since the same model will yield different results in a different 
tool. In our experience also through the course of interaction with other META performers, we 
see that once the idea settles in one’s mind the need becomes clear. 

The vision of common semantics is, however, not easily attainable one. Figure 2 is an excerpt 
from one of our PI meeting insight slides. The left hand box represents the state of the art today 
with the center box representing the vision of common semantics. The task of defining formal 
semantics for all tools and languages is gargantuan in nature, both due to its own complexity and 
due to the fact that a formal definition must be devised for the actual source modeling 
environments. Thus the plausible reality, the sprouts of which we have attempted to show in our 
demonstrations, is to have an integration layer between the integrative analysis tool and the 
source models. At the very least a black box simulation or computation should always be 
possible. As time progresses and tools’ semantics are formalized more analyses and automatic 
design activities can take place. 

 
Figure 2 - Common Semantics Comprehension 

2.3 Existing Work 
IBM effort is, in part, fed by the work done by Alberto Sangiovanni, his colleagues and his 
students, in the field of common semantics, heterogeneous tools and contract based design 
[REFS]. In addition our ALES partners bring experience from the European Union (EU) 
SPEEDS project, where a contract framework and a Hosted Simulation protocol were developed. 
In addition we make use of the DESYRE simulator which is a TSM based commercial tool 
developed by ALES. 

IBM Research has developed a Product Lines Engineering approach for software modeling. This 
approach is partially integrated into the new language variability package. 

2.4 IBM Commercial Tools 
IBM Corporation is a leading tool provider for the SE industry. Our work is mostly based on the 
Rational Rhapsody modeling tool and iLog CPlex Studio optimization environment.  Our 
prototypes are mostly plug-ins for Rhapsody. 
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2.5 Language Elements 

2.5.1 Semantic Foundations 
The META II language has been founded over rigorous mathematical foundations by defining a 
reference common semantic domain based on the Tagged Signal Model (TSM) mathematical 
framework. The definition of the reference common semantic domain has been detailed in a 
document along with examples on how it can be used to define Models of Computation (MoC) 
and to provide semantics both to domain specific languages and models expressed with such 
languages. 

The reference common semantic domain is able to capture different domain semantics, including 
those required to specify spatiotemporal ordinary and partial differential equations, timed and 
untimed digital systems, discrete event models, 3D geometrical and kinematic models, thermal 
models. The TSM mathematical framework has also been extended with the capability of 
representing probabilistic and stochastic semantics, including probabilistic uncertainty models, 
Markov Chains, Stochastic Hybrid Systems. 

The reference common semantic domain is also able to represent operational semantics, for the 
definition of computation protocols, such as the Functional Mockup Interface, the SPEEDS 
Hosted Simulation protocol, the Ptolemy actor semantics. 

The reference common semantic domain has been demonstrated with some simple examples, 
among which the PID controller example has been discussed in the Semantics Workshop at the 
PI meeting in May. 

2.5.2 Models of Computation 
Models of computation (MoCC) provide semantics to the models referred to through the Lingua 
Franca language constructs. Constructs are provided within the Lingua Franca language to 
• Associate modeling elements such as blocks and ports with semantic elements (models of 

computation); 
• Express requirements that MoCCs impose on modeling elements they are associated with; for 

example, the discrete time model of computation requires that each modeling element it is 
associated with specify the sampling period and initial time offset as attributes. 

The language described in the present document enables to specify MoCCs and their modeling 
requirements as SysML profile extensions and associations between modeling elements and 
semantic elements as SysML stereotypes in the Lingua Franca model.  

2.5.3 Integration Language 
The META II integration language has been conceptualized as an extension of the SysML 
standard language. The language includes means to relate blocks and block ports to semantic 
domains. Semantic domains specify attributes that blocks and/or block ports must assign value 
to. 

2.5.4 Contracts 
Lingua Franca contracts framework based on Assumption/Guarantee approach was developed.  
Assumption/Guarantee  asserts are represented as processes in framework of TSM. Semantics 
and syntax of the contracts are partially defined, while common semantics of contracts enable 
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analysis of contracts specified in different Domain Specific Languages (DSL) such as PSL, CSL, 
PRIMATIC, etc. We have shown flow from requirements to formal contracts and monitors 
generation for UTRC use cases.  Usage of contracts was demonstrated as part of design space 
exploration flow.  

Our language enables to specify contracts as white/gray/black boxes in stereotyped SysML 
model. 

The contract based design approach facilitates a central concept of the META program – 
Platform Based Design (PBD). PBD is a formalization of what Systems Engineers have been 
mostly doing for quite a while. In contemporary competitive environment virtually no system 
design is started from scratch, but from an assortment of existing engineering assets 
(components), which the Systems Engineer uses, to the maximum extent possible, to create an 
architecture that satisfies the requirements. From time to time there will be no component that for 
some function and then the engineer will create a placeholder for that component and produce a 
requirement specification. PBD approach, recognizing the above, attempts to formalize that 
process analyzing its philosophy in order to create tools and methods that will aid the Systems 
Engineer improving designs and reducing costs and schedules. 

2.5.5 Variability Modeling 
2.5.5.1 Background 

System modeling in SysML is a relatively new practice. The architecture is usually represented 
by a collection of blocks interconnected by flows. The flows represent data or physical matter or 
energy. The main objectives of system modeling normally are: conveying information to peers, 
simulating the system’s behavior to verify its correctness or generating software code for system 
control. 

However, before any analysis can be done, the Systems Engineer (SE) must model the 
architecture or a set of architectures are the best candidates for the system in question.  

There are two main problems that the SE is facing. The first is that it may be impractical to 
model the entire system in SysML, which is a predominantly graphic language, due to the 
system’s sheer size and complexity. For example, modeling a network of one hundred Ethernet 
switches is time consuming, error prone and the resulting model would most certainly be 
unreadable. 

The second, even more acute problem is that the optimal architecture is unknown at the time of 
modeling. The SE needs to create the various alternatives and reason about their merits. The 
alternatives creation process is often manual, resulting in missed variants that may have been the 
best choice. 

2.5.5.2 Objective 

The purpose of variability modeling is: 
• Define complete composition rules for a system without explicit modeling of a system 
• Define variability points in a system: 

o Components variability – selection of a component out of an existing library 
o Topological variability – selection of which components are connected to which 
o Geometrical variability – selection of specific location for each component 
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o Relational variability – selection of specific components based on the existence or 
non-existence of others 

• Define constraints for variability choices (above) 
• Provide information for automatic formulation of an optimization problem in order to 

find an optimal system architecture 
• Allow automatic expansion of the concise model into a concrete system architecture: 

o Based on a set of expansion parameters (solution) 
O Conserving composition rules to allow subsequent simulation and verification of 

the expanded system  
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3 METHODS AND ASSUMPTIONS 

3.1 Challenge problems 
Every engineering method is best explained by applying it to a real world use case. IBM has 
contracted a fellow META performer, United Technologies Research Center (UTRC), to provide 
use cases on which the newly developed language and methodologies will be tested. 

3.1.1 Electric Power System 
The lead use case provided by our partners is an Electric Power System (EPS) for an 
experimental Unmanned Aerial Vehicle (UAV). Figure 3 depicts the general structure of the 
EPS. The EPS is split into two major parts – the primary EPS and the secondary EPS.  

The primary EPS includes the power generation infrastructure and ends with the Alternating 
Current (AC) and Direct Current (DC) buses. The main goal of this part of the system is to make 
sure that all buses are powered in as many scenarios as possible. It consists of four power sources 
(right and left generators, an Auxiliary Power Unit (APU) and an inverter). A relay network 
connects the sources to the two AC buses, which in turn are powering the DC buses through a 
Transformer Rectifier Units (TRU). The external power input and the Ram Air Turbine (RAT), 
which are both normally present in all aircraft, were dropped to reduce the use case complexity. 

The secondary EPS starts with the buses and includes the power distribution infrastructure to the 
loads of the system. The core of the secondary EPS is a collection of Power Distribution Boxes 
(PDB), which house electric protection and power management devices. Each PDB drives 
several loads. 

 
Figure 3 - EPS Use Case Diagram 

 

Since we wanted to address the geometrical aspect of the architecture, UTRC provided 
geometrical data for the possible locations of the PDB network and the loads. Figure 4 depicts 
the secondary EPS geometry with the dark rectangles being the optional locations of PDB and 
the white rectangles and the red circles are the concrete locations of the exemplary loads in the 
system. The green lines depict the right and left power buses. 
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Figure 4 - Secondary EPS Geometrical Layout 

In addition we have received and used: 

• A list of requirements in the form of contracts. Following are some exemplary 
requirements: 

o Power sources can never be paralleled 
o All buses must be powered in case of no more than 1 failure beyond the Minimum 

Equipment List (MEL – list of failure combinations that do not affect the mission 
worthiness of the aircraft) in steady state (breaks of up to 2ms allowed) 

o TRUs can never be paralleled in steady state (transients allowed) 
o Critical loads must be powered for at least 30 minutes in case of loss of all 

mechanical power sources (Generators, APU) 

• A Simulink analysis model – capable of accepting an architecture and component data 
and generating current/voltage/power on the nodes. 

• Simulink models of components – generators, relays, TRU. 

3.1.2 Gas Turbine Engine 
Another use case we have used for validation of the concise modeling approach is a Gas Turbine 
Engine model provided by Pratt & Whitney, who are a part of the UTRC team. 

The use case calls for generating architectures for the engine, under a set of limitations. The 
engine consist of standard elements – compressors, combustor, turbines, nozzles and gears. 
Figure 5 is a high level SysML description of the engine. 
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Figure 5 - Gas Turbine Engine Model 

 

3.2 Models of Computation 
The approach to dealing with multiple Models of Computation has two major aspects – specify 
the MoC in the design model and be able to integrate it with MoCs. 

Since Lingua Franca integration language is based on SysML, the logical choice for the MoC 
specification is the SysML extension mechanism through stereotyping. 

Integration aspect is more complex. There are several levels on which models can be integrated. 

We identify three levels of integration: black box, white box and clear box. These three levels 
encompass the three cases that we have identified. 

Black box model internals are inaccessible for the integration framework and the interaction 
occurs on the interface/boundary protocol level. Black boxes are required to have precise 
operational semantics that ensures a rigorous integration with the rest of the system. The 
language will be able to integrate the black box component, if it already supports its 
corresponding operational semantics. The black box approach is envisioned to be primarily used 
for integration of legacy components and can be used for types check/simulation based analysis. 

A white box model ensures the integration of components from different specification and 
analysis tools. White box components allow the integration of components defined in different 
tools and can be used for formal analysis, Design Space Exploration (DSE) and optimization. 
Such integration is possible if the corresponding models of computation are supported by the 
language. 

Clear box components are components natively specified within the integration language. 
Integration of white box and clear box components is defined both at the denotational and at the 
operational level, ensuring the applicability of a potentially wider range of analyses. 
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3.3 Variability 
In variability modeling we have taken a pragmatic approach to language development. Using the 
EPS use case we have searched for variation points in the design and for most generic form that 
can still convey the general construction of a system. 

With the help of our UTRC partners we have explored the information available to Systems 
Engineers during the architectural design phase. 

We have also tried to reuse, as much as possible, the Product Lines Engineering (PLE) asset the 
IBM already has in place. 

3.4 Contracts 
We have examined previous work done in contract based design, mainly the EU SPEEDS project 
result. From the beginning our objective was to find a convenient way to apply contracts in 
design flows. The concept of contract libraries needed to be explored and expanded and 
groundwork needed to be laid to tie formal contract to their TSM definitions. 
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4 RESULTS AND DISCUSSIONS 

4.1 MoC Integration Framework 
Appendix B contains the theoretical background for all discussions on Models of Computation, 
including tool integration and heterogeneous contracts. This paper was generated in the course of 
work on META. 

4.1.1 Early Example of MoC Integration 
The earliest (in META) example of MoC integration was displayed at the 3rd PI meeting (March 
2011). 

Figure 6 shows the diagram of the third scenario of the heterogeneous simulation (based on the 
EPS use case). The model consist of the following groups of components: electrical elements 
(generators, contactors, TRUs, AC and DC busses), sensors, a controller and two system contract 
monitors. The electrical elements have been modeled by continuous time differential algebraic 
equations, with discrete control inputs for contactors and generators and discrete outputs for the 
DC busses that are read by the four sensors. The sensors are modeled as a discrete time 
component, while the controller and the contract monitors are modeled as discrete event 
components, so that the simulation spans three different models of computation, each with its 
own solver/scheduler. 

 

 
Figure 6 - Diagram of March PI Meeting Demo 

 

The demo is organized in three scenarios:  

In the first scenario, the connection between the DC-L and the DC-R busses is missing. Then, it 
is shown that in certain failure conditions it not possible to power all busses when a single 
generator is on. This is shown because the scenario leads to a contract violation detected by the 
corresponding monitor.  

In the second scenario, the connection between the DC-L and the DC-R busses is added without 
the S7 contactor. Then, it is shown that, in the same failure conditions as the first scenario, the 
controller parallels two AC sources, which violates a different contract requirement. The contract 
violation is detected in the simulation scenario by the corresponding contract monitor. 
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In the third scenario, the contactor S7 is added and it is shown that both contracts are now 
satisfied in the given failure conditions. 

4.1.2 SysML Extensions 
A prototype of a SysML profile has been developed, where semantic domains are defined in a 
SysML profile and relations between blocks and/or block ports to the semantic domains can be 
provided through appropriate stereotypes. Semantic adaptation between blocks is specified 
through specific connectors, called thick connectors, which are stereotyped with the appropriate 
semantic adaptation scheme. For example a sampler can be used for adapting the continuous 
time semantic domain with the discrete time semantic domain, while a zero-hold can be used to 
do the reverse adaptation. 

In subsequent version of the SysML profile for the META II integration language, it has been 
decided to avoid associating semantic adaptation functionality to block connectors, to be 
compliant with the SysML semantics for connectors. The adaptation mechanism is instead 
specified by the used through an explicit block. 

There are two basic types MoCCs stereotypes: denotational and operational. Denotational 
stereotypes define to which MoCC (denotational semantics) particular component belongs to, 
including parameters of the MoCCs (for example a discrete time MoCCs must have period and 
phase specified) which implemented using stereotypes tags are. 

Operational stereotypes define operational semantics which is used to analyze (for example by 
simulation) a particular component. There is an «implements» relation between a corresponding 
denotational and operational MoCCs. 

In addition separate stereotypes are defined for blocks and ports, so to define heterogeneous 
components one can mark a port of the block as a different MoCCs. 

A basic MoCCs package in Figure 7 defines the most general MoCCs, which will be used be 
define more specialized  MoCCs using generalization relation with a «specialize» stereotype. 
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DenotationalMoCC

DMoCCGen
«Stereotype»

Tags

DMoCCBlockGen
«Stereotype»

Tags

DMoCCPortGen
«Stereotype»

Tags

OperationalMoCC

OMoCCGen
«Stereotype»

Tags

OMoCCBlockGen
«Stereotype»

Tags

OMoCCPortGen
«Stereotype»

Tags

MoCC
«Stereotype»

Tags

Figure 7 - MoCC Package Block Diagram 

 

In Figure 8 we show a specific MoCC package, which defines Differential Algebraic Equation 
(DAE), Discrete Event (DE), Timed Data Flow (TDF) and Electrical Network denotational 
MoCCs. In addition ActorOriented, Simulink, Rhapsody operational MoCCs are defined. For 
each Operational MoCCs an interface should be provided which enable integration of all 
Operational MoCCs. In Figure 8 such an interface is displayed for ActorOriented Operational 
MoCC. 
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Figure 8 - Specific MoCC Package 

 

This MoCC scheme was used in the hybrid simulation demo at the 5th PI meeting (July 2011). 

OperationalMoCCsExt::ActorOriente
«Interface»

DataType

Attributes

Operations
fire():bool
prefire():bool

Tags

DenotationalMoCCsExt

DMoCCBlockDAE
«Stereotype»

Tags
M:RhpInteger
N:RhpInteger
TimeDelay:RhpReal
TimeStep:RhpReal

DMoCCPortDE
«Stereotype»

Tags
Sensitivity:RhpBoolean=true

DMoCCBlockDE
«Stereotype»

Tags
period:RhpReal
phase:RhpReal
time_units:RhpString

DMoCCBlockTimedDataFl
«Stereotype»

Tags

DMoCCPortTimedDataFlow
«Stereotype»

Tags
delay :RhpInteger

DMoCCBlockElecNetwork
«Stereotype»

Tags

OperationalMoCCsExt

OActorOriented
«Stereotype»

Tags
rate:RhpReal

OMoCCRhapsody
«Stereotype»

Tags
OMoCCSimulink

«Stereotype»

Tags

DMoCCBlockGen
«Stereotype»

Tags
DMoCCPortGen

«Stereotype»

Tags

OMoCCBlockGen
«Stereotype»

Tags

4.1.3 Latest example of MoC integration 
At the 5th and 6th PI meeting we have shown the evolution of the MoC integration framework. 

Figure 9 and Figure 10 show the structure of the model. The demo now includes multiple domain 
views and integrates components generated from different tools. The electrical view, represented 
by the System Level Design (SLD) component, has been modeled by continuous time 
differential algebraic equations directly in the DESYRE simulation environment, which provides 
the computation engine for the heterogeneous simulation. The thermal view, represented by the 
ThermalAlg component, is a model of the propagation of heat from the generators to the loads 
and vice-versa and is modeled by an ordinary differential equations defined in the 
Matlab/Simulink tool and automatically imported in the DESYRE simulation framework, 
through the Real-Time Workshop code generation tool provided with the Matlab/Simulink 
distribution. The controller is modeled as a mixed discrete time/discrete event Rhapsody 
Statechart finite state machine, whose executable code is automatically generated by the IBM 
Rhapsody modeling environment, wrapped and compiled into an executable Dynamic Link 
Library (DLL) that is imported into DESYRE for the heterogeneous simulation. The contract 
monitor and the fault handler are currently natively modeled within DESYRE. With this demo 
we have shown that we can perform multi-domain heterogeneous simulation spanning several 
different models of computation, by coordinating and synchronizing the different solvers within 
the same simulation framework. 
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Figure 9 – Model Structure for the MoC Integration Demo 

 

 
Figure 10 –SLD Component of the MoC Integration Demo 

We have shown the META II language’s capabilities of integration of different domain-specific 
tools, working with different models of computation. The structure of the integrated model 
specified in the META II integration language is shown in Figure 9. The behavior of the 
different components are defined in domain-specific tools: the electrical network (SLD 
component) is specified using electrical modeling offered by the Modelica language; the thermal 
coupling of the electrical components is defined using the MATLAB/Simulink language; the 
control logic is defined using the Rhapsody Statechart language; the remaining components are 
defined directly within the DESYRE simulation framework. Each domain is defined using 
different models of computation. The electrical network is defined using electrical modeling 
components (based on algebraic differential equations), the thermal effects are modeled using 
Simulink continuous time components, the Rhapsody controller is modeled using Rhapsody’s 
discrete event, and the components defined within DESYRE are modeled using SystemC’s 
discrete event and timed dataflow processes. 
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4.1.4 Latest Evolution of SysML Extensions 
Figure 11 shows the definition of models of computation in the META II integration language. 
The example shows how models of computation are specified together with their attributes and 
their generalization relations. The specification of models of computation is organized in 
profiles.  Any model of computation must be a specialization of the MoCC stereotype contained 
in the General package of the predefined MoCCProfile profile. This ensures that any model of 
computations has two string attributes by default: wxURi and bxURI. The wxURI attribute 
specifies a reference to the whitebox definition of the component associated with the given 
model of computation. For example, “modelica://MyPackage/MySubpackage/MyModel” states 
that the whitebox associated with the component is a modelica model called MyModel and 
defined in the modelica package called MyPackage.MySubpackage. Similarly, the bxURI 
attribute specifies a reference to the blackbox definition of the component associated with the 
given model of computation. For example, “desyre://Modelica/MyModelFMU” states that the 
blackbox for hybrid simulation associated with the component is a DESYRE component called 
MyModelFMU contained in the Modelica library of DESYRE. 

