
Flat-RRT*: A sampling-based optimal
trajectory planner for differentially flat
vehicles with constrained dynamics ?

Luca Bascetta ∗ Iñigo Mendizabal Arrieta ∗∗ Maria Prandini ∗

∗ Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133 Milano
(Italy) (e-mail: {luca.bascetta, maria.prandini}@polimi.it)

∗∗Management Center Innsbruck - 6020 Innsbruck (Austria) (e-mail:
i.mendizabal@mci4me.at)

Abstract: This paper introduces the flat-RRT* algorithm, which is a variant of the optimal
Rapidly exploring Random Tree (RRT*) planner, accounting for actuation constraints on
the vehicle dynamics in the optimal trajectory design. The proposed algorithm is applicable
to vehicles that can be modelled with differentially flat dynamics, like unicycle and bicycle
kinematics. The main idea is to exploit the flatness property so as to finitely parametrize
trajectories, and design a set of motion primitives that represent optimal constrained trajectories
joining two configurations in a grid space. A procedure to determine constrained (though
sub-optimal) trajectories joining arbitrary configurations based on the motion primitives is
then proposed. This eases and accelerates the construction of the tree to the purpose of
online trajectory (re)planning in an uncertain environment, where the obstacle map may be
continuously updated as the vehicle moves around, or unexpected events may occur and alter
the free configuration space.

Keywords: Trajectory and Path Planning; Autonomous Vehicles; Application of nonlinear
analysis and design; Differentially flat systems; Optimal constrained trajectory design.

1. INTRODUCTION

In the last decade the number of applications of au-
tonomous aerial, underwater, and ground vehicles has been
continuously increasing, with the side effect of stimulating
the scientific research on autonomy, efficiency, reliability,
and safety. As far as autonomy of a vehicle is concerned,
planning, control, and perception play all a crucial role and
affect both safety and performance. Among them, planning
is particularly important, as it is responsible not only
of computing an obstacle-free trajectory that takes the
vehicle to the desired location, but also of accommodating
for actuation and kino-dynamic vehicle constraints, while
minimizing the trajectory cost.
Two main approaches have been developed in the robotics
literature to address the planning problem, i.e., search-
based (Pivtoraiko et al. (2009); Likhachev and Fergu-
son (2009)) and sampling-based methods. This latter
one represents the most widespread “practical approach”,
as it provides an effective technique to plan in high-
dimensional spaces with a guarantee of probabilistic com-
pleteness, i.e., an obstacle-free trajectory is found, when
there exists one, with probability that tends to one as the
number of samples grows to infinity. The most popular
sampling-based algorithms are Probabilistic RoadMaps
(PRM) (Kavraki et al. (1996, 1998)), Rapidly-exploring
Random Tree (RRT) (LaValle and Kuffner (2001)), and
optimal Rapidly-exploring Random Tree (RRT*) (Kara-

? Research was supported by the European Commission, H2020,
under the project UnCoVerCPS, grant number 643921.

man and Frazzoli (2010)). The interested reader is referred
to (Ragaglia et al. (2015)) for a review on sampling-based
algorithms and further references. Here we shall focus on
the RRT* algorithm, which is an incremental sampling-
based planner developed for searching an obstacle-free
optimal trajectory in high-dimensional continuous state
spaces. Like RRT (LaValle and Kuffner (2001)), it is based
on the generation of a tree that randomly explores the free
space. In addition, thanks to the introduction of a rewiring
process, it can guarantee almost sure convergence to a
globally optimal solution. The core of the algorithm is the
tree extension procedure, that starts randomly sampling
a new configuration (node) within the free portion of the
configuration space. A minimum cost trajectory satisfying
a set of differential constraints and connecting the newly
sampled configuration to some node in the tree is then
computed and added to the tree. Finally, the tree rewiring
procedure is applied, to check if a minimum cost trajectory
reaching any other node in the tree and passing through
the newly added one exists.
As discussed in (Ragaglia et al. (2015)), in the pres-
ence of vehicle kino-dynamic constraints (e.g., differential
and actuation constraints), computing the minimum cost
trajectories to extend the tree becomes computationally
challenging because it involves solving many boundary
value problems. To overcome this limitation two differ-
ent approaches can be adopted. The first one looks for
an analytical or semi-analytical solution of the boundary
value problem, as in (Ragaglia et al. (2015)) where a semi-
analytical solution based on optimal and model predictive

