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Abstract— A lane following and lane changing maneuver
planning method for automated vehicles is investigated, which is
capable of evaluating and incorporating cooperative agreements
between several automated vehicles. An application level coop-
eration protocol is discussed, which allows vehicles to negotiate
space time reservations in conflict areas via Vehicle-to-Vehicle
communication. The planning method is based on decoupling
of longitudinal and lateral movement directions, formulation
of convex quadratic programming problems and input-output
linearization for recovery of a full state reference trajectory
and feed-forward controls. Several different lane following and
merging maneuvers can be planned in one update cycle in order
to support an informed selection of the currently best driving
strategy. We demonstrate and evaluate the communication
protocol and the maneuver planning method on cooperative
lane changing scenarios with a physical automated vehicle as
well as in a real time simulation.

I. INTRODUCTION

People’s mobility, especially terrestrial, is one of the most
important topics in the last decades. New technologies, in
all these transportation areas, are looking to improve life
quality of societies with the inclusion of reduced mobility
persons, increase people comfort and reducing the safety
risks, for example during driving. A study by the US National
Highway Traffic Safety Administration [1] attributed 94% of
vehicle crashes to be related with human behaviors, and 33%
of them for mistakes or wrong decisions during maneuvering.
A later study revealed drowsy driving represents 2.4% of
the total fatalities across the US [2]. Many people hope that
human related risk factors can be mitigated with the advent
of the automated driving technology.

In the last decades a number of advances have been
achieved in the field of automated driving, such as improve-
ment of trajectory and speed tracking controllers [3], path
planning [4], wireless communication [5] and perception.
Many challenges remain due to the difficulty of introducing
the technology into a complex, unstructured and unpre-
dictable environments, which is often governed by social
norms and interactions between a multitude of participants
[6]. Related with this topic, the authors of [7] have con-
ducted a study based on information given by the Bureau of
Transportation Statistics in United States (2015), where it is
demonstrated that a fleet of 100 automated vehicles working
24 hours all the year will require around 8 years of testing, to
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demonstrate a rate of 77 injuries per 100 million persons; and
500 years to obtain a rate of 1.09 fatalities per 100 million
(nominal data obtained from the injuries and fatalities caused
during vehicle crashes reported in United States 2013).

Many see the application of formal methods in automated
driving as one possible remedy to the problematic situation
of validation by test drive. In [8] a formal approach was
proposed to verify that distributed vehicle control systems
based on Adaptive Cruise Control (ACC) satisfy safety
objective. In [9] a method for automated vehicles safety
verification based on on-line reachability analysis has been
presented. Optionally some of the verification tasks can be
executed off-line and the results provided as safe maneu-
ver automata [10] to an on-line planning module, which
relates the results to the vehicle’s current situation. Some
other methods used for enforcing automated vehicles safety
considered the environment as a cooperative scenario where
the interaction between the actors is coordinated all the
time. In [11], the authors apply probabilistic methods based
on Hidden Markov Models (HMM) to risk assessment of
the ego vehicle under certain traffic condition models. The
approach considered the collisions as stochastic risks and it
was implemented in a simulation environment to ensure free-
collision situations. Other authors have proposed a minimally
restrictive supervisor (centralized approach) for the problem
of an intersection with multiple participants and the goal
of avoiding conflicts in all the participants considering their
future states [12].

With relation to our work on on-line verification for coop-
erative, automated vehicles in the EU project UnCoVerCPS,
we have to slightly digress and investigate in this paper into
a typical trajectory planning and decision module, which
can be used as the module under test, or more precisely
the module verified on-line in our framework. We require a
module, which plans typical lane following, lane changing
and merging maneuvers and supports cooperation between
multiple automated vehicles. Even more importantly, the
planner has to be fast enough to allow sufficient time for both
planning and verification in one update cycle. An overview
of merging maneuvers, with a focus on Cooperative ACC
can be found in [13]. Nilsson et. al. [14] demonstrate how
to formulate automated lane changing in a Model Predic-
tive Control framework, deriving low complexity Quadratic
Problems (QP) that can be solved efficiently.

In the following, sec. II will give an overview of the
cooperative on-line verification framework in which we are
conducting the investigation, shortly describe in sec. III the
employed vehicle model and controller, with the main sec.
IV detailing the concept of our maneuver planner, including



Fig. 1. Framework architecture for safe, cooperative driving.

integration of the space time reservation protocol for cooper-
ation of automated vehicles. Sections VI and VII explain the
setup and results of test drive and simulation experiments,
followed by sec. VIII discussion and conclusion.