 
Figure 11: SysML Extensions for META II Semantic Integration 

The class diagram in Figure 11 also shows the generalization relations between the MoCC 
stereotypes. An MoCC M1 is more general than and MoCC M2 if it can be regarded as an 
abstraction of it, i.e., informally, there is a determinate mapping from the set of all finite and 
infinite traces of M2 to the set of all finite and infinite traces of M1. The generalization relation 
allows checking the compatibility of the models of computation associated with the ports 
connected to the same connector.  In particular, the MoCC associated with the input end of the 
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connector must be equal to or a generalization of the MoCC associated with the output end of the 
connector.  

In the general package the stereotypes for some basic models of computation are specified, as 
shown in Figure 11, namely ContinuousTime, DiscreteEvent, and DiscreteTime. It can be seen 
that a specific model of computation may require additional attributes. For example, the 
ContinuousTime MoCC requires the IntegrationMethod and IntegrationStep attributes, while the 
DiscreteTime MoCC requires the InitialPhase and TimeStep attributes. The package general 
defines three additional stereotypes: Adaptor, Multicast and Replicator. The Multicast and 
Replicator stereotypes are specializations of the adaptor stereotype. These stereotypes are used 
for components that are only required to adapt different models of computation at the interface, 
for connecting components defined over incompatible models of computation. This approach 
enables the target analysis tool, such as DESYRE, to implement the appropriate MoCC 
adaptation scheme in the most flexible and efficient way. To this purpose, the target analysis tool 
may provides the META II user with a library package of adaptors, as the DesyreII package 
shown in Figure 11. In order to avoid creating adaptors for each supported data type, the General 
package defines an Inherit data type that can be used on the adaptor’s port definition. The data 
type of the adaptor’s ports are inherited through the connectors attached to it. The Multicast is 
used when a single output port is connected to multiple input ports associated with different 
models of computation. The Replicator is used when a single output port is connected to multiple 
input ports associated with the same model of computation. 

Figure 12 depicts the DESYRE adaptor library, showing in particular the ports of the Electrical 
to DiscreteEvent adaptor and of the DiscreteEvent Multicast. The Electrical model of 
computation is specified in the ElectricalNetwork package of the MoCCProfile profile, as shown 
in Figure 13. Note that the ports of the adaptor are associated with different MoCC stereotypes 
that are the stereotypes of the MoCCs involved in the adaptation process. Note furthermore that 
the DiscreteEvent Multicast has an input port associated with the DiscreteEvent stereotype and 
several output ports associated with different MoCC stereotypes. The Internal Block Diagram in 
the figure shows how adaptors are instantiated to connect the Controller and the SLD 
component. The diagram does not specify the connection of several ports of the SLD component, 
which are specified in distinct Internal Block Diagrams representing different views of the 
system. 
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Figure 12: DESYRE Adaptor Library 

Figure 13 shows the Electrical model of computation stereotype. This stereotype defines the 
basic components that can be represented in an electrical network with references to 
corresponding whitebox definitions of them, which precisely define their semantics. These 
stereotypes can be used to define an electrical network within the Rhapsody META II integrated 
model, as shown in Figure 14. 
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Figure 13: The Electrical Model of Computation 

 

 
Figure 14: System's Electrical View 
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4.1.5 META II Tool Flow for Hybrid Simulation 
The META II integrated model is built in the target analysis tool, DESYRE, for hybrid 
simulation purposes using an automated tool flow, shown in Figure 15. The automated tool flow 
consists of the following tool components: 

• META II internal model builder: reads the Rhapsody integrated model and builds an 
internal META II representation of it; 

• META II validator: validates that all models of computation specified in the integration 
model be consistent, in particular, for each connector, it validates that the input end be 
associated with a model of computation that is equal or more general than the model of 
computation associated with the output end, so to ensure that no information is lost in the 
connector; the generalization relations between the models of computation are defined in 
the META II language profile; 

• META II to DESYRE translator: translates the META II integrated model to a 
corresponding DESYRE internal representation for hybrid simulation; this representation 
also contains information of the tools from which models are to be imported; 

• DESYRE to Modelica translator: the electrical network structure, specified in Rhapsody, 
is translated into an Modelica internal model; 

• Modelica code generator: Modelica code is generated out of the Modelica internal 
model; 

• DESYRE code generator: DESYRE code for simulation is generated out of the DESYRE 
internal representation of the integrated model; 

• Modelica importer: a Modelica FMU corresponding to the electrical network is exported 
using a suitable modelica tool (e.g., jModelica) and imported as a DESYRE FMI 
blackbox; 

• Simulink importer: a Simulink S-function corresponding to the thermal component is 
exported using RTW code generator and imported as a DESYRE S-funciton blackbox. 

All components above, except for the Simulink importer, are accessible from the Rhapsody 
application as plug-ins.  
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Figure 15: Automated Tool Flow for Hybrid Simulation 

4.2 Black Box Integration 

4.2.1 Overview 
This is the simplest of all integrations and is useful for hybrid simulation. In this approach each 
of the integrated models is co-simulated with the rest of the system using the original solvers of 
the tool it was modeled in. The TSM based simulation framework connects to the black box 
model using a specially defined API that satisfies the selected operational semantics, number of 
operational semantics will be supported by the simulation framework. 

For example the model side API may have methods like get(port), set(port, value), 
setNextEventTime(time), getTime(), sendEvent(port, time,value), getNextEvent(port), 
isUpdated(inputPort /inputOutputPort), isChanged(inputPort/inputOutputPort), initialize() etc. 
The analysis side API may have methods like getTime(), sendEvent(port, time, value), 
isUpdated(outputPort/inputOutputPort), isChanged(outputPort/inputOutputPort), etc. Examples 
for such APIs are Ptolemy actor based API, Functional Mockup Interface (FMI), etc. 

4.2.2 Modeling 

In a design ecosystem where a black-box multi-physics approach is applied several roles can be 
identified: 

• A Systems Engineer is building the architecture that defines how blocks are 
interconnected – top level model. 

• The top level model also contains information needed for the hybrid simulator to function 
correctly. This information includes: 

o MoCCs of components and their ports 
o Parameters required by the respective MoCC. These parameters (or constraints) 

will generally have default values so that the Systems Engineer will not 
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necessarily need to understand the intricacies of the MoCC integration. She will 
have the option to modify them, should her expertise permit. 

o Source of functional block – what tool/language is the block implemented an and 
the means to access it (filename, URL) 

• The individual blocks are modeled in their respective environments. Wrappers are 
automatically generated for each of the blocks satisfying the API vs. the simulator. 

• In addition to the regular blocks there are special “Algebra” components. These 
components are generic computing tools that can accept an architecture with necessary 
parameters and simulate or compute a set of values (signals) or metrics. The addition of 
such a component into a model will incur a pre-processing phase in which a generic 
Algebra component is transformed into a model specific Algebra component by using 
information from the top level architecture as modeled by the Systems Engineer. These 
components are then interconnected with model elements, also as a pre-processing act. 

4.2.3 Integration Process 
A model from any tool can be integrated into to the framework by: 

• Defining the operational MoCC for the tool (see above) 
• Defining the API between the MoCC and the analysis tool 
• Implementing the API on the modeling tool side as a wrapper around the model 
• Implementing the API on the analysis tool side – essentially wiring the API to TSM 
• When modeling, augmenting the model with additional information required by the 

integration mechanism (wrapper, API, analysis) to function correctly 

4.2.4 Pros and Cons 
The relative simplicity of using this approach is in that: 

• There is no need to define the entire source modeling language semantics, since it is 
embedded in the modeling tool solver. 

o The actual semantics of the tool may be undocumented and hidden making their 
formal definition a very difficult task. 

• APIs can be reused with or without modifications for various tools. 
• The API on the modeling side is implemented by the tool vendor who is intimately 

familiar with the tool. 
• Models are running within their native environments making integration easier. 

The cons are that: 
• The approach is only useful for simulation. 
• Semantics of the original modeling tools is not always the best. 
• Less functional traceability. 

4.2.5 EPS Usecase 
See the description of black box integration of Rhapsody component in Appendix C. 
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4.3 Contracts 

4.3.1 Specification Layer Overview 
Lingua Franca specification layer is defined above Lingua Franca modeling layer. It consists 
from asserts, contracts and property process. In this section we provide short description of the 
basic concepts. 

4.3.1.1 Asserts 

We use assets as basic building blocks of the contracts. We separate between structural and 
behavioral asserts. Structural asserts define constraints on model structure, an example of 
structural asserts is “Block EPS system should include not more than 2 Generators”. Behavioral 
asserts deal with system behavior, i.e. attributes and ports values of the model. Here are some 
examples behavioral asserts “weight is below 10 kg” or “whenever event E1 is received event E2 
is sent with 10ms” . 

4.3.1.1.1 Structural asserts 

Structural assert represent a set of structural models. For this propose any language that can 
constraint structure of the models can be used, for example OCL. Lingua Franca developed 
special concise modeling graphical language to specify such a structural constrains. For more 
detailed description see Section  0. Figure 16 is an example of a concise modeling structural 
assert. This assert accepts any architecture that can be resulted from expand of this concise 
model.  

    
Figure 16 - Concise Structural Assert 

Here are the main usages of stru

e exploration and optimization procedure for model 

nditions for other (static or dynamic) types of asserts  

nstraints on system behavior. Below we provide precise definition 

ient 

junction:Junction
* «ConstraintVariable»
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«ViaAnyPort,TypedConnector»

relay:Relay
* «ConstraintVariable»

On_Off:RhpBoolean
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«ViaAnyPort,TypedConnector» «ViaAnyPort,TypedConnector»«ViaAnyPort,TypedConnector»LeftAC_Bus:AC_Bus
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Left_Gen:Generator
1 «expand,BehaviorModeBased»Sense_Out:RhpBoolean
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RightAC_Bus:AC_Bus
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ctural asserts  
• check validity of a design model  
• provide constraints for design spac

synthesis 
• provide co

4.3.1.1.2 Behavioral assert 

Behavioral asserts provide co
of the system behavior using Tag Signal Model. Informally system behavior consists of the 
evolution of all attributes and ports values over the time of system performance. It is conven
to define subset of behavioral assert which is defined above attributes/ports with fixed values. So 
the previous example of the behavioral assert “weight is below 10 kg” is a static assert for 
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constant attribute weight or if system has only a single time tick, which is  the case when 
different “snapshot” scenarios  are analyzed. 

Behavioral asserts can be expressed in convenient for a developer languages like PSL, CSL and 
 

asserts: 

oration and optimization procedure for model 

mework as a formal framework for requirements specification and define 

 asserts, weak assumption 

ed to a component or to a component library (platform). Contracts 
 by 

h 

 might be a need for an additional auxiliary process to compute the 

e 

s are rarely plain, but rather they are a complex logical 
 

PRISMATIC. The only requirement for such specification languages is that their semantics need
to be defined above system behaviors. 

Here are the main usages of behavioral 
• monitors for verification by simulation  
• provide constraints for design space expl

synthesis – mainly static asserts 
• formal verification  

4.3.1.2 Contracts 

We use contracts fra
contracts operators to enable a requirements processing flow  [6] [7].  

Contracts are built from three categories of asserts: strong assumption
asserts and guarantee asserts. Not formally, strong assumption asserts must hold, otherwise the 
component is be not valid. The weak assumption asserts are the condition for which the 
guarantee asserts holds.  

Contracts can be associat
associated to a component library enable effective reuse of the library contracts. This is done
importing all contracts which are related to these components into the containing component.  

An example of such platform contract guarantee is “TRU should be connected to AC bus throug
AC_port and to DC bus through DC_port”. So if TRU part is used in EPS block, then EPS block 
automatically imports above mentioned platform contract guarantee and wiring of TRU to AC 
and DC buses. In this way platform specifications are imposed on the blocks which use 
components from the platform.  

4.3.1.3 Property processes 

Given a specific assert, there
required properties. Such a process is called property process. The main requirement for the 
property process is that its outputs are connected only to other property processes or asserts. 
Namely no output of property process should be connected directly to ports or attributes of th
design model. A property process can be viewed as a part of the corresponding assert and 
belongs to the specification layer.  

Events and conditions in real system
combination of many factors and parameters. The specific processes that together assemble a
condition in a contract monitor are called Property Processes. In Figure 17 we can see a complex 
monitor combined from several property processes.  
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Figure 17 - Complex Monitor 

4.3.2 Contracts Meta-model 
Meta-model in Figure 18 describes relation between “design” block, contracts and asserts. Meta-
classes ContractBlock and AssertBlock are used to define classes of contracts and asserts. Meta-
classes ContractPart and AssertPart are used to define instances of contracts and asserts classes.   

  

AssertProperty
«block»

Block
«block»

SpecLanguage
«block»

*
itsContracts

ContractPart
«block»

Attributes *
itsContracts

*
Guarantee

*
Guarantee

ContractBlock1

Attributes

Operations

*
Assumption 1

instanceOf
*
AssumptionWeak

*
Assumption 1

instanceOf
*
AssumptionWeak

AssertBlock
«block»

Attributes

1instanceOf

1

itsSpecLanguage

1instanceOf

1

itsSpecLanguage

Figure 18 - Contracts Meta-model 

Lingua Franca specification layer was developed as a profile of SysML. Each contract is built 
from three assertion formulas:  a (strong) assumption, a weak assumption and a guarantee. The 
formulas language is specified as parameter of the assertion, examples of the languages are PSL, 
CSL and PRISMATIC. 

There are two main usages of behavioral guarantees for simulation: monitoring and execution. In 
case of monitoring, guarantee “monitors” component behavior, and signal whenever 
implementation doesn’t satisfy contract (this of course also depends on the assumptions asserts). 
In case of the execution mode, a guarantee synthesize behavior according to the guarantee 
asserts. Of course behavior synthesis from contracts is a hard problem, but for simple asserts it 
can be performed.  

Contracts flow ports should be connected to same direction flow ports of the contract’s block or 
its public parts. In case the contract is used in monitor mode, all contract ports become input 
ports (the original directions indicate the type of block port). In a case the contract is used in 
execution mode, the original directions of the ports are used. 
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There should be no port which output defined by both an implementation part of the block and 
“executable” contract. 

Local variable in asserts/contracts is defined as attributes. An external variable in 
asserts/contracts can be bounded to external variable using constrained parameter, while a 
constrained parameter name used internally in assert/contract as a variable. In the case that a 
contract guarantee specified in the constraint section of the block then any variable in scope of 
the block can be used by name.  

Figure 19 is example of a ContractBlock, which includes strong assumption and guarantee 
asserts. The assumption is in OPL language, which constrains StrikePhaseDuration variable. The 
“MaxStrikeDuration” of the assumption AssertProperty is bound to “maxStrikeDuration” of the 
ContractBlock (note that the names of the bound variables need not to be the same). Note that in 
guarantee AssertProperty there is a usage getAllPartsByType model interrogation function. 

 

Contract2b
«ContractBlock»

itsLinesCurrent:linesCurrent
1 «AssertProperty,Guarantee»

Constraints
TL_array=getAllPartsByType(TL); always(TL_array[i].current<TL_array[i].currentMax)

Tags
language:RhpString=CSL
verificationMode:RhpString

itsStrikePhaseDuration:strikePhaseDuration
1 «AssertProperty,Assumption»

Constraints
StrikePhaseDuration<= MaxStrikeDuration

Tags
language:RhpString=OPL
verificationMode:RhpString

StrikePhaseDuration

MaxStrikeDuaration

maxStrikeDuration:int
«Attribute»

StrikePhaseDuration

Figure 19 – Contract Block Example 

Figure 20 is an example of usage of a contract and a property process which computes 
StrikePhaseDuration. Note that in ContractPart a concrete value (10000) of maxStrikeDuration is 
set.  

 

EPS
«block»

itsContract2b:Contract2b
1 «Cont ractPart»

Constraints

Attributes
maxStrikeDuration:int=10000

StrikePhaseDuration

itsPropertyStrikePhaseDuration:itsPropertyStrikePhaseDuratio
1 «Property Part»

Constraints
if Miss ionProfileNum==5 then der(StrikePhaseDuration)=...

StrikePhaseDuration

«BindingConnector»

Miss ionProfi leNum :int

Miss ionProfi leNum :int

«BindingLink»

APUF:floatGenLF:floatGenRFInvF

LoadL:float

LoadR:float

Figure 20 - Contract Usage Example 
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To simplify the syntax, a single assert is defined to be a contract with both strong and weak 
assumption equal to TRUE and the assert guarantee equals to the single assert.  

4.3.3 Semantics of Dynamic Asserts 
4.3.3.1 Model behaviors 

Semantic of the dynamic layer is based on Tagged Signal Model (TSM)  [1] and its refinement 
 [2] [4] where more detailed definitions can be founded. A behavior is defined as set of events, 
where an event is a tuple of signal name, value, and global tag. Each signal has an associated 
local tag (similar to Clock concept of MARTE  [3]) and all events of a specific signal should 
have a unique local tag.   A global tag is a tuple of local tags τg=(τl1, τl2,….) . A process defines 
constraints on signals associated with it. 

We map the basic concepts of TSM and Lingua Franca as following. All ports and attributes of a 
block in Lingua Franca are signals in TSM, where corresponding clocks are defined for each 
port/attribute. An event tuple for a port/attribute defined as the port/attribute full name including 
the context, the value of the port/attribute and the current clock tick of the port/ attribute.  Block 
can be viewed as a process that constraints the behavior of related signals. When we connect 
ports together there are two options:  

Direct connection – in this case signals are equal, i.e. whenever event occurs on one port it 
simultaneously (have same global tag) occurs on the connected port. This is equivalent to SysML 
flow ports semantics. 

Adapted connection – in this case, the connection can be viewed as additional adaptor 
block/process. Library of such adaptors should be provides. Adaptors can be used to define 
different types of interactions (for example queued interaction) or as a way to connect different 
MoCCs (for example sampler to convert continuous time to discrete time MoCC).    

4.3.3.1.1 Behavior discrete steps 

Given a behavior σ we define the behavior discrete steps as following. 

Let ED be a set of discrete events in σ: 

ED(σ)={e|∃s∈σ, s is discrete signal, e∈s  

Let TD be a set of global tags of the discrete events of the behavior σ: 

TD(σ)={τ|∃e∈ED(σ),τ=globalTag(e)}. 

TD has a total order (≤), so the previous (τ-1) and next (τ+1) operators are well.    

As a consequence TD can be represented as an ordered list of the unique global tags (discrete 
clocks starts from clock 0): 

TD= {τ0,τ1,…} 

A global tag τ includes all local tags, so we use operator localTag(τ,s) to denote the local tag of 
the global tag τ corresponding to signal s. 