control is adopted. A completely different approach, in-
spired to search-based planners (Likhachev and Ferguson
(2009)), can be devised moving the computational com-
plexity out of the planning procedure, i.e., pre-computing
a set of motion primitives that can be then used to design
efficiently nearly-optimal trajectories that further extend
the tree. The present paper follows this latter approach
and introduces flat-RRT*, an RRT* based planner that
exploits the flatness property of a nonlinear system to
pre-compute a set of motion primitives that satisfy kino-
dynamic constraints and are optimal with respect to a
given cost function. A database of these motion primitives
is built and used for fast computation of nearly-optimal
constrained trajectories between new configurations.
The reformulation of the vehicle model as a differentially
flat system is available for a variety of different kinematics
(see e.g., Buccieri et al. (2009) and Fuchshumer et al.
(2005)), and it allows to express the motion primitives
as finitely parametrized functions of time in the flat out-
put space. The optimal constrained trajectory design can
then be recast as a boundary optimization problem where
some parameters are determined by solving (offline) a
constrained nonlinear optimization program and the re-
maining parameters are computed (online) by solving a
linear set of equations corresponding to the boundary con-
ditions. RRT* is finally used to plan (possibly on-the-fly)
a (nearly)-optimal feasible and obstacle-free trajectory,
where the sequence of vehicle configurations, starting from
the initial one and ending with one that belongs to the goal
region, is connected through trajectories that are close
to the motion primitives. The time required to expand
the tree is greatly reduced because of the pre-computed
database of motion primitives, and this enables iterative
re-planning of the trajectory based, e.g, on the updated
measurements of the vehicle within its sensor field of view.
The paper is structured as follows. We explain the motion
primitives and nearly-optimal trajectories construction in
Section 2, and describe the flat-RRT* algorithm in Section
3. A numerical example shows the performance of the
proposed approach (Section 4). Some concluding remarks
are drawn in Section 5.

2. MOTION PRIMITIVES AND TRAJECTORY
GENERATION

We now show how to compute an optimal trajectory for
a vehicle with differentially flat dynamics, so as to drive
it from an initial to a final configuration with minimum
control effort while satisfying kino-dynamic constraints.
The definition of flat system was originally introduced
in Fliess et al. (1995) and makes reference to dynamical
systems whose states and inputs can be expressed in terms
of a certain set of variables, called flat outputs, and their
derivatives. More formally, a nonlinear system ṡ = f(s, u)
with state s ∈ Rn and input u ∈ Rm is called differentially
flat if there exists a flat output vector z ∈ Rm that is a
function of s, u and the time derivatives of u up to order
ρ, i.e., z = η(s, u, u̇, ü, ..., u(ρ)), such that s and u can be
expressed as a function of z and its derivatives up to order
σ and σ + 1, respectively, as follows

s = φs(z, ż, ..., z
(σ)), u = φu(z, ż, ..., z(σ+1)). (1)

In the solution of the boundary value problem that allows
to compute an optimal trajectory, this property can be
exploited to express the trajectory itself in terms of the

flat outputs, which are in turn parametrized as a linear
combination of basis functions of time. By imposing that
the trajectory starts at the given initial configuration
and ends at the final configuration (boundary conditions),
the number of parameters that can be freely selected is
reduced. Still, by introducing a sufficiently large number
of coefficients in the expansion, one is left with some
degrees of freedom, say µ, that can then be spent to
solve the constrained optimal trajectory planning problem,
thus obtaining an optimal value µ◦. The idea is then
to generate a set of motion primitives by gridding the
configuration space and defining a finite set of boundary
conditions. For each boundary condition one can compute
the corresponding optimal µ◦ by solving a constrained
optimization problem, where the control effort to reach
the final configuration is minimized subject to the vehicle
kino-dynamics constraints. These optimal values µ◦ are
stored in a database that is then integrated in the flat-
RRT* algorithm. When a new pair of initial and final
configurations are given, one can look for the motion
primitive that is closest in terms of boundary conditions,
take its µ◦ and then determine the remaining parameters
based on the actual boundary conditions. A feasibility
test regarding constraint fulfilment is then run, to check
that the computed trajectory is admissible. Though the
proposed approach is general (and can be applied to any
nonlinear system for which a flatness formulation exists),
here we describe it in details for a unicycle vehicle.

