
Implementation	of	an	Oriented	
Bounding	Box	Distance	Sensor	

for	Virtual	Test	Drive
Tiger	Mou	(Vanderbilt	University)

Eike	Möhlmann (OFFIS)



Background

• Lots	of	research	in	high	level	autonomous	driving
• Huge	potential	in	global	market
• MUST	be	safe	and	reliable
• Needs	to	be	thoroughly	tested
• Accidents	in	live	tests	are	a	huge	potential	for	bad	reputation
• Uber,	Tesla,	Google



Valet	Parking

• Start	small	and	scale	up
• Work	towards	higher	levels	of	autonomy

• Parking	area	management	determines	driving	path
• Vehicle	autonomously	parks/returns



Virtual	Test	Drive	(VTD)	by	VIRES

• Feature	rich	vehicle	simulation	platform
• Computer	generatable	scenarios
• Automated	testing/verification	capable
• Has	room	for	additional	features	and	plugins



Oriented	Bounding	Box	Distance	Sensor

• Oriented bounding	box	(OBB)
• Distance	from	OBB	to	OBB



Oriented	Bounding	Box	Distance	Sensor

• Oriented bounding	box	(OBB)
• Distance	from	OBB	to	OBB



Oriented	Bounding	Box	Distance	Sensor

• VIRES	likely	has	a	distance	sensor,	but	we	need	more
• Could	use	an	external	listener	but	not	good	enough

• Our	own	sensor	would	be	customizable
• Lets	us	easily	perform	complex	computations	from	within the	
simulation
• Send	only	what	we	need	over	the	runtime	data	bus	(RDB)



My	Approach

• Had	difficulty	finding	an	algorithm
• VIRES	provided	fast	algorithm	for	point	to	OBB
• Estimate	with	N	points	on	the	bounding	box
• Extends	an	existing	sensor	class



Sensor	Testing

• Start	small	– only	points	on	the	front



Additional	Features

• “See	Everything”	functionality
• Ran	into	trouble	with	different	coordinate	systems



Additional	Features

• Rotate	the	frustum	with	the	wheels
• Can	be	useful	for	narrow	frustums
• Potential	downside:	rotated	frustum	set	in	next	frame,	not	current



Additional	Features

• Add	a	sensor	on	each	side
• Many	possible	approaches
• More	calculation	points
• Flag	to	enable/disable	each	side



Additional	Features

• Filter	the	list	of	detected	objects
• Send	through	the	RDB	the	N	closest	or	most	critical	objects
• Toggle	with	flags
• Helps	focus	on	what	is	most	important



Additional	Features

• Send	distance	data	through	the
• sensor’s RDB	port
• main RDB	port	(Unsuccessful)	

• Each	with	flag	to	enable/disable



Basic	Criticality	Calculation

• Implemented	basic	criticality	function
• Help	set	up	code	structure
• Work	out	some	potential	bugs

• Sensor	coordinate	system
• Positions	and	velocities	relative	to	sensor
• Dot	product	of	unit	vectors	position	and	velocity	determine	if	
object	is	approaching	or	not

• Velocity	vector	towards	origin	=	collision	path
• Use	previously	calculated	distance	to	estimate	time	to	collision



Basic	Criticality	Calculation



Valet	Parking	Scenarios

• Use	the	Scenario	Editor	to	create	a	few	simple	valet	parking	scenarios



Future	Work

• Improve	distance	algorithm,	add	tests
• Improve	coordinate	system	flexibility
• Improve/fix	coordinate	system	conversion	algorithm(s)
• Improve	criticality	calculation
• Add	more	information	to	the	RDB	structs
• Better	filtering
• Fix	send	through	main	RDB	port
• Other	necessary	features	
• Valet	parking	scenarios