For each global tag in τ∈TD we define value function V(τ)  which sets a value for each signal in 
correspondence to its local tag: 
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V(τ)(s) =v ⇔ ∃e∈ s, τ’ ∈ T(σ) : e=(τ’,s, v), localTag(τ’,s)= localTag(τ,s) 

i.e., a value of the particular signal remains constant in intervals between corresponding local 
tags firings. 

Active signals Sa τ) for a global tag τ∈TD defined as signals that their clocks are fired at τ:  

s∈ Sa τ) ⇔ τ=τ0 or localTag(τ,s)> localTag(τ-1,s). 

The discrete step ζ(τ) for τ∈TD defined as a tuple ζ(τ)=(τ, Sa τ),V(τ)). We denote Ζ as set of all 
discrete steps. Finally, a discrete run R(σ) for a behavior σ∈Σ is defined as  

R(σ)={ζ(τ),τ∈TD(σ)} 

with a total order imposed by TD 

R(σ)={ζ0, ζ1,…} where ζi=ζ(τi)  

4.3.3.2 Behavioral assertions on behavior discrete steps 

Let R(σ)={ζ0, ζ1,…}  be a discrete run for a behavior σ∈Σ, where ζi =(τi, Sa τ),V(τ)) is the ith 
discrete step of the behavior. The ith

 suffix of a discrete run R is defined as 

Ri =(ζi, ζi+1, ….) 

Ri satisfy ϕB (Ri ϕ ), where ϕB is (not temporal) Boolean formula means that a discrete step ζi 
satisfies ϕB (ζi ∈[[ B]] ) 

B

ϕ

Ri satisfy ϕLTL (Ri ϕLTL ), where ϕLTL is linear temporal logic formula means that a discrete step 
Ri satisfies ϕLTL (Ri ∈[[ϕLTL]] ) 

Here are some typical examples of temporal logic expression and the corresponding semantics. 

Always statement example: 

R  always(ϕLTL )  iff   (Ri ϕLTL) for i=0,1,… 

Strictly within statement (within_s) example relative to clock Ci: 

R  whenever(ϕ1) occurs (ϕ2) within_s (t,Ci)   iff for i=0,1,… (ζi ϕ1) => ∨i≤j ≤ k (ζj ϕ2), k= 
max{m:Ci(ζm)-Ci(ζi)<t} 

Not-strictly within statement (within_ns) example relative to clock i: C

R  whenever(ϕ1) occurs (ϕ2) within_ns (t,Ci)   iff for i=0,1,…  (ζi ϕ1) => ∨i ≤ j ≤ k (ζj ϕ2), k= 
max{m:Ci(�m)-Ci(ζi)≤t} 
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4.3.4 Contract Algebra 
Contract is built from strong assumption, weak assumption and guarantee C=(As, Aw, G). 
Whenever any one of them is missing, it is replaced by TRUE value. Next we define number of 
the relation between contracts and between contracts and design models following  [6] [7]. In the 
following relations we use contracts in canonical form C=( As,TRUE, ¬Aw ∪¬As∪ G), so we 
specify the relations using only c d G in the canonical form. anonical A an

Implementation (satisfa ∪ ction) M  C   M ∈G  ¬A  

Refinement/dominance ≼C f  C1     C2  C1 2 if M     M

Conjunction C1∧C2  M:  2M  C1 and M  C  

Product/composition C1⊗C2 M: M M1x M2, M1  C1 and M  C2  
4.3.4.1 Textual languages 

Sometimes it is convenient to specify behavioral asserts in textual form. Example of a widely 
used textual specification language is PSL. The usage of PSL is limited because of high 
complexity of the language 

A special type of textual language is pattern based textual language. CSL  [5] is an example of 
pattern textual language with a number of predefined temporal patterns. CSL defines 8 patterns: 

P1. whenever [E] occurs [C] holds during following [I] 
P2. whenever [E1] occurs [E2] implies [E3] during following [I] 
P3. whenever [E1] occurs [E2] does not occur during following [I] 
P4. whenever [E] occurs [S] within [I] 
P5. [C] during [I] raises [E] 
P6. [E1] occurs [N] times during [I] raises [E2] 
P7. [E] occurs at most [N] times during [I] 
P8. [C] during [I] implies [C1] during [I1] then [C2] during [I2] 

CSL demonstrate “freedom-from-choice” approach and is more suitable for system engineering 
domain. For each of the patterns semantics above behavior discrete steps should be provided (see 
behavioral asserts subsection for typical examples).   

4.3.4.2 Graphical languages 

A graphical way to specify asserts is sometimes more convenient than a textual form. While any 
graphical specification language can be used to specify assets, we provide two examples of such 
languages: visual constraints described in Section  4.4.5.5 and LF automata described below. 

LF automata A defined using tuple <Q ,V,Z, δ,q0,{F1,F2,…FN},G> 

• The finite set Q is called the states of automata 
• The finite set V is called the internal variables of automata  
• Z is a set called the alphabet of A. 
• δt: Q ×V× Z → Q ∪{⊥} x V is a function, called the triggered-transition function of A. 
• δc: Q ×V×Z → Q ∪{⊥} x V is a function, called the conditioned-transition function of A. 
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• q0  an elem t of Q, called the initial state.  is

• G Q is the forbidden set.   

en
• F1,F2,…FN Q are the acceptance condition sets.  

Automata A alphabet Z is set of possible discrete steps. 

Automata A processing for input (ζ0, ζ1,…) is defined as following 

Step 1. Initialization: i=0, q=q0 
Step 2. ζ=ζi      %set next step to process  
Step 3. (tmp_q,tmp_v)=δt(ζ)     %compute triggered transition 
Step 4. If (tmp_q == ) goto 8 else q=tmp_q,v= tmp_v  %perform transition if it is valid 
Step 5. (tmp_q,tmp_v)=δc(ζ)    % compute conditioned transition 
Step 6. If (tmp_q == �) goto 8 else q=tmp_q,v= tmp_v %perform transition if it is valid  
Step 7. goto 5      %try next conditioned transition  
Step 8. i=i+1, goto 2     %advance behavior discrete step  

 

Given a behavior discrete run R=(ζ0, ζ1,…), the first transition of A will be done using the 
triggered-transition function. If δt returns ⊥ then A remains at original state and start processing 
a new behavior discrete step, otherwise A advance to new state and updates internal variables. 
Next, a sequence of transitions is done using the conditioned-transition function till it returns ⊥.  

LF automata is actually performs run to completion execution, when only first transition for the 
step can use a triggered-transition function and all following transitions are done using 
conditioned-transition function.      

LF automata A accepts exactly those runs in which visit each acceptance condition sets infinitely 
often and never visit forbidden set. 

Syntax of LF automata is similar to state-chart, where transitions annotated with 
trigger[condition]/action. Transitions with a trigger define triggered-transition function; 
transitions without trigger define conditioned-transition function. Both the trigger and the 
condition are predicates over a discrete step and internal variables. The actions define 
transformation of internal variables. 

Figure 21 is an example of LF automata which represents CSL pattern #4 “Whenever [E1] 
occurs [C] within [Eb, Ee]”. This LF automata has no internal variables, has no acceptance states 
and a single forbidden state is “Failure”. ”Idle” is an initial state.  Let analyze some of the 
transitions: 

• Transition from “Idle” to “WaitEb” state is “E1[!Eb]”. It belongs to triggered-transition 
function, because it has a triggered (an expression before []). The predicate E1[!Eb] is 
true for all behavior discrete steps where E1 event is “active” and Eb is not “active” 

• Transition from “Check1” to “AllRight” state is [C].  It belongs to conditioned-transition 
function because it has no triggered. Condition C is any predicate above behavior discrete 
steps. 
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Idle

Check1

E1[Eb && Ee]E1[Eb && Ee]

E1[Eb && (!Ee)]

Monitor

E1[Eb && (!Ee)]

E1[!Eb]

WaitEb

Eb[!Ee]

Eb[Ee]

E1[!Eb]

Eb[!Ee]

Eb[Ee]

Failure

Ee[!C]Ee[!C]

[else][else]

[!C] AllRight[!C]

chC[!C]

[C]

chC

chC[!C]

[C]

chC

Figure 21 - Example of LF Automata 

4.3.4.3 Property process on continuous signals 

In previous sections the semantics of dynamic asserts was defined for behavior discrete steps.  
To deal with conditions which depends on continuous signal we introduce property process 
which generate an event whenever the required condition starts/ends. This technique enables the 
translation of conditions from continuous signals to discrete events. See Figure 22 for 
elaboration. 

 

 
Model 

Property process on 
continuous time 

Asserts 

Discrete signals Continuous signals 

Figure 22 - Properties of Continuous Signals 
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4.3.5 Applications 
4.3.5.1 EPS requirements as contracts 

For EPS usecase the following list of requirements was defined: 

 
1. Satisfy power quality under all conditions ( voltage levels, distortion, etc)  (LEVEL 

1,2) 
2. Load capacity of any component shall not be exceeded in steady state  (LEVEL 1) 
3. AC buses shall never be paralleled (LEVEL 0) 
4. Do not close into a dead bus (faulted bus)  (LEVEL 0) 
5. Keep all buses powered in the case of 1 failure beyond Minimum Equipment List 

(MEL) (LEVEL 0) 
6. Keep a certain set of critical buses powered in the case of two failures beyond MEL 

(LEVEL 0) 
7. Breaks on the AC side < x ms (LEVEL 2) 
8. Breaks on the DC side < y ms or No Break (LEVEL 2) 
9. Only part of the aircraft shall be powered when in maintenance mode (e.g. left DC 

side) (LEVEL 0) 
10. Do not parallel TRUs in steady state (transient conditions are OK) (LEVEL 0) 
11. Minimize contactor actuations during transfers (LEVEL 0) 
12. Use the APU only during take-off and landing or emergency power (LEVEL 0)  
13. No single point failure shall cause the loss of all critical busses (LEVEL 0) 
14. 30 minutes of power to a select few loads shall be maintained in the event of  loss of 

all mechanical sources (LEVEL 2) 
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The flow of transformation of natural language requirements to formal contracts is depicted in 
Figure 23:  

 

Natural Language Requirements

Formal Contracts

Contracts patterns 
Assumption/weak assumption/guarantee separation 

Primitives (events & conditions) formal definition 
Formal logical/temporal expressions 

Natural Language Contracts 

Figure 23 -Requirements Transformation Flow 

We start from natural language requirements. Next, we re-express the requirements using 
predefined patterns and regroup them to strong assumption, weak assumption and guarantee 
asserts categories. We get what we call natural language contracts. Next, all used terms need to 
be represented using well-defined formal primitives.  

We’ll demonstrate this flow for “Keep all buses powered in the case of 1 failure beyond MEL” 
requirement. The corresponding natural language contract guarantee is ”1 failure beyond 
MEL=>all buses are powered”, while assumptions are set to be TRUE.  Natural language 
contracts are easier for analysis, so we frequently find some inconsistencies or ambiguities will 
be discovered in this stage. For example, we might note that the guarantee doesn’t specify 
behavior for cases where there are not failures beyond MEL, so the contract is not activated for 
this case. Another issue is that it is impossible to keep buses powered in the very moment of the 
failure – it takes some time to react and modify system configuration.  Also there is an 
inconsistency with another requirement saying that some buses should not be powered during 
maintenance. So we go back and fix the original requirement to “Keep all buses powered in the 
case of less than 2 failures beyond MEL at steady state when not in maintenance”. The 
corresponding natural language contract guarantee is ”less than 2 failure beyond MEL and not 
maintenance and steady state => all buses are powered”. 

To specify formal contracts, the natural language should be replaced by well-defined formal 
terms. So we need to define formally all concepts that were used in the natural contracts. Here is 
example of such definitions: 

failuresBeyondMEL - function defined on parts failure state (e.g., Generator failure),  

failuresBeyondMEL = max(sum(getAllPartsByType(Generator).failed) – 1, 0) 

Maintenance – state of the EPS 
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all_buses_powered()– functions defined on relay parts closed state and generator parts failed 
state  and implicitly on parts structural connectivity. Figure 24 depicts a definition of 
all_buses_powered() function using visual expression syntax. 

 

technical paths:Allowed technical paths
1 «Const raintVariable»

{failed = false}

junction:Junction
* «Const raintVariable»

I4

I3

I2

I1

relay:Relay
* «Const raintVariable»

On_Off:RhpBoolean

T2T1
«ViaAnyPort,TypedConnector» «ViaAnyPort,TypedConnector»

{Is_Closed = true}

LeftAC_Bus:AC_Bus
1 «expand»

PowerOut[1..*]

PowerIn[1..*]

Left_Gen:Generator
1 «expand,Behav iorModeBased»

Sense_Out:RhpBoolean

AC_Out:AC

RightAC_Bus:AC_Bus
1 «expand»

PowerOut[1..*]PowerIn[1..*]

RightGen:Generator
1 «expand,Behav iorModeBased» Sense_Out:RhpBoolean

AC_Out:AC

«ViaAnyPort,TypedConnector» «ViaAnyPort,TypedConnector»

functional links:Generator to bus functional links
1 «Const raintVariable»

LeftAC_Power

RightAC_Power
Left_Gen

«VariantOf»

Right_Gen
«VariantOf» Right_Ge

n
«VariantOf»

Left_Gen

«VariantOf»
Left_Gen1

«allocate»

Left_AC_BUS1
Gen_AC_Bus

«allocate»

Right_Gen1

«allocate»

Right_AC_Bus1

«allocate»

«VariantOf»
«VariantOf»

«VariantOf»
«VariantOf»

«allocate»

Gen_AC_Bus

«allocate» «allocate»

«allocate»

Figure 24 - Visual Expression (all_buses_powered) 

 

Finally,  the formal contract guarantee is: “always[ (C failuresBeyondMEL()<2) and  (S not 
maintenance) and (S “Steady_state”)   => (C all_buses_powered()==true ]”. 

After we formulated system level contracts, we specify sub-system contracts.  

Figure 25 contains an example of EPS relay contract: 

 

Relay
«block»

state

elecPower2 elecPower1

ready commandIn

Current state {closed, transition, open}

Command from controller {close, open} Ready for next command {true. false} 

Electrical connection ports

Figure 25 - EPS Relay Contract 
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Assumptions:  

//wait till ready before new command 

whenever [E commandIn com1] occurs [E commandIn com2] does not occurs during 
following [0,E ready==true] 

Guarantees: 
//Execute command and switch to ready 

[E commandIn com] implies [E state==com; E ready==true ] within (+Relay_cmd_delay] 

//Change state only once after each command 

[E state==com; E ready==true] occurs at most [1] during [E commandIn com, E commandIn 
com] 

Figure 26 contains an example of contract for EPS Generator Control Unit (GCU). 

 

 

GCU
«block»

statusReady1
statusReady0

commandOutRelay1

commandOutRelay0 commandInMC

commandOutMC genStatus

Report to Main controller {ok, failed} 

Commands to relays {open, close} 

Get status from generator {ok, failed} 

Command from Main controller 

{open, close}x{port0,port1} 

Readiness status from relay {true, false} 

Figure 26 - Generator Control Unit Contract 

 

Assumptions: 
//generator doesn’t recover 

[E genStatus==failed] implies  [C genStatus==failed]  holds forever 

//relay response time 

whenever [E commandOutRelay[relay] com] occurs [E statusReady[relay] ==true] within 
(+GCU_relay_delay] 

Guarantees: 
//GCU response time to generator status event 

whenever [E genStatus==status]  occurs [E commandOutMC==status] within 
(+GCU_send_delay]] 

// perform main controller commands 

whenever [E commandInMC ({com, relay})]  occurs [E commandOutRelay[relay] com and C 
statusReady[relay] ==true] within (+GCU_send_delay]] unless [E commandInMC ({com2, 
relay})]  

//Change state only once after each generator status event 
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[E commandOutMC]  occurs at most [1] during (E genStatus, E genStatus] 

//Command relay only after main controller command  

[E commandOutRelay[relay]]  occurs at most [1] during (E commandInMC({*,relay}, E 
commandInMC{*,relay}] 

 

4.3.5.2 Contracts as monitors in hybrid simulation 

4.3.5.2.1 Monitors for dynamic contracts 

To create a monitor for behavioral contract (behavioral contract is built from behavioral asserts), 
strong assumption, weak assumption and guarantee asserts output should be treated differently 
which we denote by outAs, outAw and outG, respectively. Here is the processing scenario for the 
monitors: 

Step 1. Initialization of the model 
Step 2. Initialization of the monitors 
Step 3. Execute all property processes  
Step 4. Execute* strong assumption monitor => outAs 
Step 5. If outAs is false – report failure of strong assumption and stop 
Step 6. Execute* weak assumption monitor => outAs 
Step 7. If outAw is false , reset guarantee assert and goto 10 
Step 8. Execute* guarantee monitor => outG 
Step 9. If  outG is false – report failure of guarantee and stop 
Step 10. Advance to next behavioral discrete step and goto 3 

* Execute here means that monitor should check the asserts on the interval from the last step till 
the current step. 

The order of evaluation of property processes should be consistent with dependencies between 
them. The property processes create results (variables states, or events), which are stored 
together with the behavior discrete step, to form together a "full configuration", so that property 
processes/monitors that are executed after other property processes can see / use the results the 
results. It important to mention that property processes events do not influence the execution of 
the design model.  

4.3.5.2.2 CSL Patterns translation to monitors 

To enable automatic creation of monitors from asserts specified using CSL Patterns a library of 
LF Automats were developed. Each LF Automata can be used as a monitor of one of the CSL 
Patterns (or some of its variants). Here we provide an example for CSL pattern 1 “Whenever E1 
occurs [C] holds during following [I], were an interval I defined by events Ebeg, Eend. We 
consider different cases of the interval closure  
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Idle

E1[Eb && Ee]
Check1

E1[Eb && Ee]

E1[Eb && (!Ee)]

Monitor

Ee[C]

E1[Eb && (!Ee)]

Ee[C]

WaitEb

E1[!Eb]

Eb[!Ee]

Eb[Ee]

E1[!Eb]

Eb[!Ee]

Eb[Ee]

[!C] Failure

chC[!C]

[!C]

chC[!C]

[!C]

[else]

[!C]

[else]

Figure 27 - Case 1 (closed,closed) [Ebeg, Eend] 

 

Idle

E1[Eb && (!Ee)]

Monitor

E1[Eb && (!Ee)]

EeEe
E1[!Eb]

WaitEb
Eb[!Ee]

Eb[Ee]

E1[!Eb]

Eb[!Ee]

Eb[Ee]

[!C && !Ee] Failure

chC[!C && !Ee]

[!C && !Ee]

chC[!C && !Ee]

WaitEe
EeEe

Figure 28 - Case 2 (closed,open) [Ebeg, Eend) 
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Idle

Ee[C]

Monitor

Ee[C]
WaitEb

E1[!Eb]

Eb[Ee]

E1[!Eb]

Eb[Ee]

[!C] Failure

chC[!C]

[!C]

chC[!C]

[!C]

[else]

[!C]

[else]

E1[Eb && (!Ee)]

PreMonitor

E1[Eb && (!Ee)]

Eb[!Ee] Ee

AnyEvent[!Ee]

Eb[!Ee] Ee

AnyEvent[!Ee]

Ee WaitEeEe

[!Ee]
[else]

[!Ee]
[else]

Figure 29 - Case 3 (open, closed) (Ebeg, Eend] 

 

Idle

Ee

Monitor

Ee

E1[!Eb]

WaitEb

Eb[Ee]

E1[!Eb]

Eb[Ee]

[!C && !Ee] Failure

chC[!C && !Ee]

[!C && !Ee]

chC[!C && !Ee]

E1[Eb && (!Ee)]

PreMonitor

E1[Eb && (!Ee)]

Eb[!Ee]

AnyEvent[!Ee]

Ee

Eb[!Ee]

AnyEvent[!Ee]

Ee

Ee
WaitEe

Ee

Figure 30 - Case 4 (open,open) (Ebeg, Eend) 

All described LF automats has no internal variables, has no acceptance states and a single 
forbidden state is “Failure”. ”Idle” is an initial state.   