2.1 Unicycle model of the vehicle

A unicycle is a simplified model of an anholonomous vehi-
cle moving in a two dimensional space. It is characterized
by three state variables, position (x, y) and orientation θ,
and two inputs, linear velocity v and angular velocity ω:

ẋ = v · cos(θ)

ẏ = v · sin(θ)

θ̇ = ω

(2)

Unicycle-like models are flat systems with flat outputs that
are functions of the state, and given by z1 = x and z2 = y
(see Buccieri et al. (2009) and De Luca et al. (2001)). As
for (1), the state vector s = [x y θ]′ can be recovered from
z = [z1 z2]′ and its first derivative (σ = 1) as follows:

x = z1, y = z2, θ =


arctan

(ż2
ż1

)
ż1 > 0

π + arctan
(ż2
ż1

)
ż1 < 0

π

2
sign(ż2) ż1 = 0

where sign denotes the sign function.
By simple derivations, one can verify that relation

ω = θ̇ =
1

1 +
(ẏ
ẋ

)2 · ẋ · ÿ − ẏ · ẍẋ2
=
ẋ · ÿ − ẏ · ẍ
ẋ2 + ẏ2

follows from the state equation in (2). The input u = [v ω]′

can then be recovered from z, ż, and z̈ via map φu in (1),
which takes the form:

v =
√
ż21 + ż22 , ω =

ż1 · z̈2 − ż2 · z̈1
ż21 + ż22

. (3)

Note that map u = φu(z, ż, z̈) defined in (3) has a
singularity when ż21 + ż22 = 0, since in that case the
linear velocity v is zero and, hence, the angular velocity
ω (and also the orientation θ) are not well-defined. In

the literature, different approaches have been proposed to
cope with this singularity. In Buccieri et al. (2009), the
singularity is avoided by resetting the velocity whenever
it becomes small. In De Luca et al. (2001), if the linear
velocity is zero at the initial time t = 0, then “higher-
order differential information at t = 0 are used in order to
determine the consistent initial orientation and the initial
angular velocity command”; and if the velocity becomes
zero at some time instant t > 0 along the geometric path,
then “a continuous motion is guaranteed by keeping the
same orientation attained at t−”. Here, we address it in a
different way as explained in Remark 1 of Section 2.3.

2.2 Optimal trajectory design and the motion primitives

Our goal is to determine a final time instant tf > 0 and an
input u : [0, tf] → <2 so as to drive the system (2) from
an initial configuration q0 to a final configuration qf , while
minimizing the cost

tf∫
0

u′(τ)Ru(τ)dτ (4)

where R = R′ is a positive definite matrix weighting the
control effort, subject to the constraints

|v(t)| ≤ vmax, |ω(t)| ≤ ωmax, t ∈ [0, tf]. (5)

Initial and final configurations are specified in terms of
position (x, y), orientation θ, and velocity v, i.e., q0 =
(x0, y0, θ0, v0) and qf = (xf , yf , θf , vf). Without loss
of generality, we assume that the initial configuration
q0 is characterized by x0 = y0 = θ0 = 0, i.e., the
vehicle is in the origin of the Cartesian coordinate system
with orientation θ equal to zero. If this were not the
case, a change of coordinates (roto-translation) could be
performed to set the initial state configuration to zero. The
initial coordinates can then be recovered by the inverse
transformation.
To the purpose of solving the constrained optimization
problem above, we adopt the reformulation of the unicycle
model (2) in terms of its flat outputs z1 = x and z2 = y,
which are linearly parametrized as follows:

z1 =

4∑
i=0

ai · ti, z2 =

3∑
j=0

bj · tj . (6)