II. FRAMEWORK AND APPROACH

We have chosen an overall approach to verification of
the automated driving process, which is based on an on-line
analysis of each vehicle’s actions. This allows to frame much
simpler verification problems, albeit which have to be solved
in real time. An overview of the proposed system architecture
is given in fig. 1. A nominal planning module defines the
driving skills required to autonomously navigate typical day
to day traffic situations. Given a frequent update of filtered,
labeled and tracked environment information is received from
a set of perception modules, the nominal planning module
creates predictions of the likely evolutions of traffic situations
and determines actions, which befit its benign models and
lead in almost all situations to the safe satisfaction of the
vehicle’s goals. Typical actions are the execution of such
maneuvers as driving along a lane, following a vehicle,
merging into a gap in traffic and stopping at intersections.

Obviously, there might be some situations in which the
benign models do not apply and the nominal action becomes
unsafe: Therefore a verification module analyses the safety
of each action, before it is dispatched for execution by a
controller [15]. The verification module employs worst-case
models for other traffic participants as well as bounded error
models for ego vehicle state sensors and ego vehicle dy-
namics. It then tries to plan an emergency maneuver, which
brings the ego vehicle to a standstill after partial execution
of the action and under exclusion of any collisions of the
ego vehicle with other traffic participants or static obstacles.
This has to be true for every combination of behaviors of
traffic participants as well as all possible ego measurement
errors and disturbances, as defined by the worst-case models.
If a safe emergency maneuver is found, the current action
is forwarded to the control module for execution. Otherwise
the previous emergency maneuver is executed.

Let us assume the nominal planning module and the
verification module operate at a fixed rate of 1/Tp, i.e.
receiving new sensor information for the i-th update at time
ti, computing first a nominal action and then the emergency
maneuver in a time interval [ti, ti + Tp]. The resulting
nominal action would take place during the time interval
[ti+Tp, ti+2 ·Tp] and the i−th emergency maneuver could
start at ti+2·Tp. Akin to the reaction time of human drivers,

the delay of 2 · Tp influences the degree of conservatism of
the approach: Generally speaking, with higher delay, more
distance has to be kept to preceding vehicles and tighter
merges are not possible. We want to answer the question,
how much computation time must be foreseen for nominal
maneuver planning and emergency maneuver planning, in
order to asses whether the proposed on-line verification
framework is practically feasible for the automated driving
application. Furthermore, we require a nominal planning
module for future integrated tests of our framework under
realistic operation conditions. In the following sections we
therefore formulate an approach to motion planning of lane
following, lane changing, vehicle following, merging and
cooperative merging maneuvers.

III. VEHICLE MODEL AND STABILIZATION

A standard linear bicycle model [16] is employed for
planning and simulation. The six-dimensional state vector
x = [X,Y, ψ, vx, vy, ψ̇]T consists of the position in Cartesian
coordinates X,Y , the orientation ψ, the translational velocity
vector [vx, vy]T given in vehicle-fixed coordinates and the
turn rate ψ̇. The control input u = [ax, δ]

T consists of
longitudinal acceleration and steering angle. The model is
parametrized by m/Iz the ratio of translational and rotational
inertia (around up axis), a and b the distance between center
of gravity and front and rear axle, g the gravity constant,
as well as cf , cr the relative cornering stiffness of front
and rear axle respectively. Using kf := µgcfb/(a + b),
kr := µgcra/(b + a), as well as the slip angles βf =

tan−1
(
vy+aψ̇
vx

)
and βr = tan−1

(
vy−bψ̇
vx

)
, the following

differential equation describes a bicycle model with linear
tire forces:

Ẋ = cos(ψ)vx − sin(ψ)vy (1)

Ẏ = sin(ψ)vx + cos(ψ)vy (2)

v̇x = ax + vyψ̇ (3)

v̇y = kf (βf − δ) + krβr − vxψ̇ (4)

ψ̈ = m/Iz (akf (βf − δ)− bkrβr) (5)