Given such a library, LF automats can be synthesized from contracts. There is still a need to 
define property processes that generate the required events, so a library of frequently used 
property processes can be prepared to enable reuse.   
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4.4 Concise modeling 

4.4.1 General 
We propose a novel approach we call Concise Systems Modeling. In our approach we do not 
model the detailed systems, but rather the rules for their composition. 

By creating a special profile of SysML with an assortment of stereotypes and tags we give 
additional semantics to SysML constructs, such as blocks, parts, links and associations. Thus we 
are able, for example, to use a SysML part to define a set of parts and similarly use a link to 
define a set of links. We call these sets “prototypes”. Since these prototypes are legal SysML 
parts interconnected with ports and links, we can define the composition (or connectivity) rules 
for those prototypes.  

The explicit prototypes are later instantiated in tables (MS Excel for example), which is much 
easier and less time consuming than the graphical SysML representation. Some of the fields in 
the tables are left unfilled and these are later filled by an architecture optimization process. 

The attributes of these prototypes are also stereotyped allowing their different treatment in the 
design process. 

An internal block diagram in the technical layer may combine prototypes and normal parts. 

The model has three layers – functional, technical and an indexing layer (which in many cases 
represents geometry). The technical layer is the core of the concise model and all component 
composition rules are modeled here. The functional layer models system functions mapping 
them later to specific elements in the technical layer, in essence defining requirements that the 
technical layer needs to satisfy. The indexing layer, which is not necessarily present, is used to 
index the technical layer prototypes and facilitates the later expansion or optimization of the 
model. 

In addition to the above constraints, objectives and variable algebras are defined in the model, to 
be used by the optimization engine. Several new sets definitions have been added to aid in the 
above definitions. 

4.4.2 Planes / Layers 
The concise modeling approach has three planes in three different model packages: 
• Functional plane (Figure 31 & Figure 32)– serves as the requirements definition for the 

system architecture. 
o Will generally be executable. 
o May be modeled concisely in some cases, but all parts and links will be explicit (i.e. 

«inventory»). 
o May be a result of a higher abstraction iteration using the same approach. 
o May have links connecting ports or not. 

• Technical plane (Figure 33) – architecture modeling plane. Modeling is based on the 
requirements of the functional layer. The objects on this plane usually represent real 
components (or subcomponents) and real flows between them (data, energy). The flows’ 
media are the Typed Connectors, which are parametric and/or behavioral models of cables, 
shafts, ducts, pipes, wireless channels, etc. 
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• Indexing plane (Figure 34) – used to index the objects of the technical layer. Sometimes this 
layer directly represents the geometry of the system and is used as such. For example the 
instances of this layer may represent possible placeholders for the actual components on the 
technical plane with the optimization process tasked with finding the right combination of 
components and their locations. 
Alternatively this layer can be an abstract collection of indices bounded by constraints. 

• Mapping – the way to relate one layer to the other. Mapping is done by using the SysML 
«allocate» dependency. An object on the functional plane can only be mapped to one object 
on the technical plane, as otherwise there would be ambiguity in the definition. However, any 
number of objects on the functional plane can be mapped to a single object on the technical 
plane. If a multiple mapping is indicated, the meaning is that the optimization must select the 
best mapping subject to constraints and rules. 
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Figure 31 – Primary EPS Functional view 
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Figure 33 – Secondary EPS Technical View 

 

 
Figure 34 - Index (geometry) View 

 

4.4.3 SysML Extensions Profile 

4.4.3.1 «typedConnector» 

This stereotype is used to denote a link (between parts or prototypes) that represents a concrete 
physical object, for example a cable, bolt or shaft. The stereotype contains a tag “type” that 
points to the block that models the physical object. 

4.4.4 Concise Profile 

4.4.4.1 «catalog» 

Can be applied to blocks and to attributes. 

When applied to a block, «catalog» indicates that a block has several variants (subclasses in the 
expanded model), which are specified in an external table instead of explicitly in the model. 
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Blocks marked with «catalog» may have attributes marked similarly. These attributes will have 
different initial values in each sub-class. These values are specified in the table – i.e. each variant 
will have a row in the table, and each catalog attribute will have a column. 

When a normal (non-inventory) part instantiates a «catalog» block, its type will be replaced in 
the expanded model with a specific variant, as specified in the table. The table [of variants] may 
be filled from an external source or manually. 

4.4.4.2 «inventory» 

Can be applied to parts (which are then called prototypes), attributes, tags, connectors (including 
typedConnectors) and dependencies. In essence this construct removes the need to model each 
and every part, connector or dependencies, using external tables instead (filled from an external 
source or manually) 
• Parts, connectors and dependencies marked with «inventory» represent sets of elements in 

the expanded model.  
o In case a marked «inventory» part or typedConnector instantiates a block marked 

with «catalog», the specific type (variant) of each element in the set will specified in 
the external table. 

o In case of a connector or dependency, «inventory» also indicates that the end points 
for each element in set are specified in the table. 

• When applied to an attribute or a tag, indicates that the value of that attribute in each instance 
in the set (part or typed connector) should appear in the instantiating tables. 

4.4.4.3 «optimized» 

Can be applied to parts (prototypes), attributes, tags, connectors (including typedConnectors) and 
dependencies. 

Much like «inventory», «optimized» allows to define sets of instances and to suggest that values 
for attributes and tags, instance type selection from catalog (where relevant), and endpoints (for 
connectors and dependencies) are defined in a table. The difference lies only in the source of the 
data – with «optimized», the data is to be generated by the optimization engine, not supplied 
manually or automatically from external tools. 

Tags:  
• max – the maximum number of elements to be created in the set. When applied on an 

attribute - this tag indicates its maximum value. 
• min – the minimum number of elements to be created in the set. When applied on an 

attribute - this tag indicates its minimum value. 

4.4.4.4 «expand» 

Can be applied to any object or link. Indicates that this object/link is to be present in the 
expanded technical model. 
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4.4.5 Constraints Modeling Stereotypes 
4.4.5.1 «behaviorModeBased» 

This stereotype is used when there is a need to model modes of behavior. The stereotype is 
applied to attributes to indicate that their value changes according to some predefined schema, 
which, when the stereotype is used, will be defined in the instantiation tables. 

Since there may be various behavior scenarios with some scenarios decoupled from each other, 
the stereotype carries a tag “scenarioGroup” which helps to distinguish between such orthogonal 
behaviors. 

Examples: 
• In Figure 33 the “Loads” prototype represents a collection of electric devices on an 

aircraft. These electric devices power consumption varies with respect to the current 
mission phase of the aircraft (for instance a targeting system will consume only standby 
power during the cruise phase and will consume maximum power during the strike 
mission phase). Since one of our constraints in the architecture optimization process is to 
select PDBs that can carry enough current, all power consumption scenarios (mission 
phases) need to be checked. The attribute indicating the power requirements of each Load 
will be marked with the stereotype. 

• In Figure 31 the power generating elements have finite reliability. Therefore the 
requirement from the relays’ network is to have a configuration (in terms of open-closed) 
for each failure scenario of the power generating elements, so that power is supplied to 
the buses (indicated by the “choice tree” concept. To model this with 
«behaviorModeBased» stereotype we create a new “scenarioGroup” and mark the “OK” 
attribute of the components with the stereotype. 

4.4.5.2 «derived» 

This stereotype is applied to an attribute to indicate that the attribute value is calculated from 
other parameters. Normally when this is done that attribute will appear on the left side of a 
formula in a constraint owned by / anchored to the block owning the attribute. 

4.4.5.3 «objective» 

This stereotype marks a «derived» attribute that is supposed to be one of the objectives of the 
optimization. 

4.4.5.4 «invalid» 

This stereotype is applied to a functional link with the purpose of denoted an illegal link. When 
the functional layer is mapped to the technical the corresponding paths in the technical layer will 
be considered illegal and will not be chosen by the optimization engine. 

4.4.5.5 «VisualConstraintBlock» 

This stereotype converts a block into a Visual Constraint. A Visual Constraint Block is a 
graphical (using SysML) method of depicting an architectural rule or a regular expression. A 
Visual Constraint Block is specified using a Constraint Diagram, and may contain explicit parts 
from the architecture, constraint variables typed by blocks from the architecture (representing 
some architecture part – or a set of parts, according to multiplicity - with the same type), or 
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constraint variables typed by other Visual Constraint Blocks, representing a composite regular 
expression. 

4.4.5.6 «constraintDiagram» 

This stereotype inherits from Internal Block Diagram. The newly defined Constraint Diagram is 
used to depict architectural constraints in graphical terms. Often the diagram would contain both 
functional and technical elements in order to define how a functional constraint is mapped to the 
technical plane. 

Figure 35 shows a Constraint Diagram with a definition of illegal path between the left and the 
right generators, with a mapping to the technical level (modeled concisely). A constraints 
diagram may also include formulae constraining the values of attributes of some components. 
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Figure 35 - Constraint Diagram 

 

4.4.6 Variability Profile 
Besides concise modeling, another useful approach to specifying architecture alternatives is to 
explicitly model them in a single model, and annotate them using variation points. For example, 
by specifying that a particular element has an "existence" variation point, the systems engineer 
indicates that the element may or may not exist in a given architecture. To allow for correlation 
of variation points (i.e. to specify that several elements go together) each variation point may be 
bound to a "choice" element. In order to derive a specific architecture from a model with 
alternatives, a decision for each choice (and unbound variation point) must be made by the 
optimization engine.  
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Choices may also be organized in a tree, which allows constraining the legal decisions for a 
given architecture: Each choice node in the tree defines how many of its child choices must be 
selected (if it is selected itself). For example, a choice may specify that exactly one of its child 
choices be selected. This makes all its children alternatives of one another. Respectively, their 
bound variation points also become alternatives. Other kinds of constraints (known as cross-tree 
constraints) between choices may also be used. 

4.4.6.1 The VariabilityRealization package: variation points 

Figure 36 outlines the hierarchy of the Variability realization stereotypes. 
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Figure 36 - Variability Realization Package 

 

4.4.6.1.1 «ExistenceVP» 

Specifies that the element to which it is applied may or may not exist in a particular architecture. 

4.4.6.1.2 «Substitution» 

A kind of dependency which states that the source might substitute the target in a given 
configuration. All connections from / to the target (e.g. connectors) will be added to the source. 

4.4.6.1.3 «ValueAssignmentVP»  

Element that allows assigning value to some field of a model element, e.g. an initial value of an 
attribute. The field to be assigned a value is specified by the tag "metaAttribute", which is a 
string, in the above example "initialValue". 

4.4.6.2 The VariabilityAbstraction package: choice trees 

As explained above, the choice tree (actually, variability specification tree – including choices 
and values) allows modeling the high-level architectural choices and their relationships. Each 
such choice over variable may be bound to an element marked by a variation point stereotype.  
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Figure 37 - Variability Abstraction Package 

4.4.6.2.1 VariabilitySpecification 

This is an abstract stereotype, which represents a node in the variability tree. Variability 
Specifications (VSpec) are a new kind of model element, implemented in Rhapsody as a new 
term based on SysML comments. This allows for their nesting, enables showing them on 
diagrams, and provides an easy binding mechanism to variation points, using anchors. 

Each VSpec has the following tags:  

     Figure 38 - Choice tree 

• mandatory – indicates that a choice is selected together with its 
parent choice.  

• maxChildSelectionCardinality – maximum number of child 
VSpecs that can be selected for a given architecture. 

• minChildSelectionCardinality – minimum number of child 
VSpecs that can be selected for a given architecture. 

The tree can have any number of levels and the leaf choices will carry 
no tags (the tag values will be empty). 

4.4.6.2.2 Choice 

Choices are a kind of VSpec which requires a Boolean decision to be made when specifying a 
particular architecture out of the possible architecture variants. It may be bound to Existence and 
Substitution variation points. 

On the functional plane a choice anchored to an object (or a link) indicates that the object may 
exist and may not. Since it is a functional object the above will indicate that the function is active 
or not at a given point in time. When a root choice has 4 sub-choices with max and min 
cardinality at 2 and 1 respectively, it would mean that at any given time in the system at least one 
function must be active and no more than two can be active. 

On a technical plane the choice would indicate an architecture option. For example whether there 
should be a relay between two electric power components or just a wire. The architectural choice 
must, in this case, be made either by a human or by the optimization engine. 
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4.4.6.2.3 Value 

Values are a kind of VSpec which requires a value to be given when specifying a particular 
architecture out of the possible architecture variants. It may be bound to ValueAssignment 
variation points, which then takes the value and assigns it as explained above. The value type is 
specified using the "type" tag, whose type (VariabilityValueType) is an enumeration over basic 
data types (Integer, Float, Boolean, String, etc). 

4.4.6.3 Variability constraints 

Besides the tree structure, which specifies constraints regarding allowed selections, we also 
allow specifying cross-tree constraints. We support both simple constraints such as excludes and 
requires and constraint expressions, which are logical expressions over the VSpecs. 

4.4.6.3.1 Requires 

A simple constraint between two Choices. Implemented as a new kind of dependency. Denotes 
that selecting the source requires selecting the target as well. 

4.4.6.3.2 Excludes 

A simple constraint between two Choices. Implemented as a new kind of dependency. Denotes 
that selecting the source forbids the target from being selected. 

4.4.6.3.3 VariabilityConstraintExpression 

Implemented as a new kind of constraint. Allows to specify (in the constraint's Specification 
field) a logical condition which must occur. For example, referring to the choices in the figure 
above, we can write the cross-tree constraint "LeftACPower.APU || RightACPower.APU" to 
denote that at least one of the two APUs must be selected. 

4.4.7 Objectives and Algebras 
Since every optimization needs objectives, a method was required to define them and the metrics 
that the objectives are defined over. In the course of the development we have started with the 
most simple metrics of Cost and Weight, their simplicity coming from the fact that they are a 
basic sum function over a set of single type parameters. 

4.4.7.1 Algebras 

The purpose of algebras is the computation of certain values in the model that are needed for the 
analysis or the optimization process. These values are marked with the «derived» stereotype to 
indicate that a computation is required. 

The definition of the computation may be done using several approaches. The first and a more 
immediate one is a textual definition of the computation formulae using some existing syntax. In 
our process, since the model is transformed into OPL code, the straightforward approach is to 
write the formulae in OPL. But since the automatic transformation of this part was not done yet, 
the representative syntax in Figure 39 is Modelica. 

A complication of the above approach, introduced by the Concise Modeling profile, is the fact 
that at the time of the modeling we are not aware which model elements are present in the final 
model (which will be available after the optimization process).  
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For example, it is not possible to specify a weight formula – “The weight of a component is the 
sum of the weights of all its parts” – without explicitly referencing each part, e.g. weight = 
part1.weight + part2.weight + part3.weight… 

To address this we have come up with a concept of Model Interrogation functions. In Modelica 
syntax these functions will be used in the following manner: 

SystemWeight = sum (getAllParts().weight) 

The function will be evaluated in the optimization process during selection of feasible solutions 
and used (in this case) as one of the elements of the multi-objective criteria. 

An additional concept required when using Model Interrogation functions is the specification of 
their scope. For each such function we would like to specify the actual collection of elements 
that will be used in its evaluation – whether it is the entire system or a subsystem or perhaps the 
contents of a specific SysML diagram. Example of such scoping limitation is: 

PrimarySystemCost = sum ((x.cost) for x in getAllParts() : x in 
getDiagramElements(“Primary”)) 
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Figure 39 - Textual Approach in Algebras Definition 

An alternative way of specification is to use SysML parametric diagrams as depicted in Figure 
40. This approach may still require scoping limitations. The constraint may again be written in 
any suitable language (OPL, OCL, CSL). 
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Figure 40 - Parametric Diagram as Algebra Definition 

4.4.7.2 Objectives 

Elements marked with «objective» stereotype will be used in the multi-objective optimization to 
generate the efficient frontier. In the current project a true multi-objective optimization was not 
done, but rather a weighted objective function was utilized. 

4.4.8 Exemplary Design Process with Concise Modeling 
A software mechanism is used to extract information from the model and create the tables. 
Created tables are filled by an external tool or manually. 

In case all instantiating information has been provided in the tables, model expansion can be 
done. The mechanism generates an “expanded” technical layer model without prototypes, 
meaning that all parts are modeled explicitly. This may result in a very large and unreadable 
model, but its construction will be correct and a simulation or verification process can be 
initiated. 

In case an automatic architecture optimization is needed, the software will create, based on the 
model and on the filled tables, an optimization program that will generate the architectures (one 
or more). The result is fed back into the tables from which the model expansion can be done, for 
visualization, simulation or else. 

The entire above process is an iteration in a continuing design process from high level of 
abstraction down to the detailed levels. The functional layer defines the requirements, later 
implemented by the technical layer that in turn becomes the functional layer for the next level of 
abstraction. 

The optimization process is limited, however, due to several reasons. First of all many times we 
do not possess all the information about the internals of a model, as discussed in section  3.2. In 
addition the optimization algorithms have difficulty dealing with dynamic behaviors. Since our 
objective is to have a complete and verified (to maximal possible extent) architecture, we add a 
verification phase. An additional tool, which may be a simulator or a formal verification tool, 
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Figure 41 and Figure 42 summarize the above text. 

 

 
Figure 41 - IBM Design Optimization Process 
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Figure 42 - Design Optimization Process in Detail 

 

4.4.9 Concise Plug-in 
In the course of the project we have developed a prototype tool build on top of Rational 
Rhapsody. The tool is used to facilitate the design process described in the previous section. The 
chain incorporates Rational Rhapsody, iLog CPlex Studio, Microsoft Excel and Mathworks 
Simulink. 

4.4.9.1 Architecture generation 

The tool works in several phases: 
• Concise model structure extraction and interchange tables creation 
• Generation of an optimization program 
• Expansion (back-annotation) of the resulting architecture (or architectures) back into the 

modeling environment. 
• Run additional verification processes, evaluate their output and modify optimization 

constraints if needed. 

Once the manual modeling phase is complete the first phase of the tool traverses the model, 
looking for the concise modeling stereotypes. It is worth mentioning that combining concise and 
concrete components in a single model proved to be quite challenging and had to be given 
special attention after the 4th PI meeting (May 2011). All model elements that are marked are 
processed and a data structure in Microsoft (MS) Excel is created. The data structure is 
essentially a relational database and the choice of MS Excel for the prototype is based on the 
familiarity of most people involved with the MS Office suite and its ubiquitous nature. It is not 
suitable for a true product due to limitations in dataset sizes and also to its performance. 