By imposing the boundary conditions, we get the following
set of 8 equations in the 9 parameters ai, i = 0 . . . 4 and
bj , j = 0 . . . 3, plus the final time tf :

z1(0) = a0 = 0, z2(0) = b0 = y0,

ż1(0) = a1 = v0, ż2(0) = b1 = 0,

z1(tf) =

4∑
i=0

ai · tif = xf , z2(tf) =

3∑
j=0

bj · tjf = yf ,

ż1(tf) =

4∑
i=1

i · ai · ti−1f = vf cos(θf), (7)

ż2(tf) =

3∑
j=1

j · bj · tj−1f = vf sin(θf).

Based on (7), we can then express all parameters as a func-
tion of µ = (a4, tf), and then determine an optimal value
µ◦ for µ by solving the following nonlinear constrained
optimization problem:

min
µ

J(µ) (8)

subject to:

ż21(t) + ż22(t) ≤ v2max, t ∈ [0, tf](
ż1(t) · z̈2(t)− ż2(t) · z̈1(t)

ż21(t) + ż22(t)

)2

≤ ω2
max, t ∈ [0, tf],

where we substitute (3) in (5). These constraints translate
into constraints on µ, since the flat outputs z1 and z2
and their derivatives are functions of a4 and tf given the
parametrization (6) and the boundary conditions (7). As
for the cost function (8), it is given by (4).
A uniform gridding of the configuration space can be
adopted to define the set of initial and final configurations
for the motion primitives, with the initial configuration q0
with all entries equal to zero except for the linear velocity,
i.e., q0 = (0, 0, 0, v0). Each motion primitive is then
characterized by its optimal µ◦ = (a◦4, t

◦
f) parametrization

computed by solving the constrained optimization problem
(8) for its specific initial and final configurations. All other
parameters defining the motion primitive via the x = z1
and y = z2 linear expansions in (6) can be determined by
solving the linear equations (7) with a4 = a◦4 and tf = t◦f .

Finally, the inputs v and u can be determined via (3).
From an implementation perspective, the set of motion
primitives can be represented by two matrices, A4 and
Tf , containing their a◦4 and t◦f values and indexed by the
initial and final configurations identifying the primitives.
The collection of these two matrices is referred to in the
sequel as the database of the motion primitives, and each
pair (a4, tf) corresponding to the same indices in A4 and
Tf is called an entry in the database.
2.3 Trajectory design based on the motion primitives

Suppose that an initial configuration q0 and a final config-
uration qf are given. Then, after an appropriate change
of coordinates (rotation and translation) we get q̃0 =

(0, 0, 0, v0) and q̃f = (x̃f , ỹf , θ̃f , ṽf), and derive the bound-
ary values z(0) = [0 0]′, ż(0) = [v0 0]′, z(tf) = [x̃f ỹf]′,

and ż(tf) = [ṽf cos(θ̃f) ṽf sin(θ̃f)]′. We can then select the
motion primitive whose boundary values are closest to the
computed ones according to the Euclidean distance, and
take the corresponding entry (a◦4, t

◦
f) from the database.

Based on a◦4 and t◦f , all the other parameters defining
the trajectory can be determined by solving the linear
equations (7) with a4 = a◦4 and tf = t◦f . The trajectory

coordinates x and y are then given by (6), and the inputs
v and ω can be determined via (3). The admissibility of
the obtained (sub-optimal) trajectory can be checked by
verifying that inputs satisfy constraints in (5). The tra-
jectory can be described in the original coordinate system
applying the inverse of the roto-translation adopted to get
q̃0 = (0, 0, 0, v0) from q0.