In our framework, a controller is tasked to execute the
trajectories computed by the nominal planner. The reference
trajectory is specified at each point of time by the refer-
ence vehicle state xr = [Xr, Y r, ψr, vrx, v

r
y, ψ̇

r]T and the
reference input (feed-forward control) ur = [arx, δ

r]T. The
following error terms describe the vehicle’s deviation from
the reference trajectory:

ex := cos(ψr)(X −Xr) + sin(ψr)(Y − Y r) (6)
ey := − sin(ψr)(X −Xr) + cos(ψr)(Y − Y r) (7)
ev := vx − vrx (8)
eψ := ψ − ψr (9)

eω := ψ̇ − ψ̇r (10)

A linear controller equivalent to the one proposed in [9]
computes the vehicle input based on the reference input,



feed-back of the above error terms and the control parameters
ky, kψ, kω, kx, kv in order to regulate the error terms:

ax := arx − kx · ex − kv · ev (11)
δ := δr − ky · ey − kψeψ − kωeω, (12)

IV. NOMINAL MANEUVER PLANNING

The overall lane following and lane changing optimiza-
tion problem is intrinsically non-convex and non-linear.
We employ several approximations and partitionings of the
original problem in order to gain linear-quadratic, convex
sub-problems that can be efficiently solved: We restrict the
solution space to lane following and single lane changing
maneuvers, i.e. the solution should contain at most one
transition to another lane. Furthermore, the vehicle is not
allowed to overtake into head on traffic.

An integral decision variable D = [DL, DG] is defined.
DL ∈ {−1, 0, 1} encodes the target lane, with −1 for
a transition to the right neighboring lane, 1 for the left
neighboring lane and 0 for the current lane. DG ∈ N is
the index of the object, in front of which the ego vehicle
should merge. (If there is no such object, a virtual one
can be inserted). The problem is then decoupled into linear,
convex quadratic optimization problems for the longitudinal
and lateral dynamics of a point mass. In a last step the
solutions are combined and a full state reference trajectory
xr(t) and feed-forward control inputs arx(t) and δr(t) for
the linear bicycle model eqs. (1)-(5) are reconstructed using
input-output linearization [17].

In the following, we describe the underlying environment
model, longitudinal planning, lateral planning and the recon-
struction of the full state trajectory. The overall construction
of a combined longitudinal and lateral motion plan is quite
similar to [18], except that we employ a gradient based
planning method instead of a sampling based and thus have
to put more emphasis on formulation of convex constraints.

A. Preliminaries

Both the longitudinal and the lateral motion plan will be
described as a solution of an optimal control problem for
a third-order integrator chain. Basically the same problem
type, the following notation will be used in both sections. Let
us assume the dynamic optimization problem is discretized
with equidistantly spaced points of time t0, t1, ..., tN , with
Tp = tN − t0. Let the integrator chain be described by the
state vector y(0:2)i := [y(ti), y

(1)(ti), y
(2)(ti)]

T, the input y(3)i
and the differential equation y(0:2)i = A ·y(0:2)i−1 +By

(3)
i−1, A ∈

R3,3, B ∈ R3,1. Given a weight vector w ∈ R4, an initial
condition y

(0:2)
0 , lower and upper bounds for each point of

time i and each derivative j, y(j)lb|ub,i, as well as a reference

ỹ
(j)
i , a Quadratic Programming (QP) problem with a solution

Y ∗ =
[
[y

(0:2)
0 , y

∗(3)
0 ]T, ..., y

∗(0:3)
N

]T
is defined:

Y ∗ = arg min

N∑
i=0

3∑
j=0

wj

(
y
(j)
i − ỹ

(j)
i

)2
s. t. ∀Ni=0∀3j=0 : y

(j)
i ∈ [y

(j)
lb,i, y

(j)
ub,i]

∀Ni=1 : y
(0:2)
i = A · y(0:2)i−1 +B · y(3)i−1

(13)

Let y∗(t) denote the appropriately interpolated continuous
function based on the optimization result. Consequently,
the longitudinal and lateral solution will be defined by the
number of points, a set of constraints y(0:3)lb|ub, a reference ỹ(0:3)

and a weight vector w ∈ R4. Let the variable y in these cases
stand for the longitudinal variable s or the lateral variable d.

B. Environment Model

In order to decouple the motion planning problem into lon-
gitudinal and lateral planning, a smooth, bijective mapping
from a longitudinal coordinate s and a lateral coordinate n to
the Euclidean space covered by the current and the adjacent
lanes is required.

