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Abstract: We propose a decentralized scheme for the energy management of a district composed
of multiple buildings. Each building is equipped with its own chiller, whereas a single thermal
storage is shared among all buildings. The buildings aim at jointly minimizing the electric energy
costs while guaranteeing comfort conditions for their occupants, and they can act on their own
temperature set-point and the usage of the common storage to this purpose. The problem can
be formulated as a constrained optimization program where the buildings decision variables are
coupled via some global constraints, due to the shared storage, and the cost function, since the
electric energy price depends on the district demand. To distribute the computational load and
reduce the amount of transmitted information, we propose a two-layer solution where a central
entity takes care of the global constraints by updating some dual variables (outer layer), whereas
the primal variables, i.e., zone temperature set-point and storage usage, are optimized locally
by the buildings through nested iterations where the price is recomputed based on the updated
information on the district demand provided by the central entity (inner layer).

Keywords: Decentralized optimization, cooperative multi-agent system, energy management
operations, smart grid, thermal storage sharing.

1. INTRODUCTION

We address optimal energy management for the thermal
control of a district network with multiple buildings shar-
ing a storage unit. Energy storage systems add flexibility
to energy management systems (Wang et al. (2013)), and
are largely studied as a means for compensating the in-
termittent nature of renewable energy sources (see e.g.,
Teleke et al. (2010); Telaretti et al. (2015)). However, they
are typically expensive resources and rarely employed at
their full capacity when they are private resources of single
users. This motivates our setting, where a single storage is
shared among multiple buildings.
In our set-up, each building is equipped with a chiller plant
that converts electrical energy into cooling energy and is
operated so as to maintain an adequate room temperature
and guarantee comfort conditions. The thermal storage
can act as an energy buffer, allowing load request deferral,
and giving the possibility to operate the chiller plants
at their maximum efficiency and to buy electrical energy
from the grid when the price is lower. These advantages
are further enhanced by the fact that the thermal storage
unit is shared: buildings with a chiller plant that has a
limited capability – and may not be able to satisfy load
picks – could draw some additional cooling energy from the
storage, recharged by some larger chiller plant for which
it may be even convenient to work at a higher production
rate in order to improve its efficiency. As a result, build-
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ings would end up sharing their actuation systems (their
chillers), thus realizing in practice a spatially distributed
thermal control system that is more robust to local picks
in load request, Belluschi et al. (2016).
Appropriate energy management strategies need to be
conceived so as to establish how the buildings can share the
storage unit. Here, we suppose that buildings are cooper-
ating aiming at minimizing the electric energy cost for the
thermal control of the district, and that the energy price
is a time-varying affine function of the district demand:
the higher the demand, the higher is the price. Similar
price structures are adopted e.g. in Ma et al. (2013); Deori
et al. (2016,7); Gharesifard et al. (2016); Grammatico
et al. (2016) addressing charging control of plug-in electric
vehicles. In our context, we can think of the grid operator
applying a pricing strategy to level the electric energy
request. The interested reader is referred to Gharesifard
et al. (2016) for some discussion on pricing strategies
within the energy market. Some further flexibility is added
to the energy management system by allowing each build-
ing to slightly modulate the temperature set-points of its
thermally controlled zones within some comfort bounds.
The energy management problem can then be formulated
as a constrained optimization program where the sum of
the electric energy costs of all buildings is minimized with
respect to the zone temperature set-points and the ex-
changes with the storage as optimization variables, subject
to local and global constraints.
The size of the optimization problem grows linearly with
the number of buildings, and its centralized solution would