Remark 1. (singularity issue). When the velocity of either
the initial or the final configuration is small, close to
zero, the singularity issue due to the denominator in (3)
getting close to zero arises. This issue is solved here by
adding a linear piece of trajectory that brings the velocity
to a non-zero value vmin through a predefine (linear)
acceleration/deceleration. Suppose, for instance, that the
velocity is small (almost zero) at the initial configuration
q0: v0 ' 0. Then, we shall introduce a configuration q′0
with velocity vmin that is reached from q0 via a straight

line trajectory with the same orientation as q0, travelled
at some constant acceleration ā. This trajectory is then
pieced together with the one designed by considering q′0 as
initial configuration and qf as final one. This latter one is
determined based on the database of the motion primitives
according to the procedure described above. The time to
reach qf from q0 will then be given by the sum of the time
to reach q′0 from q0 (which is equal to (vmin − v0)/ā), and
the time tf to reach qf from q′0 as given by the database
search. A similar procedure is followed if the velocity vf
at the final configuration qf is close to 0. In this case,
qf is reached by slowing down the velocity at constant
deceleration −ā along a linear trajectory starting from a
configuration q′f with v′f = vmin. The trajectory from q0
to q′f is determined based on the motion primitives. 2

3. THE FLAT-RRT* PLANNING ALGORITHM

Flat-RRT* is an extension of RRT* aiming at making
tractable the problem of computing an edge of the tree
even considering kinematics, dynamics, and actuation con-
straints. As a consequence, the peculiarities of flat-RRT*
with respect to RRT* are in the edge computation proce-
dure. For this reason, we first describe the main steps of
RRT*, and then detail the edge computation procedure.
We start introducing the following definitions:

• a node or configuration q ∈ Q is a vector q =
(x, y, θ, v) representing the pose and velocity of the
vehicle;
• Q is the bounded set of the vehicle configurations,

i.e., Q = [xmin, xmax]× [ymin, ymax]× [θmin, θmax]×
[vmin, vmax];

• Qfree ⊂ Q is the subset of the configuration space
that is free of obstacles;

• Qgoal ⊂ Qfree is the goal region the planned trajec-
tory has to reach;

• qstart and qgoal ⊂ Qgoal are the initial and final
vehicle configurations;

• QT ⊂ Qfree and ET are the sets of nodes and edges
representing the tree T , i.e., T = (QT , ET);

• N is the maximum cardinality of QT ;
• eq1,q2 ∈ ET is the edge that connects q1 to q2, where
q1, q2 ∈ QT ;

• C(eq1,q2) is the cost associated to eq1,q2 , computed
here as the time tf needed to reach q2 from q1;

• C(→ q) is the total cost of the best trajectory starting
from qstart and ending at q;

• Qreach(q) ⊂ QT is the set of all nodes that are inside
a d-dimensional ball of radius γball centred in q, and
is defined as Qreach(q) = {q̄ ∈ QT | ‖q − q̄‖2 ≤ γball}
where d = 4 is the dimension of the configura-
tion space, and γball = γRRT∗(log |QT | /|QT |)1/d with
γRRT∗ > 2(1+1/d)1/d(µ(Qfree)/ηd)

1/d, µ(Qfree) and
ηd being the volume of Qfree and the volume of
the unit ball in the d-dimensional Euclidean space,
respectively (see Karaman and Frazzoli (2010) for
further details).

3.1 The RRT* algorithm

The RRT* algorithm is composed by the following steps
(that hold for flat-RRT* as well):
1) Tree initialisation: the algorithm starts with a tree
T = (QT , ET) whose set of edges ET is empty, while the
set of nodes QT is initialized with the initial configuration,

i.e., QT = {qstart}.
2) Random sampling: a new configuration qrand is
randomly sampled from Qfree according to a uniform
distribution.
3) Neighbour radius computation: in order to reduce
the number of nodes considered by the algorithm at each
iteration, in particular in steps (4) and (5), we introduce
the notion of neighbour of a node. The radius r of this
neighbour can be computed using the following equation:

r = argmax
q∈Qreach(qrand)

(max {C(eq,qrand
), C(eqrand,q)})

4) Minimum-cost trajectory selection: a minimum-
cost trajectory connecting qrand to the tree is determined
performing the following steps:

• the minimum cost collision-free edge eqmin,qrand
,

among the edges eq,qrand
, q ∈ QT , is found by com-

puting

qmin = argmin
q∈Q

(C(→ q) + C(eq,qrand
))

where set Q is defined as Q = {q ∈ QT |C(eq,qrand
) ≤

r ∧ CFree(eq,qrand
)}. CFree(eq1,q2) is a function that

returns true when eq1,q2 is a collision-free trajectory,
false otherwise, and the procedure adopted in flat-
RRT* to compute the edges eq,qrand

and their costs
C(eq,qrand

) is detailed in the following of this section.
• qrand and eqmin,qrand

are added to the tree:

QT = QT ∪ {qrand} ET = ET ∪ {eqmin,qrand
}

5) Tree rewiring: in order to ensure the optimality of the
computed trajectory, every time a new node qrand is added
to the tree one has to check if a minimum-cost trajectory
reaching any other node inside the tree and including qrand
exists. As a consequence, ∀q ∈ QT if

• eqrand,q is a collision-free trajectory,
• C(eqrand,q) ≤ r,
• C(→ qrand) + C(eqrand,q) < C(→ q),

the tree is rewired: ET = {ET \ {eprev}}∪{eqrand,q} where
eprev is the previous edge connecting q to the tree.
6) Termination: the algorithm keeps iterating steps (2)
to (5), until |QT | = N .
7) Optimal trajectory: if the goal configuration set
has been reached, i.e., Qgoal ∩ QT 6= ∅, the mini-
mum cost-to-go node inside Qgoal is selected: qgoal =
argminq∈(Qgoal∩QT) C(→ q), and the sequence of edges
connecting qstart with qgoal, each one represented by its
ai and bi vectors and by tf , is returned along with the
entire tree T .

3.2 The edge computation procedure

We next detail the procedure used in flat-RRT* to com-
pute an edge eq1,q2 connecting two configurations q1 and
q2, and to associate to this edge a cost C(eq1,q2).

Assume that both the configurations q1 and q2 have a
linear velocity which is different from zero. Then, the
computation of the edge eq1,q2 , and the associated cost
C(eq1,q2) involves the following steps:

1) Normalizing the initial and final configurations:
as explained in Section 2.3, in order to determine the (sub-
optimal) trajectory between the initial and final configura-
tions q1 and q2, a roto-translation is applied to the initial

and final pose, so that the initial pose (x0, y0, θ0) is (0, 0, 0).
2) Searching the database for (a4, tf): the entry
(a4, tf) in the database corresponding to the motion prim-
itive with boundary condition values closest, in Euclidean
norm, to those associated with q̃1 and q̃2 is extracted as
detailed in Section 2.3.
3) Enforcing the boundary conditions and deter-
mining the edge: all the other polynomial coefficients
required to compute the trajectory joining q̃1 and q̃2 are
computed enforcing the boundary conditions as in (7). The
inverse roto-translation is applied to recover the trajectory
joining q1 and q2 in the original coordinates x and y, and,
hence, determine the edge eq1,q2 .
4) Checking for feasibility and assigning a cost:
the edge eq1,q2 obtained with the values (a4, tf) extracted
from the database may violate the actuation constraints
in equation (5). If constraints are violated, then the cost
C(eq1,q2) is set equal to +∞, otherwise, C(eq1,q2) is set
equal to tf .

In the case when either q1 or q2 have a linear velocity which
is zero (or close to zero), Remark 1 applies and, hence, a
linear piece of trajectory is added in a preliminary step
(0) to have both the initial and final configurations with a
non zero linear velocity, then steps (1) to (4) are applied
to the new initial and final configuration pairs with the
only difference that the cost in step (4) is the sum of the
computed tf and the time needed to travel the added piece
of linear trajectory.

