Implementing Practical Provably Secure Authenticated Key Exchange for the Post-quantum World

University of Cincinnati

Challenge:

How to make LWE-based authenticated key exchange more efficient and more secure for practical applications

Solution:

- Find better parameters
- Build new type of protocol to improve the security and performance

The LWE-BASED AKE SCHEME

Party i Party j Sample $s_i, e_i \leftarrow \chi_{\alpha}$ Sample $s_i, e_i \leftarrow \chi_{\alpha}$ Secret Key: $s_i \in R_a$ Secret Key: $s_i \in R_a$ Public Key: $p_i = as_i + 2e_i \in R_a$ Public Key: $p_i = as_i + 2e_i \in R_a$ Sample $r_i, f_i \leftarrow \chi_{\beta}$ Sample $r_i, f_i, g_i \leftarrow \chi_\beta$ $\xrightarrow{x_i} \quad \text{Set } y_j = ar_j + 2f_j \in R_q$ Set $x_i = ar_i + 2f_i \in R_a$ Set $k_i = (p_i c + x_i)(s_i d + r_i) + 2q_i$ Find $w_i = \mathsf{Cha}(k_i) \in \{0,1\}^n$

Sample
$$g_i \leftarrow \chi_{\beta}$$

Set $k_i = (p_j d + y_j)(s_i c + r_i) + 2g_i$
Find $\sigma_i = \mathsf{Mod}_b(k_i, w_i) \in \{0, 1\}^n$

Find
$$\sigma_i = \mathsf{Mod}_2(k_i, w_j) \in \{0, 1\}^n$$

Compute $sk_i = H_2(i, j, x_i, y_j, w_j, \sigma_i)$

Find
$$\sigma_j = \text{Mod}_2(k_j, w_j) \in \{0, 1\}^n$$

Compute $sk_i = H_2(i, j, x_i, y_i, w_i, \sigma_i)$

Scientific Impact:

- Better understanding the fundamentals of LWE-based AKE
- Build next generation quantum resistant algorithm for authenticated key exchange

Broader Impact:

- These new algorithms cab be strong candidate for NIST standards
- Can be used to improve greatly Cyber security in communication systems like Internet
- Practical broad applications like SSL/TLS
- Excellent tool to attract student to STEM program
- Train graduate students and bring frontier research into graduate education new knowledge

Project info: Award #1565748 Jintai Ding