Assume the center of the current lane is described as
shown in fig. 2 by Nc ∈ N sampling points c1, . . . , cNc

,
ci ∈ R2, spaced equidistantly at ∆s, from a distance slbh
behind the ego vehicle, up to a distance slah ahead of
the ego vehicle. Non-linear regression is employed to gain
Nq ∈ N, Nq · k = Nc cubic, two-dimensional polynomials
q1, . . . , qNq , qi ∈ (R3[s])2, qi : [si, si+1] → R2, which
guarantee smoothness up to second derivative and which
minimize the squared distance to the sampling points:

q1..Nq
:= arg min

Nq∑
i=1

k∑
j=1

‖qi(si + j∆s)− c(i−1)·k+j‖22

s. t. :
q
(d)
i (si+1) = q

(d)
i+1(si+1)

d ∈ {0, 1, 2}
(14)

The overall piecewise polynomial q : [s1, sNq ] → R2,
q(s) = qi(s)(s) with i(s) = d(s − s1)/(k∆s)e is used as
a baseline for the required mapping. The baseline normal
n(s) and curvature κ(s) are computed as:

n :=
(
0 −1
1 0

)
q′/‖q′‖2 (15)

κ :=(q′′Y q
′
X − q′′Xq′Y )/‖q′‖22 (16)

A transformation T : R2 → R2 from a road-relative
coordinate (s, d) to a Euclidean coordinate (X,Y ) is defined
as:

T : [X,Y ]T = q(s) + n(s) · d (17)

Using an implicitly realized approximation of
the inverse transformation T−1 ≈ Γ(p) =
[arg min (‖q(s)− p‖) , n(s)Tp]T, the scalar functions
bi : s 7→ d, i ∈ {0, . . . , 3} are computed, so that T (s, b0(s))
describes the right border of the right lane, T (s, b1(s)) the
right border of the current lane and so forth as shown in
fig. 2.



Fig. 2. Representation of the current and both adjacent lanes in a non-linear
coordinate system defined by piecewise polynomialq.

For each detected object k in the ego vehicle’s environ-
ment, assume the X,Y position of the center of its rear
bumper, pk,0, its velocity vk, as well as its length Lk and
width wk are given. For each stop line, waiting position
and lane closure a similar object with vk = 0 is added
to the object set, to simplify notation. For each object the
transformation (sk,0, dk,0) = Γ(pk,0), e.g. a lane matching,
is computed. For each lane l ∈ {−1, 0, 1}, a set of indices
of all objects which intersect the lane is created:

Ol :=

{
k

∣∣∣∣ dk,0 + wk,0/2 ≥ bl+1(sk,0)
∧ dk,0 − wk,0/2 ≤ bl+2(sk,0)

}
. (18)

We employ a linear prediction for other traffic participants
and given a length of the ego vehicle Le a time gap ∆tg and
a constant safety distance ∆sg , the forward and rearward
safety boundaries are defined for an object k:

s+k (t) := sk,0 + vk · t+ Lk + vk ·∆tg + ∆sg (19)

s−k (t) := sk,0 + vk · t− Le − vk ·∆tg −∆sg (20)

One has to consider, which objects are relevant for the
planning task. If the selected maneuver is lane following,
e.g. DLC = 0, only objects on the current lane in front
of the ego vehicle are relevant. The lower bound on these
vehicle positions will be designated by the term front (f).
For lane changing, DLC 6= 0, additionally the lower bound
of vehicles preceding the gap in the target lane, designated
lead (l), and the upper bound on vehicles following the gap
in the target lane, designated chase (c), are of relevance to
the maneuver. These position bounds are defined as:

sf (t) := min
{
s−k (t) | k ∈ O0 ∧ sk,0 > se,0

}
(21)

sl(t) := min
{
s−k (t) | k ∈ ODLC

∧ sk,0 > sDgap,0

}
(22)

sc(t) := max
{
s+k (t) | k ∈ ODLC

∧ sk,0 ≤ sDgap,0

}
(23)

The longitudinal planner is supplied with the environ-
ment information encoded in the position constraints sf (t),
sl(t), sc(t), the speed limit v̂(s) and the initial state
[se,0, ṡe,0, s̈e,0]T. The lateral planner is additionally supplied
with the initial state [de,0, ḋe,0, d̈e,0]T and the lane boundaries
b0(s), ..., b3(s).