Remark 2. (infeasible trajectory). At step (4) of the edge
computation procedure, edge eq1,q2 is assigned a cost that
is infinity when the trajectory is infeasible. Edge eq1,q2 will
be eventually discarded at step (4) of the RRT* algorithm,
when the minimum-cost trajectory is selected. 2

4. A NUMERICAL EXAMPLE

A vehicle with unicycle kinematics, as described in (2), is
moving in a square region [0, 8]× [0, 8]m characterized by
5 non-overlapping circular obstacles with radius 1m cen-
tred at (2.25, 2.25), (2.25, 4.75), (4.75, 2.25), (4.75, 4.75),
(3.5, 6.75). The vehicle has to perform an optimal mini-
mum time trajectory so as to reach a circular goal region
with radius 0.5m centred at (6.5, 6.5), starting from the
origin (0, 0) with initial orientation π/4 and linear velocity
2m/s. The vehicle control inputs v ad ω are subject to the
following constraints: v ∈ [0, 2]m/s, and ω ∈ [0, 3] rad/s.
As for the solution to the singularity issue (see Remark 1),
we set vmin = 0.1m/s and ā = 2.5m/s2.
In order to minimize the control effort the quadratic cost
(4) is adopted with R given by the identity matrix, so as
to equally weight v and ω in the input vector u = [v ω]′.

We first describe the database representing the motion
primitives, and then present the results obtained when
planning an optimal constrained trajectory from the origin
to the target region by the proposed flat-RRT* algorithm.
The impact on trajectory cost and computing time of
different tree cardinalities will be analysed, as well.

4.1 Generation of the motion primitives

In order to build the database of motion primitives asso-
ciated with the normalized initial and final configurations,
q0 = (0, 0, 0, v0) and qf = (xf , yf , θf , vf), we grid the
boundary conditions as follows:

0 0.2 0.4 0.6 0.8 1

X [m]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Y
 [

m
]

Fig. 1. A subset of the motion primitives in the database.

• ż1(0) = v0, linearly spaced vector with 15 values in
the range [0, 2]m/s;

• z1(tf) = xf , linearly spaced vector with 21 values in
the range [0, 1]m;

• z2(tf) = yf , linearly spaced vector with 21 values in
the range [−0.5, 0.5]m;

• ż1(tf) = vf cos(θf), linearly spaced vector with 31
values in the range [0, 2]m/s;

• ż2(tf) = vf sin(θf), linearly spaced vector with 31
values in the range [−2, 2]m/s.

For each point in the grid a motion primitive is then
generated by imposing the corresponding boundary con-
ditions (7), and solving the optimization problem (8). In
our implementation, the constrained optimization problem
was solved in MATLAB R© via the fmincon function, which
finds a minimum of a constrained nonlinear multivariable
function. Figure 1 shows some of the motion primitives
generated to populate the database. All the reported prim-
itives start from configuration (x0, y0, θ0, v0) = (0, 0, 0, 0)

and have final velocity equal to 0,
√

2, 0.5. Those with final
position characterized by a coordinate yf > 0 have final
orientation equal to 0, π/4 and π/2, whereas those with
final position with yf < 0 have, instead, final orientation
equal to 0, −π/4 and −π/2.

4.2 Planning trajectories with flat-RRT*

The flat-RRT* algorithm is tested in the virtual environ-
ment previously described, considering the following tree
cardinalities: 1000, 2500, 5000, 7500, and 10000 nodes.
Flat-RRT* was implemented in MATLAB R© R2015b and
run on a laptop with an Intel R© i7-4702MQ 2.2GHz CPU.
Figure 2 shows the whole tree that is built in a run of
the flat-RRT* algorithm with the tree cardinality set to
1000. Figure 3 shows the resulting trajectories obtained
for the different cardinality values, including also the case
of “first-arrival”, corresponding to the trajectory planned
using a tree whose expansion is stopped the first time a
node within the goal region is added to the tree. The time
needed to reach the goal set decreases as the cardinality
increases, as can be seen in Figure 4 where the average time
to reach the goal over 50 runs of the flat-RRT* algorithm is
plotted together with the minimum and maximum times.
Finally, Figure 5 shows the average, minimum and maxi-
mum computation times required to generate a trajectory
as a function of the tree cardinalities. Less than a minute
is needed to determine a trajectory when a tree cardinality
N = 10000 is used. This is quite an encouraging result for
a possible online usage of the planner.

Fig. 2. Tree generated in a run with the tree cardinality
set to 1000.