require to collect various pieces of information that are
intrinsically local, like cooling energy requests, zone tem-
perature set-points, chiller characteristics, comfort condi-
tions that depend on the building usage (e.g., commer-
cial or residential). To overcome these computational and
communication issues, we propose a decentralized iterative
solution where only part of these pieces of information
need to be conveyed to some central entity. A numerical
example shows the performance of the proposed decen-
tralized two-layer scheme versus an alternative heuristic
approach where buildings are assigned a fixed share of the
storage.
Building energy management, and climate control in par-
ticular, has recently attracted the attention of various
researchers (see, e.g., Siroky et al. (2011); Ma et al. (2012);
Deng et al. (2013); Vignali et al. (2017); Scherer et al.
(2014)). Indeed, energy consumption in buildings repre-
sents approximately 40% of the worldwide energy demand,
and more than half of this amount is spent for climate
control (Pérez-Lombard et al. (2008)). Optimization based
methods are largely adopted to address energy manage-
ment in buildings, since the problem is naturally formu-
lated as the optimization of some objective function (e.g.,
energy costs, deviation from some desired consumption)
subject to physical and technological constraints (e.g.,
actuation limits, comfort constraints). In all the afore-
mentioned references the underlying algorithm refers to a
single building or room. In Ioli et al. (2015a), a hierarchical
scheme implementing a decentralized heuristic solution is
proposed. In Chang et al. (2013) decentralized control is
applied to a home energy management problem, whereas in
Kranning et al. (2014) the Alternating Direction Method
of Multipliers (ADMM, Boyd et al. (2010)) is adopted
for decentralized optimal power flow in transmission net-
works. A distributed approach is proposed in Belluschi
et al. (2016), within our same modeling framework. The
proposed solution does not require any central entity, is re-
silient to (temporary) failures in the communications, and
preserves the private information on building electricity
consumption. However, it applies only to the case when the
cost function is separable, which is not the one addressed
in this work where the electric energy price is dependent
on the district demand.

2. PROBLEM FORMULATION

We consider a district network composed of m buildings.
Each building is equipped with a chiller plant and is
divided into some thermally conditioned zones, each one
characterized by its own (average) temperature. Let T iz be
the vector of set-points for zones temperatures relative to
building i. Our objective is to determine an optimal profile
for T iz , i = 1, . . . ,m, along some finite time-horizon [t0, tf ],
so as to minimize the electric energy cost for cooling the
district, while guaranteeing a satisfactory level of comfort
to the occupants of each building. To this end, we adopt
the modeling approach in Ioli et al. (2015b), where the
time horizon [t0, tf ] is discretized into M time slots of
length dt and the profile for T iz , i = 1, . . . ,m, is assumed
to be linear in each time slot with a slope limited by
the capability of the chiller plant so that it can actually
be tracked. Let us denote as T iz(k) the temperature set-
points at the end of the k-th time slot and T iz(0) the zone

temperatures at t0 of building i.
Following Ioli et al. (2015b), the electrical energy consump-
tion Ei`(k) of building i is expressed as a differentiable
convex function of the energy Eich(k) requested to the
chiller of the i-th building during the time slot k, namely

Ei`(k) = ci1E
i
ch(k)

4
+ ci2E

i
ch(k)

2
+ ci3, (1)

where ci1, ci2, and ci3 are appropriate coefficients character-
izing the chiller of the i-th building.
Buildings in the district are sharing a storage unit, which
allows to shift in time the electric energy requests so as
to operate the chillers at higher efficiency or buy energy
when the price is lower. Let S(k) denote the amount of
energy accumulated in the thermal storage at the end of
the k-th time slot, S(0) being its initial energy content.
Then, the storage dynamics can be described by a first-
order dynamical system through the recursive equation

S(k + 1) = aS(k)−
m∑
i=1

si(k), (2)

where si(k) is the amount of energy drawn from (si(k) >
0) or released to (si(k) < 0) the storage by building i
during time slot k, and a ∈ (0, 1) is a coefficient which
models energy losses. The amount of energy requested to
the chiller of the i-th building during the k-th time slot
can then be computed as

Eich(k) = Eic(k)− si(k), (3)

where Eic(k) is the amount of cooling energy requested by
building i during time slot k to track the zone temperature
profile in that time slot.
The energy cost along [t0, tf ] is computed as