C. Longitudinal Planning

Consider the window of opportunity for execution of a
merge into a target gap, as shown in fig. 3. A merge is only
possible at a point of time, when the front vehicle in the
ego vehicle’s own lane is in front of the chase vehicle in

(a) opening (b) open (c) closed

Fig. 3. Possibility to merge into a gap between lead (L) and chase (C)
vehicles depending on configuration of front (f) and chase vehicle.

the target lane. Depending on the relative velocities of front
and chase vehicle, the window of opportunity opens in the
future, fig. 3 (a) leads to (b), or closes in the future, fig. 3 (b)
leads to (c). The points of time for transition from opening
to open and from open to closed are:

tg0 := min{t | sc(t) < sf (t)}, (24)
tg1 := max{t | sc(t) < sf (t)}. (25)

Let us assume tg0 and tg1 are appropriately bounded for
the case that sf and sc only intersect at −∞ or ∞ and
that tg0 = tg1 = ∞ for DLC = 0. The upper and lower
bounds for the ego vehicle position are defined using these
gap switching times:

sub(t) :=

 sf (t) t < tg0
max(sf (t), sl(t)) tg0 ≤ t < tg1
sl(t) tg1 < t

(26)

slb(t) :=

{
−∞ t < tg1
sl(t) tg1 ≤ t

(27)

A speed limit is by its nature a position dependent constraint,
so it would be a non-linear constraint for the optimization
problem. In order to approximate the velocity constraint, an
upper bound on the vehicle position ŝ(t) is estimated. The
approximate velocity constraint is defined by the speed limit
and the curvature at the estimated position:

s
(1)
ub (t) := min

(
v̂(ŝ(t)),

√
âyκ−1(ŝ(t))

)
(28)

The lower velocity bound is set s(1)lb = 0 to prevent the
vehicle from traveling against the movement direction of the
lane. The bounds for longitudinal acceleration are constant
parameters, s(2)lb := âlb, s

(2)
ub := âub and the jerk is set to be

unconstrained, s(3)lb := −∞, s(3)ub :=∞.
In order to provide a reference for the longitudinal vehicle

position, as a first step a target position s̄(t) is defined, which
we chose as the foremost position attainable in the target
gap, so that s̄(t) := sf (t) for DLC = 0 and s̄(t) := sl(t) for
DLC 6= 0. As a second step, a reference is computed, which
maintains the forward acceleration bound and the maximum
speed whenever possible, in order to prevent unrealistically
big position differences. The velocity and position reference
are recursively defined, using the initial condition s̃0 := se,0,
s̃
(1)
0 = s

(1)
e,0, the target position s̄, the position based speed

limit v̂ and ∆tsi = (tsi+1 − ti):

s̃
(1)
i+1 := min

(
v̂(s̃i), s̃

(1)
i + ∆tsi · amax

)
(29)

s̃i+1 := min
(
s̄(tsi+1), sub(tsi+1), s̃i + ∆tsi · s̃(1)i

)
(30)



The reference jerk and acceleration are defined to be zero
s̃(3) ≡ 0, s̃(2) ≡ 0.

Using the QP for an integrator chain (13), above def-
initions of bounds s

(0:3)
lb|ub(t) and reference s̃(0:3)(t) under

consideration of the decision variable D, as well as the pa-
rameters plan duration Tp,s, number of discretization points
Ns and weight vector ws, the longitudinal motion plan s∗(t)
is computed.

D. Lateral planning

The lateral motion plan is always computed after the longi-
tudinal planning and the availability of the longitudinal plan
s∗(t) allows to handle all time and position based constraints
as constant constraints. In order to prevent collisions with
surrounding vehicles, we specify lateral position constraints,
which allow the vehicle to leave its own lane only, if it
is executing a lane change and if it is correctly aligned
with the target gap. Furthermore, as soon as the longitudinal
position s∗ is overtaking the front safety margin sf , the
lateral position must be contained in the target lane. Using
indices lo = 1, mid = 2 and hi = 3 for lane changes to the
left with DLC = 1 and lo = 2, mid = 1 and hi = 0 for lane
changes to the right with DLC = −1 , the lateral position
d(t) must be adhere to the following bounds:

d+(t) :=

{
bhi(s

∗(t)) sc(t) < s∗(t) < sl(t)
bmid(s

∗(t)) else (31)

d−(t) :=

{
blo(s

∗(t)) s∗(t) < sf (t)
bmid(s

∗(t)) else (32)

dub(t) := max(d−(t), d+(t))− w/2 (33)

dlb(t) := min(d−(t), d+(t)) + w/2 (34)