The Excel structure includes tables for components (for all layers) with columns for their 
parameters as well as tables linking between components. These tables are intended to be filled 
from an external source, such as component libraries. Speaking in terms of the META 
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community a component in the Excel tables is a projection of a component in a detailed 
component library, as will be created in the upcoming Component, Context, and Manufacturing 
Model Library (C2M2L) DARPA activity. 

The next phase traverses the model again, this time in a more comprehensive fashion. It extracts 
the model structure creating an OPL (language used by the CPlex Studio environment) program 
that will optimize the design based on the given constraints and data. At the time of the 5th PI 
meeting we have managed to create only partial OPL generation, however we do not foresee a 
problem to have a completely automatic transformation. 

Once the DSE optimization program has executed and written its results back into Excel tables, 
the plug-in expands the results, using the structure information (ports, topology) from the 
original concise model. 

4.4.9.2 Optimization model creation 

During the DSE process with the optimization engine a functional model of the system is 
mapped to a physical architecture taking into account all non-functional and mapping contracts. 
The generated OPL Optimization model includes the following elements: 

 
1. The set of functional nodes and connections – based mostly on the functional model. 
2. The set of physical nodes and connections – based mostly on the physical model and 

“inventory” databases. 
3. The set of potential components that can be placed at the physical nodes and connections 

– based mostly on physical model and “catalog” databases. 
4. Mapping sets – for each functional node it defines the set of physical nodes where the 

functional node could be mapped to. 
5. Scenarios with appropriate parameter sets. 
6. Design decision variables – mostly binary variables that define  

a. the physical architecture, including what nodes and connection are chosen and 
how they are instantiated; 

b. mapping from functional to physical – node to node / connection to virtual path(s) 
/ “invalid” connection to virtual cut(s); 

c. components parameters; 
d. state variables. 

7. Objective function(s). 
8. Constraints. 

a. structural constraints – according to the structural (topological) contracts; 
b. mapping constraints – each functional node should be mapped to a physical node, 

each functional connection should be mapped to virtual physical path(s), and each 
functional “invalid” connection should be mapped to virtual physical cut(s); 

c. algebras; 
d. contracts defined by constraints including logical conditions. 

9. DSE output. 

While translation of algebras and constraints is a direct mathematical transformation 
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4.4.9.3 Verification phase 

The verification phase was demonstrated at the 5th PI meeting (July 2011) by feeding the 
optimization results into a Simulink model (provided by the UTRC team). The objective of the 
optimization, as demonstrated, was to select the best relay topology and the most suitable relay 
components for the Primary EPS (see  3.1.1) in our standard use case. In the demo scenario the 
Systems Engineer performing the architecture optimization is not aware and does not understand 
the electric functionalities of the components and thus an expert (UTRC) provides him with a 
generic circuit model with a predefined interface. The model is capable of computing currents 
and voltages in an electric circuit including parasitic effects of resistance and capacitance. 

Simulink output was in the form of MS Excel spreadsheet with data for voltages and currents at 
various circuit nodes. We have implemented a subroutine that compares these with the original 
requirements and, in case requirements exceed the results, modifies the optimization constraints. 
The method of iteration is this case is an adaptation of a common practice in mechanical 
engineering called Safety Factoring. In this simple and efficient method some requirements are 
synthetically increased by a multiplication by a safety factor, calculated from the difference 
between the original requirement and the unacceptable value obtained in the verification process. 
After several iterations of the process the design converges. This method may yield a less than 
optimal result, but its efficiency makes it a viable option in many design processes. 

4.4.9.4 Gas Turbine Engine demo 

At the 5th PI meeting the concise modeling approach and the prototype tool were tested in 
additional modeling effort for a completely different (from the EPS that was usually used) use 
case (See  3.1.2). The Gas Turbine was modeled concisely (Figure 43) and the data structure was 
generated. Since the objective was to validate the concise modeling language the only interesting 
phase was the expansion phase. The expansion subroutine was fed a synthetic optimization result 
and the expanded model was examined for correctness. 
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Figure 43 - Gas Turbine Engine Concise Model 
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5 CONCLUSIONS 

5.1 Dealing With Scale 
One of the challenges facing all META performers is whether the novel methodologies will 
prove adequate in large designs and not only in limited scope challenge problems. The truth is 
that the problem is not only a computational one, but human as well. Each individual possesses a 
finite “cognitive bandwidth” meaning that one’s ability to grasp many things at once is limited. 

Most of the META community, despite the diversity of approaches and different technical areas, 
agree that the key to scale is abstraction. Another approach that shows promise is one presented 
by Rockwell Collins team – complexity reducing design patterns. 

Figure 44 is taken from our insight slide presented by Alberto at the 5th PI meeting (July 2011). 
Abstraction has two axes – quantity and quality. In quantity we reduce the number of 
components that the designer and his software tools have to deal with at once. Quality deals with 
reducing the detail level of component models, again reducing the cognitive bandwidth and 
computation requirements (example: a thousand components are easy to deal with if their only 
parameter is weight and its algebra is a simple sum). Computation complexity may further be 
decreased by replacing some parts of the computation with approximations. 

Correctly breaking down the design process into abstraction levels is tricky. The UTRC team has 
made great progress in analyzing the matter. At the end, it is going to be the experience of the 
design engineer that will be instrumental of selecting the right abstraction at the right moment, 
choosing the iteration length based on available resources, deciding on the confidence level 
required from various analyses and so on. The designer may be aided by abstraction libraries – a 
collection of pre-defined and pre-verified transformations, somewhat resembling Rockwell 
Collins team approach. 

In general a concept of a library is seen often in the community, since this allows preliminary 
definition of library (of any elements) elements which, because it is done by an expert, are well 
defined and tested. A library approach to modeling greatly reduces errors, facilitates quick 
design iterations and yields better overall systems, as has been demonstrated by the libraries 
revolution in EDA field (standard cells). 
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Figure 44 - Abstraction as the Key to Scale 

 

In our concise modeling approach we use two abstraction layers – the functional and the 
technical (see 4.4.2) – with a specific mapping one to the other. This enables traceability of 
requirements down through the abstraction levels. A true multi-level design process is yet to be 
performed using our tool in order to fully validate its adequacy. 

5.2 MoC Integration 
The demonstrated MoC integration approach shows great promise. The barrier to the widespread 
use of it lies in the difficulty of defining the semantics of tools and languages using TSM. We 
have understood that an enabling concept to this approach penetration can be, similar to design 
abstractions, a language abstraction. It is a framework of higher language constructs, which are 
sufficiently fine-grained to describe the semantics of other tools and languages but are not as 
complex as the underlying mathematical foundation of the TSM, which few people can 
intimately understand. 

5.3 Contract Based Design 
A comprehensive library of contract patterns with rigorously defined semantics is the key to 
contract based design. Engineers will not use the formal contracts if they cover only a portion of 
the descriptions used by the engineers today in the requirements and component specifications. 
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LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 
ACRONYM DESCRIPTION 

AC  alternating current 

ALES  Advanced Laboratory for Embedded Systems, Rome, Italy 

APU  auxiliary power unit 

CSL  Contracts Specification Language 

DAE  differential algebraic equation 

DC  direct current 

DE  discrete event 

DLL  dynamic link library 

DSE  design space exploration 

DSL  domain specific language 

EDA  electronic design automation 

EPS  electrical power system 

EU  European Union 

HRL  Haifa Research Laboratory (IBM) 

IBM  International Business Machines Corporation 

MEL  minimum equipment list 

MoC  model of computation 

MoCC  model of computation and communication 

MS  Microsoft Corporation 

PBD  platform based design 

PDB  power distribution box 

PI  principal investigator 

PID  proportional-integral-derivative 

PLE  product lines engineering 

PSL  Property Specification Language 

RAT  ram air turbine 

SE  systems engineering 

SLD  system level design 

TDF  timed data flow 

TRU  transformer rectifier unit 

TSM  tagged signal model 
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UAV  unmanned aerial vehicle 

UTRC  United Technologies Research Center 

VP  variation point 

VSpec  variability specification 
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Berkeley Labs. In 1997, he joined the PARADES EEIG research laboratory in Rome, Italy. He 
has consulted several companies such as BMW, Magneti Marelli, ST Microelectronics, Cadence 
and UTC on design methodology and architecture for embedded real-time systems. From 2000 to 
2007, he has been teaching Network for Embedded Systems (at the University of Ancona) and 
since 2008 he is teaching Embedded Systems at the University La Sapienza. He has been part of 
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technical coordinator of PARADES in the SPEEDS and COMBEST EU projects. He is currently 
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papers on design tools and methodologies for embedded systems, safety-critical embedded 
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S.r.l., a company providing software for embedded real-time systems. 

Leonardo Mangeruca 
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In 1995 he joined the Department of Biophysical and Electronic Engineering of the University of 
Genoa, where he worked on the CHIPS project in cooperation with IMEC, Leuven, Belgium. 
Between 1997 and 1998 he was intern at the Cadence Berkeley Labs, where he worked on 
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Currently he is senior research scientist at ALES S.r.l., Rome, Italy. 

Amit Fisher 

Amit Fisher is Senior Manager at IBM Research , Haifa, currently managing the Business and 
Systems Solutions. His main areas of expertise are Business and Enterprise Architecture 
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ABSTRACT 
We present a novel integration language for heterogeneous model composition. The language is anchored to a mathematically 
rigorous denotational semantics to provide a precise meaning to the composition of heterogeneous models. Nonetheless, it is 
not based on a common model of computation where others models of computation can be mapped, as previous works have 
proposed. On the contrary, the language is fully open. Both denotational and operational models of computation can be 
defined and provided as libraries that can be used to integrate and design heterogeneous models with precise semantics. 
Component’s bodies can be specified in external languages and model transformation flows of different components to 
executable specifications can be safely integrated in multiple back-end analysis tools. 
This article is a preprint to be submitted to journals and conferences in future after further revisions. 
 

Index Terms— Models of computation, heterogeneous systems, embedded systems, denotational semantics, operational 
semantics, model transformation 
 

1. INTRODUCTION 
 
Embedded control systems have become of common use in our daily life. The trend shows an ever-increasing complexity of 
such system that most of the time should guarantee high performances, safety properties, low power consumption and low 
costs. The design of new embedded systems requires the integration of more components in a single chip and the interaction 
of several devices located in different places in the space. Often, the embedded system architectures include a wide variety of 
heterogeneous components: processors, application specific hardware, DSPs, sensors, actuators, etc. Additionally, a large 
number of actors are usually involved during the different phases of the design process. Teams, spread all around the world, 
contribute to the overall design, each one facing a particular design problem and therefore using specific design techniques 
and specific tools to solve it. The final design result in a composition of heterogeneous modules based on different Models of 
Computation (MoCC) and characterized by aperiodic and periodic computation, event-triggered and time-triggered 
communication and so on. As a consequence, the capability to support heterogeneity is necessary to deal with the design of 
such systems. During the entire design process, and especially during the very first development steps, the heterogeneity 
nature of components should be considered. During the last 10 years, different methodologies, frameworks and tools have 
been proposed to help the designer during the entire design process. However, there is still the lack of a unique integration 
framework that would be able to correctly compose models based on different MoCCs and to perform some analysis on the 
resulting system. What is required is a standard methodology to provide interoperability between models of different nature 
and to cover the whole design flow, from systems requirements to system implementation.  
The paper is structured as follows: in Section 2 we present a simple example that we will use throughout the document. 
Related work is presented in Section 3. The mathematically defined meaning of heterogeneous composition is presented in 
the denotation semantics described in Section 4. Section 5 shows how the denotational semantics can be used to formally 
define the heterogeneous composition specified by the simple introduced in Section 2. In Section 6 we discuss how 
denotational and operational MoCCs are defined in the integration language and their relationships, also providing examples. 
Additionally, we show how the definition of operational MoCCs can be used to put in place a model transformation flow 
from the denotational model specification to its operational representation for analysis purposes. Finally, Section 7 concludes 
the paper. 
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2. A SIMPLE EXAMPLE 

 
Figure 1: An example of heterogeneous composition 

Figure  shows an example of heterogeneous composition. We have components over four different models of computation 
and communication (MoCC): continuous time (CT), two periodic discrete time (DT(T1,ϕ1) and DT(T2,ϕ2), where T1 and T2 
are rates and ϕ1 and ϕ2 are initial phases) and synchronous (untimed) dataflow (SDF) [1,2]. The composition between 
different MoCCs is achieved by means of heterogeneous processes. Informally, a process is called homogeneous if it operates 
over signals of the same MoCC, otherwise it is called heterogeneous. An heterogeneous process that has a single input signal 
and a single output signal over different MoCCs is called a signal adaptor. Note nonetheless that an heterogeneous process 
may have multiple signals over multiple MoCCs. As shown in Figure 1, signal adaptors can be composed to obtain new 
signal adaptors. 
In the example of Figure 1 we have three homogeneous components: a continuous time dynamics, a discrete time filter and 
an SDF component that computes the average every 10 samples coming from the continuous time component. Additionally, 
we have four adaptors to harmonize the different MoCCs: the sampler adapts CT signals into DT(T1,ϕ1) signals; the zero-
hold converts DT signals into CT signals by holding the latest input value; the queue converts a DT signal into an untimed 
sequence of SDF tokens; the play-out buffer converts input SDF tokens into timed data on its DT(T2,ϕ2) output signal. 
When interfacing different MoCCs several design choices might have to be taken. In the example of Figure 1, the play-out 
buffer produces a timing of the SDF tokens from its input signal. This timing is not completely arbitrary. It has in fact a 
relationship with the timing of the data produced by the sampler, via the rate relationship introduced by the SDF signals and 
component. Moreover, design constraints are enforced by the system engineer to ensure a maximum latency of the SDF 
computation chain. 
 

3. PREVIOUS WORK 
 
The problem of formally capturing the structure and behavior of heterogeneous systems has been already addressed by 
several authors. The tagged signal model approach proposes a theoretical framework for comparing properties of different 
models of computation using a denotational framework [5,6]. Based on this approach, several other solutions have been 
proposed to specialize the framework for an important subset of MoCCs [7]. Different specification languages and analyses 
frameworks have been developed to allow designers capturing heterogeneous systems. The PtolemyII and the Metropolis  
frameworks are modeling and simulation environments based on the tagged signal model theory [8,9]. The SPEEDS HRC 
language  provides a common semantics and syntax to allow heterogeneous components hosted-simulation [10,11,12]. The 
MARTE UML profile constraints the semantics of the UML language providing a well-defined notion of time and supporting 
the specification of components exposing different MoCCs [13]. Other approaches uses the SystemC modeling language as 
glue language for the coordination and execution of heterogeneous components both using interface elements bridging 
components exposing different MoCCs [14] and extending the SystemC simulation capabilities to capture heterogeneous 
specification [15]. Most of the above approaches aim at providing a modeling and/or simulation environment for the 
specification and analysis of embedded systems. Exceptions are the tagged signal model, which provides a denotational 
framework for the definition of MoCCs, rather than models (although models can also be specified as we will show), and the 
SPEEDS environment that defines a language and protocol to exchange models between different tools. We focus on the 
integration issue of components specified in different languages, in turn defined over possibly different MoCCs. 
The approach described in this document is focused on a SysML-based integration language where denotational and 
operational MoCCs can be defined as libraries and homogeneous (single MoCC) and heterogeneous (multiple MoCCs) 
processes can be defined and associated to the corresponding denotational MoCCs. Association of processes with operational 
MoCCs is done in a separate diagram to allow for different operational semantics of the same denotational specification. 
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Additionally, we show how the integration language supports multiple model transformation flows that allow mapping the 
denotational model specification to different analysis back-ends with maximal reuse of transformation tools and 
transformation artifacts. 
 

4. MATHEMATICAL FRAMEWORK 
 
The mathematical framework is based on the notions of tag domain (similar to the notion of clock in MARTE [3,4]), event, 
signal, behavior, and process (refinements from concepts defined in the Tagged Signal Model [5,6]). Informally, each signal 
is associated with a subset of tag domains. A tag is defined as an evaluation of a subset of tag domains. An event is an 
association of a tag with a value. A behavior associates each signal with a subset of events over the tag domains associated 
with the signal. An MoCC defines the allowed structure of tags and behaviors.  
 
4.1. Definition of the SDF MoCC 
 
Before providing the formal definition of the mathematical framework, we discuss a possible definition of the SDF model of 
computation. We will define a mathematical abstraction of the SDF MoCC, such that the balance equations can be derived 
and static scheduling analysis can be carried out, as described in [1]. In other words, in this section we abstract away actor 
functions, while in Section 5 we will show how we introduce them in our formalization. The SDF model of computation is 
defined in terms of a firing rule for each actor. The firing rules are expressed in terms of attributes associated with the signals, 
namely the token produced, the token consumed and the initial tokens (also called delay). The firing rules can be regarded as 
constraints on the allowed firings of the actors. Hence, to define the model of computation we need to express such 
constraints. To achieve this result we introduce a tag domain for each actor, representing the firings of the actor. Let I be a set 
of indices, one index for each SDF actor, for example the subset of the natural numbers I = {1, …, M}. We consider a set of 
tag domains K[I] = {κi | i ∈ I}, each one taking values over , the set of natural numbers. The assignment of a value, a 
natural number in this example, to some tag domains is called a tag, i.e. in our example a tag is a function τ: K[I] → . Let 
T[I] denote the set of tags over the tag domains K[I]. Since the firing rules are defined in terms of the attributes of the signals, 
we have to introduce a set of signals S[I×I] ⊆ {si,j | i, j ∈ I} and associate with signal si,j the pair of tag domains {κi, κj}, 
corresponding to the tag domains of the actors that produce and consume tokens on that signal. In the SDF MoCC each signal 
is associated with three attributes: si,j.p (number of tokes produced on the signal at each firing of actor i), si,j.c (number of 
tokes consumed on the signal at each firing of actor j), si,j.d (number of initial tokens). A behavior is a subset of events. An 
event associated with signal si,j in the SDF MoCC is a triplet (τ,si,j,v) associating a tag and a value to a signal, such that v = 
(n, ν) ∈ V, where n is the number of tokens on the signal, i.e. n = si,j.p*τ(κi) – si,j.c*τ(κj) + si,j.d, and ν is a function that 
assigns a value to each token on the signal, i.e. ν:  → W∪{⊥} such that ν(k) = ⊥, ∀k ≥ n, where W is the set the token take 
value in and is no further specified. In the definition of the SDF MoCC, the token’s value plays no role, so we can leave it no 
further specified and dependent on the particular SDF instantiation. Let E[I,I×I] = T[I]×S[I×I]×V denote the set of events, 
then a behavior can be defined as a subset of events, i.e. σ ⊆ E[I,I×I]. Not all subsets of events are behaviors.  The SDF 
MoCC further constrains the allowed behaviors. To define such constraints recall that each signal is associated with three 
attributes, si,j.p, si,j.c, and si,j.d. The allowed set of behaviors can therefore be defined by SDF[I,W] = {σ ⊆ E[I,I×I] | (τ,si,j,v) 
∈ σ ⇒ τ(κj)*si,j.c ≤ τ(κi)*si,j.p + si,j.d ∧ n = si,j.p*τ(κi) – si,j.c*τ(κj) + si,j.d ∧ v = (n,ν), where ν:  → W∪{⊥} s.t. ν(k) = ⊥, ∀k 
≥ n}, in other words tokens must be produced on the signal before being consumed. Note that these constraints are a form of 
causality relationship. The synchronous dataflow MoCC over the set of indices I will be denoted SDF[I,W]. Note that the 
SDF MoCC can be instantiated with different token value sets. 
 