C =

M∑
k=1

ψ(k)

m∑
i=1

Ei`(k), (4)

where ψ(k) is the unitary energy cost within the k-th time
slot. In each time slot k, the energy price is taken to be
the sum of two contribution: i) a baseline term β(k) and
ii) an additional term which is proportional to the energy
demand in the district, i.e.,

ψ(k) = β(k) + α(k)

m∑
i=1

Ei`(k), (5)

α(k) being a suitable (positive) coefficient. Through the
choice of β(k), the adopted price model is able to capture
jointly the minimum price of the electrical energy and the
effect on the price of other electric energy requests.
Let us define the following vectors T i

z = [T iz(0) · · · T iz(M)]>,

si = [si(1) · · · si(M)]>, Ei
c = [Eic(1) · · · Eic(M)]>, Ei

ch =

[Eich(1) · · · Eich(M)]>, Ei
` = [Ei`(1) · · · Ei`(M)]>, S =

[S(0) · · · S(M)]> for all buildings i = 1, . . . ,m. The stor-
age energy content can then be expressed as

S = Ξ0S(0)− Ξ1

m∑
i=1

si, (6)

where Ξ0 and Ξ1 are appropriate matrices. Furthermore,
according to the building model in Ioli et al. (2015b), Ei

c

can be expressed as Ei
c = Ωi0T

i
z + Ωi1, where Ωi0 and Ωi1

are appropriate matrices that depend on the i-th building
structure, initial state, and external disturbance profiles,
which are here assumed as given. The cooling energy
request to chiller i is then given by Ei

ch = Ωi0T
i
z + Ωi1− si



and Ei
` obtained by plugging Ei

ch into the differentiable
convex function (1) is convex and differentiable with
respect to the optimization variables T i

z and si.
The optimal energy management problem for the district
network can then be formalized as

min
{T i

z ,s
i}m

i=1

J(T 1
z , . . . ,T

m
z , s1, . . . , sm) (7)

subject to:{
Smin ≤ S(s1, . . . , sm) ≤ Smax

e>MS(s1, . . . , sm) ≥ S(0)
(8)

|si| ≤ simax

Ei
c(T i

z) ≥ 0

0 ≤ Ei
ch(T i

z , s
i) ≤ Eich,max

T i
z,min ≤ T i

z ≤ T i
z,max

T iz(M) = T iz(0) = T iz,t0

i = 1, . . . ,m (9)

where (8) are the coupling constraints and (9) are the
constraints that apply locally to each building. For the
sake of clarity, the dependence of all quantities from the
optimization variables are made explicit in (7). In the
problem formulation, Smin and Smax are the minimum and
maximum amount of energy that can be stored and, for
each building i, T i

z,min and T i
z,max represent the comfort

constraints, Eich,max is the maximum amount of cooling

energy that chiller i can provide during each time slot, simax
is the maximum amount of energy that can be exchanged
with the common storage per time slot. The constraints
Ei

ch ≥ 0 and Ei
c ≥ 0 ensure that no heating energy is

requested, while S(M) = e>MS ≥ S(0) avoid the storage
depletion at the end of the time horizon, eM being the
M -dimensional column vector with all zeros except for a
one in the M -th position. The constraint T iz(0) = T iz,t0
sets the initial temperature of the zones to their actual
temperature at t0, whilst T iz(M) = T iz(0) enforces the final
temperature to be identical to the initial one in view of a
repetitive application of the energy management strategy
e.g. on a one-day time basis. Finally, the objective function
in (7) is given by

J = C +

m∑
i=1

(
ρs‖si‖

2
+ ρT ‖T i

z − T
i

z‖
2)
, (10)

which is the sum of the electric energy cost C in (4) and
two terms that penalize the control effort by limiting the
extent of the energy exchanges with the storage and the
deviation of the zone temperature set-points from some

nominal profile T
i

z. The coefficients ρs > 0 and ρT > 0 set
the relative importance between the electric energy cost
and the control effort.
We shall next show strict convexity and differentiability
of J(·), which are necessary conditions for the application
and technical soundness of the methodology proposed in
the next section. To this purpose, note first that, by
substituting (5) in (4), C(·) can be expressed as