We leave the higher derivatives unconstrained, d(1)ub := ∞,
etc. The lateral reference position is switched between the
center of the current lane bcu(s) := (blo(s)+bmid(s))/2 and
the center of the target lane bta(s) := (bmid(s) + bhi(s))/2:

d̃i :=

{
bta(s∗(ti)) sc(ti) < s∗(ti) < sl(ti)
bcu(s∗(ti)) else (35)

The lateral reference speed is set d̃(1)(t) ≡ 0. Setting the
lateral acceleration and jerk reference to zero would induce
the ego vehicle to abidingly track all motions of the base
line polynomial q inside the given bounds. If instead it is
desirable to compensate unnecessary lateral motions of the
base line, the compensating lateral acceleration and jerk can
be approximated using the curvature and curvature derivative
of q:

d̃
(2)
i :=− (s∗(1)(ti))

2 · κ (s∗(ti)) (36)

d̃
(3)
i :=− (s∗(1)(ti))

3 · κ′ (s∗(ti)) (37)

The lateral motion plan d∗(t) is gained by solving the QP
(13), with the above definition of lateral constraints d(0:3)ub|lb(t)

and reference d̃(0:3)(t), as well as the constant parameters
plan duration Tp,d, number of discretization points Nd and
weight vector wd.

E. Reference Trajectory and Feed-Forward Controls

The longitudinal motion plan s∗(t) and the lateral profile
d∗(t) are combined into a reference trajectory τ represented
in Cartesian coordinates, τ(t) = [τx(t), τy(t)]T:

τ(t) := ρ (s∗(t)) + n (s∗(t)) · d∗(t) (38)

The application of input-output linearization to motion plan-
ning is well known [18] and the zero dynamics of a vehicle
model tracking τ can be acquired by solution of an initial
value problem. We here express the second order zero
dynamics in the variables [ψr, ψ̇r] and solve the following
equation:

ψ̈r = m/Iz
(
akf

(
βrf − δr

)
− bkrβrr

)
. (39)

For each time step of the initial value problem, the remaining
state variables and the feed-forward controls are computed
by inversion of the system dynamics (1)-(5):

Xr = τx, Y
r = τy (40)

vrx = cos(ψr)τ̇x + sin(ψr)τ̇y (41)
vry = − sin(ψr)τ̇x + cos(ψr)τ̇y (42)

arx := cos(ψr)τ̈x + sin(ψr)τ̈y (43)

δr := βrf + krkf
−1βrr

+ k−1f (sin(ψr)τ̈x − cos(ψr)τ̈y) . (44)

V. V2V COOPERATION PROTOCOL

Vehicle to vehicle communication gives automated vehi-
cles the opportunity to exchange intentions and negotiate
cooperations in a very explicit form of representation [19].
Instead of using an indicator, which communicates a general
intend to change to a certain lane, radio communication
allows vehicles to discuss explicitly, where and when a
lane change will take place and whether other vehicles
will support such a maneuver. Some approaches transmit
the specific trajectories [20] of each cooperating vehicle,
which can be data intensive. Instead, it may suffice to
exchange constraints, which decouple the trajectories of all
involved entities. Based on [15] we propose a simple space-
time reservation protocol, which allows vehicles to negotiate
constraints in order to resolve conflicting traffic situations.
A cooperative exchange involves one requesting and any
number of confirming vehicles and is based on the two
corresponding types of broadcast messages, Request and
Confirm. Per exchange, one Request message is sent and
one Confirm message per answering vehicle is sent back.

The cooperative exchange is initiated by an imminent
conflict in vehicle positions: When a vehicle VR intends to
execute a maneuver such as changing to or crossing over
a higher priority lane, it must take into account possible
conflicts with future actions of vehicles VP on the targeted
higher priority lane. If VR’s intended maneuver is not feasible
under given predictions, it broadcasts a Request message
containing its station id RID and a running number MID,
which uniquely identifies the negotiation session. Most im-
portantly it specifies a lane area to be reserved for VR, as
indicated in fig. 4: A part of the lane starting at a coordinate



Fig. 4. Reserved area in s and t for a cooperative lane change. Requesting
vehicle VR and cooperating vehicle VP .

X0, Y0, with a length LR along the lane is reserved for a time
interval [t0, t1]. The reservation moves in the lane’s direction
with a speed v0, starting at t0.