4.2. Definition of the continuous time MoCC 
 
To define the CT model of computation we only need a single real-valued tag domain representing real time, say κt, where t 
is a tag domain index that we reserve to represent real time. The set of tag domains is therefore K[{t}] = {κt}. The set of tags 
consists of functions τ: K[{t}] → , selecting a real value in the real-time domain. The set of event values is some N-
dimensional Euclidean space. Given a set of signals S[J] = {sj | j ∈ J}, defined over the set of signal indices J. Informally, a 
behavior is allowed in the CT MoCC if all events (τ,sj,v) in it identify points in the curve of some piece-wise continuous 
function f. Formally, the set of allowed behaviors is restricted to CT[J] = {σ ⊆ E[{t},J] | ∃fj:  → Nj, piece-wise continuous, 
such that (τ,sj,v) ∈ σ ⇒ fj(τ(κt)) = v}. The continuous time MoCC over the set of signal indices J will be denoted by CT[J]. 
 
4.3. Definition of periodic discrete time MoCCs 
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Periodic discrete time models of computation form a family of MoCCs distinguished by two attributes: the period Ti and the 
initial phase ϕi. We only need a single tag domain per MoCC representing the clock, say κ(T,ϕ), taking values in the set of 
natural numbers. The tag domain index consisting of the pair (T,ϕ) is used for the periodic discrete time MoCC. The set of 
tag domains is therefore K[{(T,ϕ)}] = {κT,ϕ}. The set of tags consists of functions τ: K[{(T,ϕ)}] → , assigning a natural 
number to the clock. The set of event values is some N-dimensional Euclidean space. Given a set of signals S[J] = {sj | j ∈ 
J}, defined over the set of signal indices J. The set of behaviors DT[T,ϕ,J] = {σ ⊆ E[{(T,ϕ)},J] } is not restricted in this class 
of MoCCs. The periodic discrete time MoCC over the set of signal indices J will be denoted by DT[T,ϕ,J]. 
 
4.4. Formal defini on of the mathematical framework ti

Let K[I] = {κi | i ∈ I} denote a set of tag domains and let V[I] = {Vi | i ∈ I}, where  Vi denotes the partially or totally ordered 
set, where the tag domain κi takes up value in. A tag is defined as a function τ: K[I] → i∈IVi, that associates each tag 
domain κi ∈ K[I] with a value τ(κi) ∈ Vi. Let T[I] denote the set of tags over K[I]. T[I] has an induced partial ordered defined 
by τ1 ≤ τ2 ⇔ ∀κi ∈ K[I], τ1(κi) ≤ τ2(κi). Let S[J] = {sj | j ∈ J} denote a set of signals and let V[J] = {Vj | j ∈ J}, where  Vj 
denotes the set, where the signal sj takes up value in. An event is defined as a triplet (τ,sj,v), such that v ∈ Vj. Let E[I,J] 
denote the corresponding set of events over tag domain indices in I and signal indices in J. 

 

A behavior σ[I,J] is defined as a subset of events such that it is deterministic, i.e. there is a unique event for every tag on each 
signal. Formally, σ[I,J] ⊆ E[I,J] such that (τ,s,v1), (τ,s,v2) ∈ σ[I,J] ⇒ v1 = v2. To simplify notation, we will omit the indices 
specification [I,J] whenever it is clear from the context. Let Σ[I,J] denote the set of behaviors over the set of events E[I,J]. A 
behavior is called complete if on each signal it has an event for every value of each tag domain. Formally, σ[I,J] is complete 
if ∀κi ∈ K[I], ∀sj ∈ S[J], {τ(κi) | (τ,sj,v) ∈ σ[I,J]} = Vi. A behavior is called incomplete, if it is not complete. A behavior 
σ[I,J] is left-tag-bounded if there exists τ’ ∈ T[I] such that (τ,sj,v) ∈ σ[I,J] ⇒ τ’ ≤ τ. Similarly, σ[I,J] is right-tag-bounded if 
there exists τ’ ∈ T[I] such that (τ,sj,v) ∈ σ[I,J] ⇒ τ ≤ τ’. A behavior is said to be tag-bounded if it is both left- and right-tag-
bounded. 
A model of computation over the set of tag domain indices I and signal indices J is defined as a subset of Σ[I,J]. For example, 
following sections 4.1, 4.2 and 4.3, the synchronous dataflow MoCC is represented by a set of behaviors SDF[I,W] ⊆ 
Σ[I,I×I], where I is a subset of , the set of natural numbers, ∀Vi ∈ V I , Vi    , ∀Vj ∈ V J , Vj    (n,ν) | n ∈  ∧ ν:  → 
W∪{⊥} s.t. ν(k) = ⊥, ∀k ≥ n . The continuous time MoCC is represented by a set of behaviors CT[J] ⊆ Σ[{t},J], where t is 
the tag domain index representing real-time, J is a subset of , Vt     and ∀Vj ∈ V J , Vj    Nj, where Nj ∈  \ 0 . The 
periodic discrete time MoCC is represented by a set of behaviors DT[T,ϕ,J] ⊆ Σ[{(T,ϕ)},J], where (T,ϕ) is the tag domain 
index of the discrete time with period T and initial phase ϕ, V(T,ϕ) = , and ∀Vj ∈ V J , Vj    Nj, where Nj ∈  \ 0 . 
A process is defined by introducing additional constraints on behaviors. A process in general constrains behaviors with 
respect to a subset of the signals, i.e. P[I,J’] ⊆ Σ[I,J], where J’ ⊆ J. We define process composition as follows: 
P1[I1,J1]||P2[I2,J2] = {σ ⊆ E[I1∪I2,J1∪J2]  | (τ,s,v) ∈ σ ⇒ (s ∈ S[J1]∪S[J2] ∧ (s ∈ S[J1] ⇒ ∃(τ1,s,v) ∈ σ1 ∈ P1[I1,J1] s.t. τ|K1 = 
τ1) ∧ (s ∈ S[J2] ⇒ ∃(τ2,s,v) ∈ σ2 ∈ P2[I2,J2] s.t. τ|K2 = τ2))}. Note that if I1 = I2 and J1 = J2, then P1[I1,J1]||P2[I2,J2] = 
P1[I1,J1]∩P2[I2,J2]. Note that the formula P[I1,J1]||Σ[I2,J2] = P[I1∪I2,J1∪J2] provides the extension of process P to the tag 
domains with indices in I2 and the signals with indices in J2. If I1 = I2 and J1 = J2, then P[I1,J1]||Σ[I2,J2] = P[I1,J1]. 
MoCCs are also defined as subsets of behaviors. Hence, composition of MoCCs is defined in the same way as process 
composition. An MoCC M is said to be compositional if M[I1,J1]||M[I2,J2] = M[I1∪I2,J1∪J2]. Note that CT, DT and SDF are 
compositional MoCCs. A process is called homogeneous if it is a subset of allowed behaviors of a given MoCC. For 
example, P[I,J’,W] ⊆ SDF[I,W], where J’ ⊆ I×I. is an homogeneous SDF process. A process is called heterogeneous if it is a 
subset of behaviors of multiple MoCCs. For example, the process P[T,ϕ,J1∪J2] ⊆ CT[J1]||DT[T,ϕ,J2] is an heterogeneous 
process defined over the continuous time and discrete time MoCCs.  
A (homogeneous) connection is a special kind of process that constrains two or more signals to be equal. Formally, a 
connection is a process C[I,J] = {σ ⊆ E[I,J] | (τ,sj,v) ∈ σ ⇔ (τ,sk,v) ∈ σ, ∀j, k ∈ J}. Connections can be used to connect 
processes that are defined over disjoint sets of signal indices of the same model of computation. To connect processes over 
different models of computation heterogeneous connections are needed. Contrary to homogeneous connections, a general 
definition for heterogeneous connections does not exist, as the adaptation between signals over different MoCCs is not 
unique in general and depends on the user’s needs. For such reasons, heterogeneous connections are also called adapters and 
examples will be provided in Section 5. 
Note that in our mathematical framework tag domains are general structures not limited to represent temporal behaviors. Tag 
domains may represent other physical coordinates, such as space, velocity, etc., as well as more abstract frame of reference 
such as position in a graph. Hence, our mathematical framework can appropriately represent and integrate the representation 
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of spatiotemporal partial differential equations, positioning of geometrical objects in space, Hamiltonian and Lagrangian 
functions, constraints and evolutionary equations over a graph, etc.   
As an example, consider the heat transfer equation:  
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To represent it in our mathematical framework, we define four tag domains, three spatial tag domains x,y,z and a temporal 
tag domain t, so that K[I] = {x,y,z,t}. The process that represents the heat has a signal ‘s’ defined over the four tag domains 
introduced above, whose value represents the heat at a given point in space and time. Let I be the set of indices associated 
with the tag domains x,y,z,t and J the set containing the index of signal ‘s’, we can formally define the heat transfer process 
as P[I,J] = {(τ,s,v) | ∃h: 4→   s.t. ∂2h/∂t2 – α(∂2h/∂x2+∂2h/∂y2+∂2h/∂z2)=0 ∧ v = h(τ(x,y,z,t))}. 
 
4.5. Definition of contracts 
 
In this section we provide the semantic foundations for contracts, based on the mathematical framework introduced in 
Section 4.4. A contract is a pair of processes C[I,J] = (A[I,J],G[I,J]), where the process A[I,J] plays the role of the 
assumptions (acceptable behaviors), while the process G[I,J] plays the role of the promises or guarantees (possible 
behaviors). To provide a meaning to the contract, we define how to interpret it as a process. A contract is interpreted as a 
convenient decomposition of the process G[I,J]∪¬A[I,J]. Hence, to define a contract we need to define the operations of 
complementation and union of processes. The complement of a process P[I,J] is defined as ¬P[I,J] = (Σ[I,J] \ P[I,J]). The 
union of two processes P1[I1,J1] and P2[I2,J2] is defined as P1[I1,J1]∪P2[I2,J2] = (P1[I1,J1]||Σ[I2,J2])∪(P2[I2,J2]||Σ[I1,J1]). It can be 
shown that, with this interpretation of a contract as a process, the contract algebra defined in the SPEEDS project can be used 
to compose and relate contracts.  
 
4.6. Extension to stochastic processes 
 
Before providing the definition of stochastic processes in our mathematical framework, we discuss a simple example to 
introduce the basic concepts. Let us consider the modeling of the NOT gate with probability error p. If we abstract time, the 
set of behaviors associated to the non-stochastic NOT gate can be represented by the pairs {(0,1), (1,0)}. We create the model 
of a stochastic NOT by defining a set of conditional probability measures over subsets of behaviors, pairs in this case.  
To show how the stochastic model of the NOT gate is defined, we consider one specific conditional probability measure as 
an example: let a and b denote the input and output signals, respectively, and consider the conditional probability measure 
given by p({b=0}/{a=0}) = p({b=1}/{a=1}) = p and p({b=0}/{a=1}) = p({b=1}/{a=0}) = 1 – p, where {a=0} = {(0,0), 
(0,1)}, {b=0} = {(0,0), (1,0)}, {a=1} = {(1,0), (1,1)} and {b=1} = {(0,1), (1,1)}. Note that, since we want to have a 
compositional definition of stochastic process, i.e. we want to specify local probabilities associated to the process, we need to 
consider conditional probability measures, rather than unconditional probability measures. 
To show how composition works, let us compose two NOT gates, where a and b denote the input and output signals of the 
first NOT gate, while b and c denote the input and output signals of the second NOT gate. Let p and q the error probabilities 
of the first and second NOT gate, respectively. First we need to extend the sample space representation from pairs to triplets, 
so that {a=0} = {(0,0,0), (0,1,0), (0,0,1), (0,1,1)}, {b=0} = {(0,0,0), (1,0,0), (0,0,1), (1,0,1)}, {c=0} = {(0,0,0), (1,0,0), 
(0,1,0), (1,1,0)}, {a=1} = {(1,0,0), (1,1,0), (1,0,1), (1,1,1)}, {b=1} = {(0,1,0), (1,1,0), (0,1,1), (1,1,1)}, {c=1} = {(0,0,1), 
(1,0,1), (0,1,1), (1,1,1)}. Then, we need to define the conditional probability measure of the composition of the two NOT 
gates, which must agree with the conditional probability measure of each single NOT gate. Hence, the conditional probability 
measure of the composition is such that p({b=0}/{a=0}) = p({b=1}/{a=1}) = p, p({b=0}/{a=1}) = p({b=1}/{a=0}) = 1 – p 
and p({c=0}/{b=0}) = p({c=1}/{b=1}) = q, p({c=0}/{b=1}) = p({c=1}/{b=0}) = 1 – q. From the composition of conditional 
probabilities, we have that p({c=1}/{b=1}) p({b=1}/{a=1}) = p({c=1}∩{b=1}/{a=1}) = p({c=1∧b=1}/{a=1}) = p*q and 
p({c=1}/{b=0}) p({b=0}/{a=1}) = p({c=1}∩{b=0}/{a=1}) = p({c=1∧b=0}/{a=1}) = (1-p)*(1-q). Moreover, from the law of 
total probability, we have p({c=1}/{a=1}) = p({c=1∧b=1}/{a=1}) + p({c=1∧b=0}/{a=1}) = p*q+(1-p)*(1-q). 
 
4.7. Definition of stochastic processes 
 
In this section we extend the mathematical framework introduced in Section 4.4 to be able to represent stochastic processes. 
This is achieved by introducing probability spaces (see http://en.wikipedia.org/wiki/Probability_space). A probability space 
is a triplet (Ω,Φ,f), where Ω is the sample space, Φ is a σ-algebra over Ω, where we further require that Ω ∈ Φ, and f is a 
probability measure over Φ, i.e. f: Φ → [0,1] with the usual axioms of probability.  
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In our framework we use behaviors as samples and regular (non-stochastic) processes as sample spaces. Hence, the elements 
of Φ are subsets of behaviors of a regular process. To simplify notation, we will represent a probability space over the set of 
behaviors Σ[I,J] as a function f[I,J]: 2Σ[I,J] → [0,1]∪{⊥} such that Φ(f[I,J]) = {φ ∈ 2Σ[I,J] | f[I,J](φ) ∈ [0,1]} is a σ-algebra and 
f[I,J]|Φ[I,J] is a probability measure. 
To have a compositional definition of stochastic processes, we replace probability spaces with conditional probability spaces. 
We represent a conditional probability space over the set of behaviors Σ[I,J] as a function p[I,J]: 2Σ[I,J] × 2Σ[I,J] → [0,1]∪{⊥} 
such that Φ(p[I,J]) = {φ1, φ2 ∈ 2Σ[I,J] | p[I,J](φ1,φ2) ∈ [0,1]} is a σ-algebra and p[I,J]|Φ[I,J]×Φ[I,J] is a conditional probability 
measure, where p[I,J](φ1,φ2) ∈ [0,1] is interpreted as the probability of φ1 given φ2. We will omit the signal specification [I,J] 
when it is clear from the context. Note that p(φ,Σ[I,J]) can be interpreted as the unconditional probability of φ. Hence, 
∀φ1,φ2,φ3 ∈ Φ(p), p(φ3,Σ[I,J]) ∈ (0,1] ⇒ p(φ1,φ2)p(φ2,φ3) = p(φ1∩φ2,φ3) (law of composition of conditional probabilities) and 
for all partitions K ⊆ Φ(p) of φ1, ∑φ∈K p(φ1∩φ,φ2) = p(φ1,φ2) (law of total probability). The set of all conditional probability 
measures over the set of behaviors Σ[I,J] will be denoted Γ[I,J]. 
A stochastic process is defined as a subset Π[I,J] ⊆ Γ[I,J] of conditional probability measures. Given two stochastic 
processes, Π1[I1,J1] and Π2[I2,J2], we define their composition as follows: Π1[I1,J1]||Π2[I2,J2] = {p ∈ Γ[I1∪I2,J1∪J2] | ∃pi ∈ Πi 
s.t. ∀φ1, φ2 ⊆ Σ[Ii,Ji], p(φ1||Σ[Ij,Jj],φ2||Σ[Ij,Jj]) = pi(φ1,φ2), where i,j=1,2 and i≠j}. Similarly to regular processes, 
Π[I1,J1]||Γ[I2,J2] = Π[I1∪I2,J1∪J2] provides the extension of the stochastic process Π to the tag domains with indices in I2 and 
the signals with indices in J2. Note that if I1 = I2 and J1 = J2, then Π[I ,J1]||Γ[I2,J2] = Π1[I1,J1]. 1
A regular (non-stochastic) process can be seen as a special case of a stochastic process as defined in the present section. A 
regular process can be represented by a stochastic process Π[I,J] if p(φ1,φ2) | p ∈ Π[I,J], φ1, φ2 ⊆ Σ[I,J]} = {0}, {1}, {⊥}, or 
[0,1]. 
 
4.8. Definition of stochastic contracts 
 
In this section we provide the semantic foundations for stochastic contracts, based on the mathematical framework introduced 
in Section 4.4 and the stochastic extension given in Section 4.6. A stochastic contract is a pair of stochastic processes C[I,J] = 
(A[I,J],G[I,J]), where the process A[I,J] plays the role of the assumptions, while the process G[I,J] plays the role of the 
promises or guarantees. To provide a meaning to the stochastic contract, we define how to interpret it as a stochastic process. 
A stochastic contract is interpreted as a convenient decomposition of the stochastic process G[I,J]∪¬A[I,J]. The complement 
of a stochastic process Π[I,J] is defined as ¬Π[I,J] = Γ[I,J]\Π[I,J]. The union of two stochastic processes, Π1[I1,J1] and 
Π2[I2,J2],  is defined as   Π1[I1,J1]∪Π2[I2,J2] = (Π1[I1,J1]||Γ[I2,J2]) ∪ (Π2[I2,J2]||Γ[I1,J1]).  
 
4.9. Definition of denotational primitives 
 
Denotational primitives represent a basic notation to simplify the mathematical definition of processes, adapters and MoCCs. 
The list provided in this section is not intended to be complete, but only explanatory and for the purpose of this document. 
Denotational primitives comprise both constraints and operators. Constraint denotational primitives are defined as sets of 
behaviors and as such can be regarded as a kind of processes.  
Operator denotational primitives can operate on tags, events, behaviors or sets of behaviors. Below we present some 
examples of operators over behaviors and an example of an operator over tags. Operators over behaviors are extended to sets 
of behaviors by applying them element-wise. To improve readability, operator composition will be denoted (O1  O2)(σ), to 
mean O1(O2(σ)). To simplify notation, we will assume that whenever we use the mathematical operators ≤ (partial order), + 
(addition), – (subtraction) over tag domain values, such operators are defined in the relevant subset of the tag domain values. 
Additionally, we consider the following notation: a < b is equivalent to a ≤ b ∧ a ≠ b. 
 