C =

M∑
k=1

[
β(k)

( m∑
i=1

Ei`(k)
)

+ α(k)
( m∑
i=1

Ei`(k)
)2]

. (11)

For any k = 1, . . . ,M , Ei`(k) is a convex function of the
optimization variables T i

z and si, i = 1, . . . ,m. Then, also∑m
i=1E

i
`(k) is convex. Moreover, the fact that

∑m
i=1E

i
`(k)

is always non-negative together with the monotonicity

property of the square function for non-negative argu-

ments, leads to the convexity of
(∑m

i=1E
i
`(k)

)2
. Finally,

α(k) and β(k) are positive coefficients for all k = 1, . . . ,M ,
therefore C(·) is convex in T 1

z , . . . ,T
m
z , s1, . . . , sm. Due

to convexity of C and strict convexity of the penalization
terms in (10), J(·) is strictly convex. Differentiability of
C(·) as a function of the optimization variables T i

z and si,
i = 1, . . . ,m follows from the fact that it is differentiable
as a function of its argument Ei`(k), which, in turn, is
differentiable as a function of T i

z and si, i = 1, . . . ,m,
for any k = 1, . . . ,M . Differentiability of J(·) then follows
from its definition in (10).

3. PROPOSED DECENTRALIZED SOLUTION

By analyzing (7), one can see that each building has its
own optimization variables and set of local constraints, but
its decision is coupled to that of the others through the
constraints (8) on the energy accumulated in the shared
storage and through the cost function (10), since each
building demand affects the electric energy price. As the
number of buildings inside the district increases, the com-
putational effort involved in a centralized solution to (7)
grows rapidly. Additionally, various pieces of information
that are intrinsically local, and possibly private, need to
be collected. We here seek for a decentralized approach
that addresses the computation and communication issues
of a centralized solution while preserving optimality. The
proposed approach integrates the methods described next
that address the coupling due to the constraints (8) and
the cost function (10), respectively.

3.1 Handling the coupling constraints

This method rests on strong duality theory and allows to
account for the coupling constraints (8) in (7), separately
from the other local constraints (9), while preserving
feasibility (and optimality) of the solution thanks to the
problem convexity. By replacing S with its expression as a
function of si in (6), the three coupling constraints in (8)
can be rewritten in compact form as A

∑m
i=1 s

i − b ≤ 0,
for appropriately defined matrices A and b. According to
duality theory, the dual of (7) obtained by dualizing the
coupling constraints is given by

max
λ≥0

min
{T i

z ,s
i}m

i=1

J + λ>
(
A

m∑
i=1

si − b
)

(12)

subject to:

|si| ≤ simax

Ei
c ≥ 0

0 ≤ Ei
ch ≤ E

i
ch,max

T i
z,min ≤ T i

z ≤ T i
z,max

T iz(M) = T iz(0) = T iz,t0

i = 1, . . . ,m, (13)

where λ is the vector of Lagrange multipliers associated
with the coupling constraints only.

If we define the optimization variables xi = [T i
z

>
si
>

]>

for building i and introduce its local constraint set Xi

as originated by all (local) constraints (13), then problem
(12) can be rewritten as

max
λ≥0

min
{xi∈Xi}mi=1

f(x1, . . . , xm, λ), (14)



where the function

f(x1, . . . , xm, λ) = J + λ>
(
A

m∑
i=1

si − b
)

(15)

depends on all optimization variables of all buildings
and not only on the storage exchanges si because J =
J(T 1

z , . . . ,T
m
z , s1, . . . , sm). The dual ascent algorithm

(Bertsekas (1999)) can provide a numerical solution to
(14) by iteratively performing an update of the primal
variables x = [(x1)> · · · (xm)>]>, and an update of the
dual variables λ. Each iteration κd of the dual ascent
algorithm consists of two update steps: in the first one,
called primal update, the primal variables x are updated
solving an optimization problem where the cost f(·) is
minimized with respect to x, accounting for constraints
Xi, i = 1, . . . ,m, while dual variables are kept fixed to the
value at the current iteration λ = λ(κd):

x(κd + 1) ∈ arg min
{xi∈Xi}mi=1

f(x1, . . . , xm, λ(κd)). (16)