Any vehicle VP receiving the request determines whether
the request has acceptable impact on the vehicle’s objectives
and whether it contradicts internal constraints. Coming to a
negative conclusion, no answering message is sent, otherwise
consent is given by broadcasting a Commit message, which
relates to the original request’s constraints by specifying
RID, MID and identifies the consenting vehicle by its station
id. The confirmation message on the one hand obliges VP
to avoid any overlap with the reserved area. This can be
achieved by adding corresponding constraints to VP ’s ma-
neuver planner. On the other hand, VP ’s confirmation allows
VR to relax the constraints imposed by the prediction of VP ’s
intent, according to the negotiated reservation. Interpreted for
the example given in fig. 4, VR may enter the left lane in
the reserved area between t0 and t1 due to a confirmation
of VP . The number of vehicles, which actively change their
original plan due to the negotiated cooperation, depends on
the situation: A positive outcome of the negotiation certainly
influences VR, as it facilitates an action otherwise unfeasible.
Vehicles VP may be obliged to change their plan, when their
original plan is invalidated by the newly accepted constraint.

The space time reservation protocol is integrated into the
above nominal maneuver planning as follows: The com-
mitting vehicle adds a virtual vehicle of length LR to the
targeted lane object set during the time interval [t0, t1],
starting at an s position given by Γ(X0, Y0) with a velocity
v0. The requesting vehicle removes all vehicles, which sent
a commit message, from the object set of the targeted lane
during the same time interval and adds upper and lower
bounds according to the reserved area to the sl and sc
constraints.

VI. EXPERIMENT SETUP

A nominal maneuver planner is implemented according
to the above description in c++, using qpOASES [21] to
solve the quadratic problems for longitudinal and lateral
planning. At a rate of 10 Hz, the nominal planner sends and
receives cooperation messages, computes the environment
model according to above description, sequentially computes
lane following and lane changing maneuvers, selects a valid
maneuver for execution and sends a reference trajectory to

Fig. 5. DLR automated vehicle FASCarE used in test drive

vehicle g µ a b Iz/m cf cr

9.81 m
s2 0.8 1.01m 1.68m 1.57 m2

s2 10.8 17.8

controller ky kψ kω kx kv
0.05 0.4 0.25 0.5 1.4

env. repr. Nc Nq slbh slah
200 20 50m 200m

long. plan. Tp,s Ns vmax âx ây ws
10s 20 16.7 m

s [-3,2] m
s2 [-1,1] m

s2 (0.5, 1, 1, 1)

lat. plan. Tp,d Nd wd
10s 20 (2, 1, 3, 3)

TABLE I

a control process. Vehicle model, controller and nominal
planner are parametrized with the values given in tab. I.

Three experiments have been carried out: Experiment A
and B use the same scenario of a 500m long two lane road,
with the same driving direction for both lanes and two static
obstacles at distance 280m and 350m. Both vehicles start
ca. at 20m with vx = 0 on adjacent lanes and accelerate
up to the maximum velocity of 16.7 m/s. Experiment A is
a combination of physical test drive and simulation: The
FASCarE automated vehicle, fig. 5, is equipped with a
Novatel differential GPS/INS, which provides state estimates
at 20 Hz, a control PC, a control interface, which allows to
set desired acceleration ax and steering angle δ, (as well
as a set of environmental sensors, which are not used in
this work). The PC executes two sets of automated vehicle
processes: One set for the physical vehicle itself and one set
for a simulated vehicle, which cooperates with the physical
vehicle. In experiment A, the physical vehicle starts in the
right lane. In experiment B, both vehicles are simulated.

Experiment C is a simulation experiment for an urban
scenario with high lane curvatures and a varying number
of lanes. As in A and B, two static obstacles are placed at
different positions to induce lane changes. The admissible top
speed of one vehicle is reduced to 7 m/s. The slow vehicle
is placed 35 m ahead of of the fast vehicle, which leads to
the fast vehicle catching up to the slow vehicle right in front
of the first blocking obstacle. Both experiment B and C use
a real time simulation environment, e.g. the timing acquired
in simulation is directly comparable to test drive results.