4.9.1. Constraints 
 
Phase constraint: ΦR[κ1,κ2,LB,UB] = {σ | (τ,s,v) ∈ σ ⇒ LB ≤ τ(κ1) – τ(κ2) ≤ UB}; 
 
Sampling relation: S[T,ϕ] = {σ | (τ,s,v) ∈ σ ⇒ 0 ≤ τ(κt) < ϕ ∨ τ(κT,ϕ)*T + ϕ ≤ τ(κt) < τ(κT,ϕ)*T + T + ϕ}; 
 
4.9.2. Operators 
 
Signal renaming: Λ[s’,s](σ) = {(τ,s,v) | (τ,s’,v) ∈ σ}; 
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Phase translation: Φ[ϕ](σ) = {(τ,s,v) | (τ’,s,v) ∈ σ ∧ τ(κ) = τ’(κ) – ϕ}; 
 
Sampling: Ψ[T](σ) = {(τ,s,v) | (τ’,s,v) ∈ σ ∧ τ’(κ) = τ(κ)*T}; 
 
Signal projection: Π[J](σ) = {(τ,s,v) ∈ σ | s ∈ S[J]}; 
 
Tag domain projection: ΠK[I](σ) = {(τ’,s,v) | (τ,s,v) ∈ σ ∧ τ|K[I] = τ’}; 
 
Prefix: PX[τ’](σ) = {(τ,s,v) ∈ σ | τ ≤ τ’}; 
 
Next tag: X[κ](τ) = τ’ s.t. τ’(κ) = τ(κ) + 1. 
 
We use the signal projection operator to introduce the concept of functional process. A process P[I,J] is functional with 
respect to JO ⊆ J if ∀σ ∈ P[I,J], Π[J\JO](σ1) = Π[J\JO](σ2) ⇒ Π[JO](σ1) = Π[JO](σ2). The choice for JO is not unique in 
general and JO is maximal if it cannot be enlarged further while keeping the process functional with respect to it. If there is a 
unique maximal JO such that the process is functional with respect to it, then the signals with indices in JO are called the 
output (controlled) signals of the process. A functional process P[I,J] with respect to JO ⊆ J is receptive with respect to JI ⊆ J 
if ∀σ’ ∈ P[I,J], {Π[JI](σ) | σ ∈ P[I,J] ∧ Π[J\JO\JI](σ) = Π[J\JO\JI](σ’)} = Σ[I,JI]. The choice for JI is not unique in general. If 
there is a unique maximal JI for all maximal JO such that the process is functional and receptive, then the signals with indices 
in JI are called the input (uncontrolled) signals of the process. A functional process P[I,J] with respect to JO ⊆ J that is 
receptive with respect to JI is total if JO∪JI = J. 
 

5. SIGNAL ADAPTATION 
 
Given the mathematical framework introduced in Section 4, we show how to formalize the signal adaptation processes. In 
particular, we show it on the example introduced in Section 2. 
 
5.1. Definition of sampler 
 
The sampler is an heterogeneous process that transforms a signal from continuous time to periodic discrete time. The sampler 
is associated with two attributes, the period Ti and the initial phase ϕi, that are also the period and initial phase of the target 
discrete time domain. As defined in section 4.4, the sampler can be defined by providing the constraints it imposes on the 
allowed behaviors. 
Let J1 = {1} and J2 = {2} be two sets of indices and V1 = V2 =  be the corresponding event value sets, then the sampler is a 
process Psampler[T1,ϕ1,J1∪J2] ⊆ CT[J1]||DT[T1,ϕ1,J2]. Formally, the behaviors allowed by the sampler can be defined as 
follows: Psampler[T1,ϕ1,J1∪J2] = {σ ∈ CT[J1]||DT[T1,ϕ1,J2] | σ ∈ S[T1,ϕ1] ∧ Π[J2](σ) = (Λ[s1,s2]   Ψ[T2]   Φ[ϕ2]   Π[J1])(σ)}. 
 
5.2. Definition of lossless queue 
 
The lossless queue is an heterogeneous process that transforms a signal from periodic discrete time to SDF. The queue is 
associated with an attribute, say LQ, which is the length of the queue. As defined in section 4.4, the queue can be defined by 
providing the constraints it imposes on the allowed behaviors. Let J2 = {2} and I3 = {3,4}. The instantiation of the SDF[I3, ] 
MoCC has therefore two actors, the queue and the SDF average component, which we associate with the indices 3 and 4, 
respectively. We assume that the attributes of the SDF signal with index (3,4) are as follows: s3,4.p = 1, s3,4.c = 10, s3,4.d = d. 
Note that the set of token values in the SDF MoCC must comply with the event value set of the DT MoCC. The lossless 
queue is a process Pqueue[{(T1,ϕ1)}∪I3,{J2∪(3,4)}, ]⊆DT[T1,ϕ1,J2]||SDF[I3, ]. The behaviors allowed by the lossless queue 
are constrained as follows: Pqueue[{(T1,ϕ1)}∪I3,J2∪{(3,4)}, ] = {σ ∈ DT[T1,ϕ1,J2]||SDF[I3, ] | σ ∈ ΦR[κT1,ϕ1,κ3,0,LQ] ∧ 
((τ3,s3,4,v3) ∈ σ ⇔ (τ2,s2,v2) ∈ σ) ∧ τ2(κT1,ϕ1) = j + 10*τ3(κ4) – d ∧ v2 = ν(j) ∧ 0 ≤ j < τ3(κ3) – 10*τ3(κ4) + d, where v3 = 
(τ3(κ3) – 10*τ3(κ4) + d,ν)}. Note that the expression ν(j) = v2 imposes the constraint that the output signal contain the values 
as they arrive on the input signal, taking into account the tokens consumed by the SDF average component and the delay on 
the signal.  
 
5.3. Definition of play-out buffer 
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The play-out buffer is an heterogeneous process that transforms a signal from SDF to periodic discrete time. The play-out 
buffer is associated with an attribute, say LB, which is the length of the buffer. As defined in section 4.4, the play-out buffer 
can be defined by providing the constraints it imposes on the allowed behaviors. Let I4 = {4,5} and J6 = {6}. The instantiation 
of the SDF[I4, ] has two actors, the SDF average component and the play-out buffer, which we associate with the tag 
domain indices 4, and 5, respectively. We assume that the attributes of the SDF signal with index (4,5) are as follows: s4,5.p = 
1, s4,5.c = 1, s4,5.d = 0. The play-out buffer is a process Pbuffer[{(T2,ϕ2)}∪I4,{(4,5)∪J6}, ] ⊆ SDF[I4, ]||DT[T2,ϕ2,J6]. The 
behaviors allowed by the play-out buffer are constrained as follows: Pbuffer[{(T2,ϕ2)}∪I4,{(4,5)∪J6}, ] = {σ ∈ SDF[I4, ]|| 
DT[T2,ϕ2,J6] | σ ∈ ΦR[κ5,κT2,ϕ2,0,LB] ∧ ((τ5,s4,5,v5) ∈ σ ⇔ (τ6,s6,v6) ∈ σ) ∧ τ6(κT2,ϕ2) = j + τ5(κ5) ∧ 0 ≤ j < τ5(κ4) – τ5(κ5) ∧ v6 
= ν(j), where v5 = (τ5(κ4) – τ5(κ5),ν)}.  
 

6. HOMOGENEOUS PROCESS DEFINITIONS 
 
To provide a complete description of the SDF part of the example, we show how to define the SDF average component. 
 
6.1. Definition of SDF average  
 
The SDF average component is an homogeneous process defined over the SDF MoCC. As defined in section 4.4, the play-
out buffer can be defined by providing the constraints it imposes on the allowed behaviors. Let I5 = {3,4,5}. Since the SDF 
MoCC is compositional, the instantiation of the SDF for the SDF average component is the composition of the instantiations 
we have done in the previous sections, i.e. SDF[I5, ] = SDF[I3, ]||SDF[I4, ]. The SDF average component is a process 
Pbuffer[I3] ⊆ ΣSDF[I3, ]. The behaviors allowed by the SDF average component are constrained as follows: Paverage[I3] = {σ ∈ 
ΣSDF[I3, ] |  σ ∈ ΦR[κ5,ck[T4,ϕ4],0,LB] ∧ ((τ4,s3,4,v4) ∈ σ ⇔ (τ5,s4,5,v5) ∈ σ) ∧ j1 + 10*τ4(κ4) = 10*(j2 + τ5(κ5)) ∧ j1 + 10 ≤ 
τ4(κ3) – 10*τ4(κ4) + d ∧ ν2(j2) = (∑j∈{0,…,9} ν1(j+j1+1))/10, where v4 = (τ4(κ3) – 10*τ4(κ4) + d,ν1) and v5 = (τ5(κ4) – τ5(κ5),ν2)}.  
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7. OPERATIONAL SEMANTICS 
 
The operational semantics is defined in the META II language by the denotational MoCC and operational MoCC (OMoCC 
for short) libraries. Informally, a denotational MoCC represents a definition of a denotational integration of blocks 
(clear/white-box), while an OMoCC represents the definition of an operational integration of block implementations (black-
box). The denotational MoCC library provides a set of MoCC definitions that can be related by the “extends” relation. Each 
specific MoCC can define attributes whose values are to be specified by block definitions or flows associated with that 
MoCC. A specific MoCC can define parameters that can be used in the definition of the attributes, such as for example some 
attribute’s type, so that the MoCC definition is actually a template that can be instantiated with different types. A specific 
MoCC, that extends another MoCC, inherits the other MoCC’s attributes. Attributes can be constant or variable. Constant 
attributes can be given value on the META II model specification. Variable attributes can be given (dynamic) value using an 
associated white-box language. 
The META II Operational MoCC library provides a set of OMoCC definitions that can be related by the “extends” relation. 
A specific OMoCC can be related to specific MoCCs by the implementation relation. Each specific OMoCC can define 
attributes and functions that are to be specified by block definitions or flows associated with that OMoCC. The functions 
represent the API that the block’s implementations are expected to implement to comply with the corresponding operational 
semantics. Additionally, an OMoCC can specify functions that the OMoCC solver is expected to implement. These functions 
can be used by block’s implementations or by other OMoCC solvers. A specific OMoCC can define parameters that can be 
used in the definition of the attributes and functions. 
 
7.1. Transformation flow for operational analysis 
 

 
Figure 2: Transformation flow 

In Figure 2 the transformation flow of the denotational specification to an operation specification is depicted. The flow 
consists of the following phases. 
 
7.1.1. MoCC and Operational MoCC library definition 
 

1. The META II integration language is provided with an MoCC library and an Operational MoCC library; both 
libraries internally support inheritance; moreover, an Operational MoCC can implement MoCCs;  

2. Each MoCC definition in the MoCC library includes MoCC-specific attributes required of the block definitions and 
flows of that MoCC; 

3. Each Operational MoCC definition in the Operational MoCC library includes MoCC-specific attributes and 
functions required of and provided to the block definition operational implementation. 

 
7.1.2. System model definition 

 
1. The user specifies the model structure in the META II integration language; 
2. The user associates each block definition and/or flow with a specific MoCC taken from the META II MoCC library; 

this association enriches the block definition and/or the flow with MoCC-specific attributes; 
3. The user specifies the value of the MoCC-specific attributes for each block definition and/or flow associated with 

that MoCC; 
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4. The user associates each block definition with a specific Operational MoCC taken from the META II Operational 
MoCC library; this association is specified on a separate diagram, to allow for multiple OMoCC associations, 
according to analysis needs; 

5. The user associates each leaf block (a block that has no associated internal block diagram) with a body specification 
defined in: 1) SysML (clear-box); 2) external language (white-box); 3) external executable specification (black-
box); this association is specified on a separate diagram, to allow for different block’s body specifications, according 
to analysis needs. 

 
7.1.3. Front-end model transformation 

 
The front-end model transformation takes the META II model integration specification and the leaf blocks’ body definitions 
and produces an operational representation; the operational representation will be given in some executable language such as 
C/C++, static lib, DLL, etc.; the operational representation expose the operational API defined in the specific Operational 
MoCC associated with the original block, see point 3 in Section 7.1.1.  

 
7.1.4. Back-end model transformation 
 
The back-end model transformation takes care of two actions: 

1. Translates the structural model representation from the META II language into the target analysis tool; 
2. Adapts the operational API between the black-box body and the concrete API of the corresponding specific OMoCC 

solver in the target analysis tool. 
The API adaptation at point 2 is necessary, because different solvers may have the same API structure and semantics, but 
different concrete syntax. In the Operational MoCC library we can factorize several operational semantics, which differ only 
on the syntax and not on the structure, into a single OMoCC specification, or we can use inheritance to share common API 
structure among similar but not equal operational semantics. 
 
7.2. Requirements on the META II language 
 
To put in place the transformation flow, MoCC and Operational MoCC specificatiosn, described in Section 7.1, support from 
the META II language is needed. Following are a set of requirements on the language. 

1. The META II language shall allow to associate a block definition with: 1) an internal block diagram (inherited from 
SysML); 2) a clear-box body definition (inherited from SysML); 3) a body definition expressed in an external 
language (white-box); 4) a body definition expressed in an external executable specification (black-box); this 
association shall be specified on a separate diagram, to allow for different block’s body specifications, according to 
different analysis needs; 

2. The general concept of MoCC shall be provided by the language  (SemanticDomain in the current profile version of 
the language) and shall support the “extens” relation between MoCCs; 

3. Specific MoCCs shall be defined as libraries of the language; 
4. It shall be possible to associate each block definition and/or each flow with a specific MoCC; a flow that is not 

associated with an MoCC, shall inherit the MoCC specification from the block it belongs to;  
5. Any flows shall be of kind “in”, “out”, or “in-out”; 
6. It shall be possible to connect two flows, say f1 and f2, with different MoCC associations if the MoCC associated 

with f1 is a specialization of the MoCC associated with f2 and f2 is an “in” or an “in-out” flow; 
7. Each MoCC shall specify block attributes and flow attributes that are characteristic of the MoCC; some attributes 

may depend on other attributes; each block or flow definition that is associated with the MoCC shall be allowed to 
customize the values of such attributes;  

8. MoCCs shall be able to specify parameters, that the value or type of some attributes may depend on; 
9. The general concept of Operational MoCC shall be provided by the language and shall support the “extends” 

relation between OMoCCs; 
10. It shall be possible to define associations between an OMoCC and one or more MoCCs to represent the 

implementation relation; 
11. Specific Operational MoCCs shall be defined as libraries of the language; 
12. Each OMoCC shall be able to specify block attributes and flow attributes that are characteristic of the OMoCC; 

some attributes may depend on other attributes; 
13. Each OMoCC shall be able to specify block functions and flow functions that are characteristic of the OMoCC; 
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14. Each OMoCC shall be able to specify required and provided functions that can be implemented/used by block 
implementations and/or other OMoCCs in a composition of OMoCCs; 

15. OMoCCs shall be able to specify parameters, that the value or type of some attributes or function’s arguments may 
depend on; 

16. It shall be possible to associate each block definition to a specific Operational MoCC and such an association will be 
given in a separate diagram (neither in the block definition diagram, nor in the internal block diagram); 

17. Adaptation between MoCCs shall be possible with block definitions (called adapters) that have flows over the 
different MoCCs involved in the adaptation; 

18. The language shall treat the adapters as ordinary block definitions; integration between different MoCCs shall be 
made possible by a library of adapters. 
 

7.3. MoCC Libraries and operational semantics 

 
Figure 3: EMF Metamodel of Denotational and Operational MoCC Libraries 

In this section we define the structure of denotational and operational MoCC libraries. Since the META II language 
specification is not yet able to represent such a structure, we provide a definition based on the EMF metamodeling language 
(see Figure 3). 
 
Important: The actual META II definition of denotational and operational MoCC libraries is to be directly supported by the 
META II SysML profile, when available. 
 
7.3.1. Denotational MoCC definition 
 
A denotational MoCC library element is defined in terms of the characteristic attributes of the MoCC. Attributes have a 
name, a type, a kind that can be “const” or “var”, and a scope that can be “MoCC”, “Block”, or “Flow”. Attributes of scope 
“MoCC” are assigned a value when instatiating an MoCC, so that in fact the MoCC library definition is a template for a 
family of MoCCs. Attributes of scope “Block” are assigned a value per block associated with the MoCC. Attributes of scope 
“Flow” are assigned a value per flow associated with the MoCC. We assume that each block and each flow can be associated 
with a denotational MoCC. Attributes of kind “const” are constant, while attributes of kind “var” are dynamic and shall be 
specified through an appropriate white- or black-box language. Note that a denotational MoCC can “extend” another 
denotational MoCC, in which case it inherits all its attributes.  

 
Figure 4: EMF Metamodel of Type Specification 
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In Figure 4, the type specification model is defined (the model is not supposed to be complete, but just as a reference 
example). The type specification can refer to a primitive type or a composite type, such as a vector or a matrix. Note that a 
type specification can also be an attribute reference and the type of an attribute can be a type specification. This allows 
specifying parameterizable types in MoCC specifications.  
 
7.3.2. Operational MoCC definition 
 
An Operational MoCC definition includes the specification of the functions that are defined in the operational semantics to 
carry out the computation of the block for analysis. Operational MoCCs can share part of the operational semantics 
specification by taking advantage of the “extends” relation. Note from Figure 3 that operational MoCCs can be declared to 
“implement” denotational MoCCs. Specific Operational MoCC functions are mapped to the concrete functions by the back-
end model transformation (see Figure 2).  
 
7.4. Definition of Denotational and Operational MoCCs 

 
Figure 5: Denotational and Operational Libraries 

In this section we use the metamodel of Figure 3 to show an example of denotational and operational MoCC libraries (see 
Figure 5).  
 
7.4.1. Actor oriented OMoCC 

 
Figure 6: Actor oriented operational MoCC 

In the actor oriented MoCC library element is shown. Note that this MoCC has an attribute named DataType. This attribute 
has “MoCC” scope (not visible in the picture) and is therefore fixed at each MoCC instantiation. The return type of the 
function get is bound to the value of the DataType attribute. The functions prefire, fire, postfire, initialize and wrapup are 
“REQUIRED” and have “BLOCK” scope, meaning that these functions must be implemented by the black-box body of each 
block associated with the actor oriented operational MoCC. The functions get and set are instead of “FLOW” scope, meaning 
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that they must be implemented by each flow directly or indirectly (via the owning block) associated with the actor oriented 
OMoCC. 
 
7.4.2. Continuous Time Differential Algebraic Equation (DAE) 

 
Figure 7: DAE system definition 

A DAE process is mathematically defined in Figure 7, where s(t) is the state vector of size n, x(t) is the input vector of size 
m, y(t) is the output vector of size r and delay is a parameter representing the continuous time delay applied to the values at 
the input. The process is completely specified by the four matrices A, B, C, D, and the value of the delay. The matrices and 
the delay can be modified dynamically. These specifications are defined within the denotational library in the 
DifferentialAlgebraicEquations element (see Figure 8). Note that attribute A is of kind VAR, meaning that it may be 
dynamically modified according to the block’s white- or black-box associated body specification. The scope of the attribute 
is “BLOCK”, so that this attribute must be specified per block. 

 
Figure 8: Denotational differential algebraic equations 

To associate an operational semantics to the DAE MoCC we can use the actor oriented operational MoCC defined in Section 
7.4.1. To achieve this, we can define a DAE Operational MoCC that extends the actor oriented one and implements the DAE 
MoCC (Figure 9 and Figure 10). Moreover, the actor oriented DAE OMoCC will introduce a TimeStep attribute for the 
specification of the integration step. 