In the second step, called dual update, the dual variables
λ are updated performing a projected gradient step

λ(κd + 1) =
[
λ(κd) + δ(κd)

(
A

m∑
i=1

si(κd)− b
)]+

, (17)

where δ(κd) > 0 is the step-size and [ · ]+ denotes the pro-
jection operator onto the non-negative orthant to which
λ is constrained (λ ≥ 0). Due to strict convexity of the
primal objective function, the dual function is continu-
ously differentiable everywhere (Bertsekas, 1999, Propo-
sition 6.1.1) but it is not guaranteed to have a Lips-
chitz continuous gradient. Therefore, in order for the se-
quence {λ(κd)}κd≥0 to converge to an optimal dual so-
lution, the step-size δ(κd) cannot be kept constant but it
needs to asymptotically vanish at an appropriate rate, i.e.,
limκd→∞ δ(κd) = 0 and

∑∞
κd=0 δ(κd) = +∞. Moreover,

due to strict convexity of the primal objective function
J(·), the sequence {x(κd)}κd≥0 converges to an optimal
solution of (7) (Boyd et al. (2010)).

3.2 Handling the coupling cost function

Note that the primal update step (16) (with λ(κd) fixed)
has an almost separable structure in that each building has
its own local constraint set Xi and the coupling is only due
to the objective function f(·). We can then adopt for its
solution the decentralized iterative algorithm developed in
Deori et al. (20167) and briefly recalled next.
Consider the optimization problem

min
{ζi∈Zi}mi=1

ϕ(ζ1, . . . , ζm). (18)

Each agent i starts with a tentative value ζi0 ∈ Zi for the
optimal solution to (18), and send this information to the
central entity. At the generic (κp + 1)-th iteration, each
agent i receives from the central entity a vector ζκp

which
contains the solution of all agents at the previous iteration,
and updates its current estimate of the local variables ζi

performing the minimization step

ζiκp+1 = arg min
ζi∈Zi

{
ϕ(ζi, ζ−iκp

) + c‖ζi − ζiκp
‖2
}
, (19)

where ζ−i denotes the vector emanating from ζ =
(ζ1, . . . , ζm) when ζi is removed. Finally, it sends the
updated estimate to the central authority. The idea of
(19) is that each agent i optimizes with respect to its

own decision variables ζi ∈ Zi, the weighted sum of
two contributions: the cost function ϕ(·, ζ−iκp

), where the
variables of all other agents are fixed to the value at the
previous iteration ζ−iκp

, and a proximal term that penalizes
the distance of the new estimate from the previous one
ζiκp

. The relative importance between the two terms is

dictated by the weight c > 0. If c > m−1
2m−1

√
mL, L being

the Lipschitz constant of the gradient ∇ϕ(·) of ϕ(·) as a
function of ζ, then, convergence is guaranteed (Deori et al.
(20167)).
We can then apply (19) iteratively to perform the primal
update (16) of the dual ascent algorithm in a decentralized
fashion by setting ζi = xi, Zi = Xi, and ϕ(·) = f(·, λ(κd))
at every iteration κd. More precisely, let τ iκp

and σiκp
be

the T i
z and si components of the solution ξκp

= [τ i>κp
σi>κp

]>

to (19) at the inner iteration κp−1. Define as Ei
`κp

vector

Ei
` evaluated at T i

z = τ iκp
and si = σiκp

. Writing (19)

at iteration κp with f(xi, ξ−iκp
, λ(κd)) in place of ϕ(·), xi

in place of ζi, and ξiκp
in place of ζiκp

, after some simple
computations, we get

ξiκp+1 = arg min
xi∈Xi

{
C
(
xi,
∑
j 6=iE

j
` κp

)
+ λ>(κd)As

i (20)

+ ρs‖si‖
2

+ ρT ‖T i
z − T

i

z‖
2

+ c‖xi − ξiκp
‖2
}
.