VII. RESULTS

The results of experiment A are shown in fig. 6: Vehicle
positions for four points of time, before during and after the
cooperation are shown. The physical vehicle 0 on the right
lane and the simulated vehicle 1 on the left lane arrive at their
top speed with only a minor deviation in x-distance. At t1
vehicle 0 sends a cooperation request to vehicle 1 in order to
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Fig. 6. Experiment A - Cooperation of a physical and a simulated vehicle
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Fig. 7. Experiment B - Cooperation of two simulated vehicles

reserve the green area on the left lane for a reservation start
time equaling t3 and directly receives a promise message.
Vehicle 1 starts braking at t1 to avoid the reserved area, so
that vehicle 0 is ahead of vehicle 1 at t2. Vehicle 0 changes
lanes and enters the reserved area in front of vehicle 1. At
t3, vehicle 1 starts to accelerate back to top speed. Both
vehicles then non-cooperatively execute a lane change to the
right lane, to avoid the second obstacle.

During experiment A, a programming error became ob-
vious: Vehicle 0 started the lane change too early, because
we initially removed the promising vehicles completely from
the constraint set, not only during the reservation time
interval [tR0, tR1]. The error was corrected and simulation
experiment B was carried out, which is shown in fig. 7: One
can see that vehicle 0 initiates the lane change just slightly
ahead of the reservation activation time tR0 = t3, so that
vehicle 0 fully remains inside its own lane until at least t3.

The results of experiment C are shown in figs. 8-9(b): The
slow vehicle 1 (red) initially changes to the left lane at the
entrance of the curve, as it is already aware of the blocked left
lane at the exit of the curve. Vehicle 0 (blue) intends to drive
faster and tries to overtake vehicle 1 by pursuing the inner,
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Fig. 8. Experiment C - Cooperation of two simulated vehicles on a more
complex road graph.

right lane. Yet due to the upper bound on lateral acceleration,
it is limited to a similarly low speed inside the curve. At
the point of time t = 80s depicted in fig. 8(a), vehicle 0
reserves a portion of the outer lane in front of vehicle 1. The
reservation is shown in yellow, as it subsequently becomes
active at t = 83s. Vehicle 1 reduces its velocity (coming to
a standstill at t = 83s due to the low initial velocity), in
order to avoid the reserved area. As shown in fig. 8(b) for
t = 83s, vehicle 0 changes lanes into the center of the active
(green) reservation area. With the faster vehicle 0 ahead, both
vehicles go on to non-cooperatively change lanes to avoid
the second obstacle on the left lane as well as the closure
of the right lane (fig. 8(c) for t = 107s), while approaching
admissible top speeds on the straight parts of the road and
reducing the speed appropriately during curves.

The computation time for maneuver planning is evaluated
in experiment C. The simulation is carried out on a PC
with an Intel Core i7-6820HQ CPU, Windows 7 operating
system and sources compiled with the Visual Studio 2010
c++ compiler. The duration for computing each maneuver
was recorded, where the computation steps for one maneuver
are formulating and solving one longitudinal QP, solving
one lateral QP and solving an initial value problem for



t (s)
60 70 80 90 100

v 
(m

/s
)

0

5

10

(a)

comp. time (s) #10 -3
1 2 3

n

0

1000

2000

(b)

Fig. 9. Experiment C - Velocity and computation time

reconstruction of the complete reference state. The time
required for preparation of the environment model is not
included in the measurement, as it is associated with multiple
plan computations for different decision variable values.
Furthermore, it could be easily outsourced to a parallel
computation process. During each 10 Hz cycle of the two
nominal maneuver planners between 1 and 3 maneuvers are
computed, depending on the availability of target lanes and
target gaps. Fig. 9(b) gives a histogram with the number of
occurrences for a maneuver computation taking between 0.5
ms and 4 ms with 0.2ms wide bins. The highest observed
computation time was 3.5ms, with most computations taking
ca. 1ms. The computation time limit per QP was set to 10ms,
so each feasible problem was solved to the specified degree
of precision.

VIII. DISCUSSION AND CONCLUSION

We describe and evaluate a method for planning of nom-
inal maneuvers for automated vehicles, which is based on
longitudinal and lateral decoupling, solution of Quadratic
Programs and reconstruction of a full state vehicle tra-
jectory according to the idea of input-output linearization.
The planner provides lane following and lane changing
maneuvers, as well as cooperative lane changing maneuvers
based on a space time reservation protocol, which allows
automated vehicles to negotiate cooperation for execution
of future maneuvers in critical situations. Our experiments
show through physical test drive and simulation that a real
time application with 10Hz update rate, which includes
planning of multiple, alternative nominal maneuvers as well
as computation of emergency maneuvers similar to [22] as a
verification step is feasible. Our next steps will be to integrate
nominal planning and emergency maneuver planning for a
cooperative, automated driving use case.
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