 
Figure 9: Relations between MoCCs and OMoCCs 
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Figure 10: Operational differential algebraic equations 

 
7.4.3. Timed Data Flow (DTF) 

 
Figure 11: Timed dataflow denotational MoCC 

A TDF process is an SDF process that is associated with a time step. Note that in the example library the corresponding 
MoCC is defined by extending the PeriodicDiscreteTime MoCC and the SynchronousDataFlow MoCC. The former is 
associated with the Period and InitialPhase attributes. The latter is associated with the Rate, Delay and InitialTokens. The 
type of the elements of the InitialToken vector is bound to the TokenType attribute, while the size of the vector is bound to 
the Delay attribute (not shown in the picture). While the TokenType attribute has “MoCC” scope, the Period and InitialPhase 
have “BLOCK” scope and the Rate, Delay and InitialTokens have “FLOW” scope (not shown in the picture). The timed 
dataflow MoCC can be implemented by the actor oriented operational semenatics. In the library we specify this 
implementation relation (Figure 12).  
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Figure 12: Implementation relation of actor oriented 

7.4.4. Discrete Event (DE) 
 
In Figure 11 the definition of the DiscreteEvent denotational MoCC is also shown. A discrete event process is sensitive to 
input events on specified flows.  Hence, the Sensitivity attribute is of scope “BLOCK”. As for the timed dataflow MoCC, the 
discrete event MoCC can also be implemented by the actor oriented operational semenatics. In the library we specify this 
implementation relation. 
 
7.4.5. Time coordination operational MoCC 

 
Figure 13: Time coordination operational MoCC 

The operational time coordination OMoCC (Figure 13) is used to coordinate the execution of blocks defined over different 
MoCCs over time. In other words OTC allows coordinating execution of different OMoCCs. For the correct integration of 
different OMoCCs with OTC it is essential that each involved OMoCC is based on two phase semantics, computation phase 
and communication phase, and provide implementation of the “REQUIRED” function defined in the time coordination 
OMoCC, namely the maxFreeTime.  
The maxFreeTime function semantics is that it returns the maximum interval of time from the current time instant during 
which the block does not change its output values. By collecting this information from all blocks, the time coordinaiton is 
able to compute the interval by which time can be advanced.  
Implementation of the currentTime function is instead PROVIDED by the time coordination OMoCC. 
 
7.5. Link to denotational semantics 
 
As introduced in Sections 4 and 5, processes are described in terms of constraints on allowed behaviors over signals. These 
constraints come in addition to constraints defined by MoCCs, which the process is specified over. If the process is 
associated with a white-box definition, the constraints are interpreted according to the corresponding with-box language and 
the language is expected to be compatible with the MoCCs the block representing the process is associated with. The 
mathematical interpretation of the constraints the white-box language allows defining can be provided in the denotational 
semantics introduced in this document or in any other mathematical form that can be mapped to it. If the process is associated 
with a black-box definition, the constraints are interpreted according to the operational semantics of the corresponding black-
box, which is expected to be compliant with the OMoCC the block representing the process is associated with. The 
mathematical interpretation of the constraints the black-box is imposing is provided by the mathematical interpretation of the 
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constraints the black-box language allows defining together with the constraints introduced by the operational semantics. 
Again the precise mathematical definitions can be provided in the denotational semantics introduced in this document or in 
any other mathematical form that can be mapped to it. 
 
7.5.1. Extended finite state machines (EFSM) 
 
To show how to provide the mathematical interpretation of a white-box language, we take as an example a standard 
mathematical interpretation of extended finite state machine languages. Any concrete EFSM language that is interpreted 
according to such EFSM mathematical interpretation can be formally interpreted in our framework as described below. 
An extended finite state machine can be defined as a tuple M = (R0, A0, R, X, Y, W, E,  Γ), where R is a set of explicit states 
and R0 ⊆ R is the set of initial explicit states, X is a set of extended state typed variables taking values over W and A0 ⊆ {f: X 
→ W } is the set of initial assignments to the extended state, Y is a set of output typed variables taking values over W, E is a 
set of events, and Γ ⊆ {γ = (r1, a1, e, g, λo, r2, a2) | r1, r2 ∈ R, e ∈ E, g[X,W] ⊆ {f: X → W }, a1, a2: X → W, λo: Y → W }, is 
the transition relation, where g is the transition guard, a1 is the current and a2 the next extended state assignment, and λo is the 
output assignment. Note that in a concrete language g will be expressed by some compact notation, such as x1 ≤ x2, to mean 
in fact the set of value assignments to x1 and x2 such that x1 ≤ x2.  
To define how this mathematical model is interpreted in our framework, we do the following: 

1. Associate a tag domain κ and a signal st with the set of explicit states; 
2. Associate a signal xi for each variable in X; 
3. Associate a signal yj for each variable in Y  ;

nd4. Associate the values {⊥, }, for absence a  presence, and a signal ek with each event in E; 
5. Introduce the value set V = R ∪ W ∪ {⊥, }; 
6. Associate a set of behaviors with the set of initial explicit states; 
7. Associate a set of behaviors with the set of initial assignments to the extended state; 
8. Associate a set of behaviors with each transition defined in the transition relation; 

To accomplish the last three point of the program above, we use the following denotational primitives: 
 
Guard: G[g[S,V]](τ) = {σ | ∃γ: S →  s.t. (τ,s,v) ∈ σ ⇒ γ ∈ g[S,V]}, where g[S,V] ⊆ {γ: S → V};  V

Event presence: EP[s](τ) = {σ | (τ,s, ) ∈ σ}; 
 

 
Event absence: EA[s](τ) = {σ | (τ,s,⊥) ∈ σ}; 
 
Initial state: I[s,V] = {σ | ∃τ s.t. (τ’,s,v’) ∈ σ ⇒ τ ≤ τ’ ∧ ∃v ∈ V s.t. (τ,s,v) ∈ σ}; 
 
Extended initial state: IExt[κ,S,A] = {σ | ∃τ s.t. (τ’,s,v) ∈ σ ⇒ τ ≤ τ’ ∧ ∃a ∈ A s.t. ∀s ∈ S, (τ,s,a(s)) ∈ σ}; 
 
State transition: T[κ,s,v1,v2](τ) = {σ | (τ,s,v1) ∈ σ ⇒ (X[κ](τ),s,v2)}, where X[κ](τ) is the next tag operator defined in 
Section 4.5.2; 
 
Extended state transition: TExt[κ,S,a1,a2](τ) = {σ | (τ,s,a1(s)) ∈ σ, ∀s ∈ S ⇒ (X[κ](τ),s,a2(s)) ∈ σ, ∀s ∈ S}, where a1, a2: S → 
V; 
 
Signal assignment: SA[S,a](τ) = {σ | ∀s ∈ S, (τ,s,a(s)) ∈ σ}, where x: S → V. 
 
The extended finite state machine M can then be interpreted in our framework as the process P(M) = I[s,R0]||IExt[κ,X,A0]||TR, 
where 

1. tR[γ](τ) = T[κ,st,r1,r2](τ)||TExt[κ,X, a1,a2](τ)||EP[e](τ)||G W]](τ)||SA[Y,λo](τ); [g[X,
2. TR = {σ | (τ,st,r1) ∈ σ ∧ (τ,xi,a1(x)) ∈ σ, ∀xi ∈ X ⇒ ( γ ∈ Γ tR[γ](τ))}. 

 
7.5.2. From denotation to operational 
 
To bridge the gap between the denotational and operational semantics, it is required to mathematically represent the analysis 
process the operational semantics is defined for. In this section we show how this can be done in the case of operational 
semantics for simulation. 
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A simulation of a process P[I,J] is a process that is a subset of the extension of P[I,J] to the simulation tag domain indices. 
Let Isim denote the tag domain indices associated with the simulation process. Formally, Sim[Isim](P[I,J]) ⊆ P[I,J]||Σ[Isim,J]. 
Similarly, we define a tag-bounded simulation as Sim[Isim,τ](P[I,J]) ⊆ PX[τ](P[I,J])||Σ[Isim,J], where PX[τ] is the prefix 
operator defined in Section 4.4. Note that Sim[Isim] and Sim[Isim,τ] can be regarded as operators over sets of behaviors 
(processes). 
 
7.5.3. Operational time coordination (OTC) 
 
In this section we show how to use the concept of simulation process introduced above to formally link the operational API 
to the denotational semantics, by defining the meaning of the time coordination functions introduced in Section 7.4.5. Such 
functions will be defined over simulation processes. 
 
currentTag: CT(Sim[Isim,τ](P[I,J])) = τ; 
 
maxFreeTag: Let P[I,J] be a total reactive functional process with respect to JO and JI, then MFT(Sim[Isim,τ](P[I,J])) = max{τ’ 
| τ ≤ τ’ ∧ ∀σ1, σ2 ∈ P[I,J], Π[JI]  PX[τ](σ1) = Π[JI]  PX[τ](σ1) ⇒ Π[JO]  PX[τ’](σ1) = Π[JO]  PX[τ’](σ1)}, where PX[τ](σ) 
is the prefix operator defined in Section 4.4; in other words it is the maximal tag interval by which the simulation of the 
process proceeds independently from new inputs. 
 
The currentTime and maxFreeTime functions of the time coordination semantics are specializations of the CT and MFT 
operators, respectively, applied to simulation processes P[I,J] defined over time, i.e. such that t ∈ I. 
 

8. CONCLUSIONS AND FUTURE WORKS 
 
In this document we have presented a innovative integration language where denotational and operational MoCCs can be 
defined and used to give precise denotational and operational semantics to the integration of heterogeneous models. The 
language supports a model transformation flow towards multiple analysis back-ends, integrating implementation artifacts 
corresponding to models specified in different languages and complying with their specific denotational and operational 
semantics. We have shown that integration semantics can be easily specified in the integration language to allow coexistence 
of different operational semantics in the back-end analysis tools. 
Future works include the definition of a complete SysML profile for the language and the definition of denotational and 
operational MoCC libraries of relevant models of computation and operational semantics. 
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Appendix C - EPS usecase 

Tools 
We have developed our Wrapper plug-in in order to enable "black-box" integration 
between a simulation framework and a specific modeling tool. We strive to be able to 
simulate blocks that come from different modeling environments inside a simulator, so 
that we benefit from two worlds – we have a simulator that serves our purposes well and 
we also can use a very advanced modeling tool, without remodeling manually the blocks 
we need for our simulator. We "wrap" the chosen block from the modeling tool 
automatically into a dll that can then be plugged-in directly into a simulation 
environment. 
We used DESYRE as a simulation framework and Rhapsody as UML/SysML modeling 
tool. Our plug-in "wraps-up" the chosen block that is a part of some Rhapsody model into 
a stand-alone project that compiles into a dynamic-link-library. The plug-in builds the 
new stand-alone project automatically, from the chosen block and predefined elements, 
like the package that contains the definition of the used APIs. 
The API is a list of functions that define the interface between simulation framework and 
a black box. In our case we have DESYRE interface (the relevant function calls that the 
wrapped block might call in the DESYRE environment); and we have the wrapper 
interface (the functions that the DESYRE simulation framework calls in the rhapsody dll 
with a block wrapped in it).  
 

Rhapsody model 
The general look of the system is in the below figure. EPS system consists of the 
generators and relays that supply the power to two power buses of the airplane. Our 
wrapper wraps the main controller block of this system for simulation in the DESYRE 
environment. 

 
Figure 1 – EPS Use Case Rhapsody Animation Panel 
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Interface  
 

 
Figure 2 - Wrapper Interface 

We can see the AbstractRhpWrapper Interface, which inherits from IWrapper. 
The functions in Interface are available for DESYRE Environment to interact with 
Rhapsody block. Initialize is called in the very beginning of the simulation run; 
sendEvent adds events into the queue that our block accumulates, and the processing() 
function actually "activates" the rhapsody thread and performs processing of the events in 
the "wrapped" block. (Rhapsody "includes" inside the dll all its internal routines that are 
required to "run" the behavior of the block, including creation of the separate thread in 
the initialization function). 

 
In the wrapped project we build we do not use some predefined functions of the 

interface, our block is quite basic in this sense. Our wrapper is suitable to wrap the 
"Discrete Time" MOCC, meaning we have a "clock" input signal that is called every 
equal period of time repeatedly. We do not invoke processing of the block between the 
clock signals, however, accumulating events of input changes is possible using the 
"sendEvent" routine between the clock signals. But, these "change" events will only be 
processed during the next call to "processing" routine, which is associated with a clock 
signal. 
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Detailed Interface 

DESYRE API for Rhapsody Statecharts 
– void setDesyreStub(DesyreStub *desyreStub) 

• Semantics: this member function is used to pass the DesyreStub 
object to the component before initialization. 

– void initialize() 
• Semantics: the member function initialize shall provide a context 

to set initial values to member variables and ports. This member 
function can use the services provided by the DesyreStub (see 
previous slide). 

– void processing() 
• Semantics: the member function processing shall provide a 

context to define the time-domain behavior of the block. This 
member function can use the services provided by the DesyreStub 
(see previous slide). 

– void finalize() 
• Semantics: the member function finalize shall provide a context to 

define the termination of the block. This member function can use 
the services provided by the DesyreStub (see previous slide). 

– void sendEvent(...) 
• Semantics: the member function sendEvent is used to notify an 

event to the block. The event shall not be consumed by this 
function. The event shall be consumed by the next call to the 
processing function. 

– Void sendTimeout() 
• Semantics: the member function sendTimeout is used to notify an 

event to the block. The event shall not be consumed by this 
function. The event shall be consumed by the next call to the 
processing function. 

 

DESYRE stub for Rhapsody Statecharts 
– void sendEvent(...) 

• Semantics: the member function sendEvent is used by the block to 
notify an event to DESYRE.  

– double getCurrentTime() 
• Semantics: the member function getCurrentTime() returns the 

current simulation time. The units by which time is measured are 
obtained by calling the getCurrentTimeUnit() member function. 

– int getCurrentTimeUnit() 
• Semantics: the member function getCurrentTimeUnit() returns 

the time unit of the time value returned by the getCurrentTime() 



Approved for public release; distribution unlimited 

86 

 

member function. Possible values are 1 (“fs”), 2 (“ps”), 3 (“ns”), 4 
(“us”), 5 (“ms”), 6 (“s”). Default time unit is “s” (seconds). 

– void setTimeUnits(int unitId) 
• Semantics: the member function setTimeUnits is used by the 

block to set the time units for successive calls to the tm member 
function. Allowed values are 1 (“fs”), 2 (“ps”), 3 (“ns”), 4 (“us”), 5 
(“ms”), 6 (“s”). Default time unit is “s” (seconds). 

– void tm(double value) 
• Semantics: sets a timer to expire at getCurrentTime()+value. 

When the timer expires, the DESYRE environment calls the 
sendTimeout() function on the block (see next slide). 

– void tm(double value, int unitId) 
• Semantics: same as calling setTimeUnits(unitId) and tm(value) in 

sequence. 
– void notifyWarning(std::string message) 

• Semantics: passes a warning message to the DESYRE stub.  
– void notifyError(std::string message) 

• Semantics: passes an error message to the DESYRE stub.  
– void notifyFailure(std::string message) 

• Semantics: passes a failure message to the DESYRE stub. 
– void notifyTermination() 

• Semantics: the member function notifyTermination() notifies the 
termination of the behavior of the block. 

 
 

Wrapper Project 
The Wrapper Project consists of several packages: 

• DESYREAPI package, that defines the elements required to make this 
project work with DESYRE Environment. This package is included as 
reference. 

• The "Controller" Package, that contains the block we have wrapped-up 
• The "Wrappers" Package, that Contains auxiliary blocks for wrapping-up 

the "controller" block. This package is built by a plugin according to the 
flow ports that the wrapped block has. It also has several functions that 
have their body build automatically according to the flow ports the 
wrapped block has. 

  



Wrapper Package Structure 
The typical structure of blocks/parts in the Wrapper Package is the following: 

 
Figure 3 - Wrapper Package Structure 

The ExampleWrapper Block is a realization of the AbstractWrapper Block. It is a 
block that "communicates" with DESYRE. It passes the events that are received from 
DESYRE to the controller via the "DummyBlock" block, and it passes the events from 
the controller, obtained via the "DummyBlock" back to DESYRE.  

 
"DummyBlock" and Controller are parts inside the ExampleWrapper Block. Their 

flow ports are connected, so that the controller block is wrapped in a regular Rhapsody 
environment where it is connected to the outer world via input and output flow ports. The 
Dummyblock, in turn, has methods to pass the events from the ExampleWrapper block 
(which communicates with the DESYRE environment), to the Controller Block, and 
vice-versa.  
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DispatchEvent operation of the ExampleWrapper Block 
Once ExampleWrapper block gets a function call (an event), it calls "set" function 

of the DummyBlock, so that the rhapsody mechanism updates the value of the flow port 
and associated attribute in the "Controller" block. This is implemented in the following 
way: 

 
 

Passing changes of output flow ports of the controller block to DESYRE 
Once the controller uses "set" command to change the value of one of its output 

flow ports, DummyBlock reacts to this event by "passing" the command to the DESYRE 
Environment. An example for one of the ports is below: 

 
 
"chOut" is an event automatically generated by rhapsody in the DummyBlock, 

when the controller calls "setout_R1" function to change the value of its outgoing flow 
port. 

 
Using this methodology we obtain an environment that wraps-up the controller 

and enables a convenient communication with the DESYRE Environment. 
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 Wrapper Algorithm 
This section describes how the Plug-in works, so this is the receipt on how to build such 
wrappers in the future. Note: This description shows only principal steps, without getting 
into details. 
 

• In the beginning, a new project that would be a target project is created, it is 
defined to be a SysML project and the RhpPlugin Profile is inserted. (RhpPlugin 
Profile contains the definition of the stereotype that we use to mark the clock 
signal). 

• The DESYREAPI Package is added by reference to the project. This Package has 
definition of the APIs that make it possible for the wrapped block to interact with 
the simulation framework 

• Then, the Package containing the wrapped block is created, and the Package that 
contains ExampleWrapper is created. 

• RhpDESYREPlugin Project is loaded (RhpDESYREPlugin Project contains some 
of the basic building blocks for the target project).  

• The global function "create" and ExampleWrapper Block are copied into a target 
project, under DemoProjectWrappers Package; Compilation "Configurations" are 
copied into the target project and the correct Configuration is set as a default one. 

• RhpDESYREPlugin Project is closed 
• DummyBlock is created, ExampleWrapper block is made a generalization of 

AbstractRhpWrapper; The statechart of DummyBlock is created. 
• For each flow port in the block we are wrapping: 

o We clone a flow port (with a reverse direction) and associated attribute 
into a dummy block. 

o We add a transition to the statechart of the DummyBlock, that reacts to the 
change in the DummyBlock "in" port (the controller "out" port) and 
notifies the DESYRE stub of the event, like this: 

 
 
 
o If this is an "in" flow port in the controller block, we add it to a list of "in" 

ports for later use 
o We locate the flow port / attrib that is marked with a stereotype 

"TimerSignal" that serves as the main clock signal for this block 
• We copy the events from the package where original block to wrap is, and block 

to wrap itself to the target package in a new project. 
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• Parts of Controller and DummyBlock are created inside the ExampleWrapper 
Block. 

• Links between Flow Ports of DummyBlock and Controller are created 
• DispatchEvent of the ExampleWrapper Block is filled: 

o For each "in" port of the controller, Add a portion of code, like this: 

 
• Set some specific properties via the code to achieve correct compilation 
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