3.3 Two-layer algorithm

We can now integrate the methods described in Sec-
tions 3.1 and 3.2 in a two-layer nested approach, where
step (17) of the dual ascent constitutes the outer layer
and is performed by a central entity, whereas step (16) is
implemented through an inner layer involving a loop where
the central entity and the buildings are jointly performing
the decentralized iterative approach in Section 3.2. This
results in Algorithm 1, where only steps 9-11 and 16 are
meant to be performed (in parallel) by the buildings.
Buildings need to exchange with the central entity their
electric energy consumption profiles and the shared storage
usage. This avoids overloading the communication links
by transmitting additional (private) pieces of information.
The central entity verifies if all solutions are within their
thresholds and decides whether to stop the inner/outer
loop or not. Note that as for the inner loop, convergence
can be assessed by the central entity without requiring
the buildings to transmit their local solutions. It is indeed
sufficient that each building checks locally if changes in
its solution ξiκp

are within a certain threshold and sends a
binary information to the central entity.
Note that (7) is a sharing problem that can be solved using
ADMM (see (Boyd et al., 2010, Section 7.3)). However,
the central entity would need to solve an optimization
problem, whereas in Algorithm 1 it is only required to
update and store the dual variables (step 17) and an ag-
gregate information on the overall consumption (step 13).
Furthermore, when the coupling in the cost (11) (square
term) and the coupling in the constraints (8) (S term) do
not depend on the sum of optimization variables, then (7)
is not a sharing problem anymore and the general form of
ADMM ((Boyd et al., 2010, Section 3.1)) has to be applied.
This entails that the central entity would need to solve an
optimization problem that scales linearly with the number
of agents and is almost as difficult as the original one.



Algorithm 1 Two-layer algorithm

1: % Outer layer initialization
2: κd ← 0; central entity chooses λ(0) ≥ 0
3: repeat % Outer layer
4: % Inner layer initialization
5: κp ← 0; buildings choose ξ0 ∈ Xi, i = 1, . . . ,m

6: E`
tot
0 ←

∑m
i=1 E

i
`0

7: repeat % Inner layer
8: for i = 1 to m all buildings in parallel do
9: receive E`

tot
κp

from the central entity

10: compute ξiκp+1 ← (20)

11: send Ei
`κp+1

to central entity

12: end for
13: E`

tot
κp+1 ←

∑m
i=1 E

i
`κp+1

central entity update

14: κp ← κp + 1
15: until a stopping criterion on ξκp

is met

16: Buildings send σiκp
, i = 1, . . . ,m, to central entity

17: λ(κd + 1) =
[
λ(κd) + δ(κd)

(
A
∑m
i=1 σ

i
κp
− b
)]+

18: κd ← κd + 1
19: until a stopping criterion on λ(κd) is met

4. NUMERICAL EXAMPLE

We considered a district with m = 3 commercial buildings
that jointly optimize the electrical energy cost over a one-
day horizon discretized in M = 144 time slots of dt = 10
minutes each. The buildings have the same structure,
which can be found in Ioli et al. (2015b), and are equipped
with different chiller plants described by (1) with the
following sets of coefficients (c11, c

1
2, c

1
3) = (3.42 ·10−4, 3.69 ·

10−2, 1.46), (c21, c
2
2, c

2
3) = (5.21 ·10−5, 2.16 ·10−2, 2.82), and

(c31, c
3
2, c

3
3) = (5.17·10−6, 1.49·10−2, 5.22) where ci1, ci2, and

ci3 are measured in MJ−3, MJ−1, and MJ, respectively, and
with maximum cooling energy production per time slot
given by E1