0 2 4 6 8

X [m]

0

2

4

6

8

Y
 [
m

]

First-arriving nodes

0 2 4 6 8

X [m]

0

2

4

6

8

Y
 [
m

]

1000 nodes

0 2 4 6 8

X [m]

0

2

4

6

8

Y
 [
m

]

5000 nodes

0 2 4 6 8

X [m]

0

2

4

6

8

Y
 [
m

]

10000 nodes

Fig. 3. Trajectories generated with different tree cardinal-
ities and adopting the “first-arrival” stop criterion.

1000 2500 5000 7500 10000

Tree cardinality

5

5.5

6

6.5

7

7.5

8

F
in

a
l
c
o
s
t
[s

]

Fig. 4. Average (blue), minimum (green), maximum (red)
time to reach the goal region as a function of the tree
cardinality.

1000 2500 5000 7500 10000

Tree cardinality

0

10

20

30

40

50

60

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
s
]

Fig. 5. Average (blue), minimum (green), maximum (red)
computation time as a function of the tree cardinality.

5. CONCLUSIONS

This paper addresses optimal trajectory planning in pres-
ence of kino-dynamic constraints for a vehicle with differ-
entially flat dynamics. We propose a novel RRT* algorithm
that exploits pre-computed motion primitives in the flat
output representation to accelerate the construction of the
edges, while building the tree from randomly extracted
nodes in the configuration space. Our goal is to allow for
the online usage of RRT* when the vehicle is moving in a
partially known environment. This task is simplified by the
fact that in RRT* edges are checked against the presence
of obstacles only afterwards, when building the tree. Our
solution rests on a database of a few pre-computed edges
(the motion primitives) built based on a gridding of the
configuration space. These motion primitives are then used
as tentative solutions to derive the (sub-optimal) edge
joining the initial and final nodes while satisfying the
actuation constraints. The finer the grid the better the
performance, but the larger is the database.

REFERENCES

Buccieri, D., Perritaz, D., Mullhaupt, P., Jiang, Z.P., and
Bonvin, D. (2009). Velocity-scheduling control for a
unicycle mobile robot: Theory and experiments. IEEE
Transactions on Robotics, 25(2), 451–458.

De Luca, A., Oriolo, G., and Vendittelli, M. (2001).
Control of wheeled mobile robots: An experimental
overview. Lecture Notes in Control and Information
Sciences, 270, 181–226.

Fliess, M., Lévine, J., Martin, P., and Rouchon, P. (1995).
Flatness and defect of non-linear systems: introductory
theory and examples. International Journal of Control,
61(6), 1327–1361.

Fuchshumer, S., Schlacher, K., and Rittenschober, T.
(2005). Nonlinear vehicle dynamics control - a flatness
based approach. In IEEE Conference on Decision and
Control, 6492–6497.

Karaman, S. and Frazzoli, E. (2010). Optimal kino-
dynamic motion planning using incremental sampling-
based methods. In IEEE Conference on Decision and
Control, 7681–7687.

Kavraki, E., Kolountzakis, M., and Latombe, J.C. (1998).
Analysis of probabilistic roadmaps for path planning.
IEEE Transactions on Robotics and Automation, 14(1),
166–171.

Kavraki, L.E., Švestka, P., Latombe, J.C., and Overmars,
M.H. (1996). Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Trans-
actions on Robotics and Automation, 12(4), 566–580.

LaValle, S. and Kuffner, J. (2001). Randomized kino-
dynamic planning. International Journal of Robotics
Research, 20(5), 378–400.

Likhachev, M. and Ferguson, D. (2009). Planning long dy-
namically feasible maneuvers for autonomous vehicles.
International Journal of Robotics Research, 28(8), 933–
945.

Pivtoraiko, M., Knepper, R., and Kelly, A. (2009). Dif-
ferentially constrained mobile robot motion planning in
state lattices. Journal of Field Robotics, 26, 308–333.

Ragaglia, M., Prandini, M., and Bascetta, L. (2015). Poli-
RRT*: Optimal RRT-based planning for constrained
and feedback linearisable vehicle dynamics. In European
Control Conference, 2521–2526.