ch,max = 16, E2
ch,max = 30, and E3

ch,max = 40 in
MJ. In the sequel we shall then refer to chiller i = 1, 2, 3
as “small”, “medium”, and “large” chiller, respectively.
We consider a single zone per building. During working
hours (from 8AM to 6PM) the zone temperature T iz(k)
of each building is required to be in the range 22-24◦C.
The range is extended to 16-30◦C for other time slots.
The initial temperature is set equal to T iz,t0 = 24◦C for
all buildings. The shared thermal storage minimum and
maximum capacity are Smin = 75MJ and Smax = 1425MJ
(5% and 95% of the overall capacity 1500MJ). The rate of
thermal energy exchange per time slot is upper bounded
by simax = 11MJ, i = 1, 2, 3. The initial storage content is
S(0) = 750MJ. The storage coefficient a = 0.9983 in (2)
models a 1% energy loss per hour. In the price expression
(5), β(k) is the time-varying energy price in Ioli et al.
(2015b), whereas α(k) is constant and equal to 0.0023,
which is 10% of the average of β(k) over [1,M ]. As for

the cost function J in (10), T
i

z is set constant and equal
to 23◦C for all buildings, and the coefficients ρT = 10−2

and ρs = 10−3 make both penalization terms of the same
order of magnitude of the energy cost C. The step size of
the outer layer is set to δ(κd) = δ̄/(κd+1)γ with δ̄ = 10−6

and γ = 0.1. As for c in the inner layer, according to
Deori et al. (20167), one would need to choose c so as to
satisfy c > m−1

2m−1
√
mL, where L is the Lipschitz constant
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Fig. 1. Storage energy exchange [MJ]: optimal solution.

of ∇ϕ(·) = ∇f(·, λ(κd)) in (15). Computing L exactly is
however difficult and (conservative) estimates of L lead
to a very high value of c that slows down convergence
excessively. We then set c = 1, which was experimentally
verified to be appropriate in our numerical example. We
chose as stopping criterion for both layers the condition
that the norm of the relative or absolute difference between
two subsequent iterations of the monitored quantities gets
lower than 10−3.
To asses the performance of the proposed methodology we
compare it against the heuristic solution obtained when
the storage is equally partitioned among the buildings, and
each building has access only to its share, with an initial
energy content equal to half of it. In this case the problem
does not have any coupling constraints, and one can
directly apply the decentralized algorithm in Section 3.2.
Resulting costs are reported in Table 1, together with

Table 1. Energy cost C and cost function J .

Optimal Heuristic No storage

C 148.79 203.00 427.19

J 156.86 210.35 429.82

those of the solution without storage, thus pointing out
the main role of the storage in cost saving. In Figure 1 we
report the energy exchanges between the buildings and the
thermal storage, which reveal that the building with the
large chiller is providing thermal energy to the building
with the small chiller through the shared thermal storage.
The presence of the joint storage can indeed compensate
for an imbalance between chiller size and building demand,
thus allowing a sharing of the actuation capabilities in the
district. Figure 2 reports the Coefficient Of Performance
(COP), i.e., the ratio between cooling energy production
and electric energy consumption per time slot, of the three
chillers for both the optimal and heuristic solutions. By
inspection, we can clearly see how the flexibility introduced
by the shared thermal storage is exploited to make the
small and large chillers operate at higher efficiency. The
optimal temperature set-points are plotted in Figure 3,
which shows that building 1 is subject to a stronger pre-
cooling phase than the other buildings. To get an idea on
the extent of the disturbances and their impact on the
thermal behavior of the buildings, in Figure 3 we also plot
the evolution of their temperatures without cooling.

5. CONCLUSIONS AND FUTURE WORK

This paper deals with decentralized energy management
for the thermal regulation of a district network composed
of multiple building sharing a thermal storage. A main
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Fig. 2. COP profiles: optimal and heuristic solutions.
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Fig. 3. Temperatures without cooling (thin lines) and
optimal temperature set-points (thick lines) [◦C].

distinguishing feature of our set-up, which required the
introduction of a novel scheme, is that the electric energy
price depends on the demand. This is the current trend
in energy systems where pricing signals are used by grid
operators to affect users consumption/generation. Further
work is needed to extend our approach to a more realistic
setting where demand is uncertain.
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