Improving Run-Time Bug Detection in Aviation
Software Using Program Slicing

We present an improvement to run-time bug
detection by using program slicing instead of a
heuristic to identify relevant program variables
to monitor. Our results show that selecting
variables using the program slice produces
higher sensitivity compared to selecting
variables heuristically. Moreover, at least in the
experiments conducted, program slicing
resulted in more consistent detection, with
lower variance in sensitivity as compared to the
heuristic approach.

* We address the question how to choose
monitoring variables to detect bugs in
software by leveraging program slicing, a
well-known static analysis technique
originally proposed by Weiser?.

 Our hypothesis is that variables chosen using
program slicing result in better bug detector
performance than variables chosen through a
reasonable heuristic.

* We construct bug detectors using a standard
machine learning algorithm, the One-Class
SVM. We use the One-Class SVM to conduct
two computational experiments in order to
test our hypothesis. The experiments, which
consider a simplified but representative flight
control code, address two questions.

Research Questions

Question 1: For the same level of specificity, do
instrumentation variables chosen using a
program slice, as opposed to a heuristic, result in
higher monitor sensitivity for bugs injected at
different locations in the model code?

Question 2: Is the benefit of selecting
instrumentation variables using program slicing
enhanced as bug magnitude gets smaller,
indicating greater sensitivity when detection is
hardest?

Contact

Hu Huang
Tufts University
Email: hu.huang@tufts.edu

Hu Huang, Samuel Z. Guyer, Jason H. Rife

Tufts University

Tufts

UNIVERSITY

Background _ Results

main
e

1 #include <iostream>

2 #include <cstdlib>

3

4 using namespace std;

5

6 int gcd(int a, int b)

7 A

8 if (b !'= 0) {

9 return gcd(b, a % b);

10 } else {

11 return a;

12 }

13}

14

15 int lem(int ¢, int d)

16 {

17 int r, t;

18 t = abs(c) / gcd(c, d);

19 r = t x abs(d);
20 return r;
21 }
22
23 /=
24 x* Computing the least commmon multiple
25 * /
26 int main ()
27 |

28 int nl;

29 int n2;

30 cout << "xkxrxrkkxrkkrkkrxrkkx*x" << endl;
31 cout << "Computing the LCM" << endl;
32 cout << "xkxrxxrxkxrkkrkkxrkxx" << endl;
33 cout << "Enter the first integer: ";
34 cin >> nl;

35 cout << "Enter the second integer: ";
36 cin >> n2;

37 cout << "ILCM of "™ << nl << " and "
38 << n2 <<" is: " << lem(nl,n2) << endl;
39 1}

Methodology

Operational Scenario:

el

Missed
Approach

-*
"l
"
'—
'—
-
"l
"
'—
'—
"
-

Continuous Descent

Horizontal Distance to Touchdown J
<

Evaluation Metric:

Sensitivit TP

11S101V1 —

SV = TP T PN
TN

Specificity —

pecificity ™ - TP

Anomaly Detection Model:

One-Class SVM

4 ——

Kernel = RBF
~v = 0.001
v = 0.2

References

B Heuristic
1.0 1.0 .
0.97 [ZZZ7]1 Program Slice |

0.87 0.86 0.87

o.7 0.8

1.0

o
o
T

0.70

Sensitivity
o
(0)}

©
o

0.2

estalt reftraj_alt reftraj vel sensor_alt sensor vel throt cur
Location of injected bug

Figure 3. Sensitivities of both heuristic and program
slice detectors for the six local variables where bugs
were injected (higher is better). While the program
slice performs better across four of the six variables, it
does not always perform better. The program slice
detector actually performs slightly worse for

throt cur andties for reftraj alt. For all the bug
injection sites, the specificity was set to 0.8.

0.8}

|
T |
I |
i - |
|
| |
| | -
|
= -4 L
€1

0.2}

1.0_ -1 -1 _|_ T — —
| | | |
I I
I I
I
I

o
o

Sensitivity

©
N

r
I._____
. =
|__
|___

=== Heuristic
=== Program Slice

0.0

1.5x 3X 06X 12x 25X
Bug Magnitude from Baseline

Figure 4. Box plots for Experiment 2, where higher on
the vertical axis corresponds to better sensitivity. With
larger bug magnitudes, both the heuristic and the
program slice detectors have relatively high
sensitivities. At lower bug magnitudes, the program
slice detectors perform significantly better.

We are currently preparing a manuscript to be
submitted to TCPS journal that expands on the
theoretical notions of the program slice for a
CPS.

In addition, we are currently building compiler
infrastructure to automate program slicing and
will be applying this technique on real-world
code bases such as Ardupilot.

Acknowledgement

This research was supported by National Science
Foundation under grant CNS-1329341

1. Mark Weiser. 1984. Program Slicing. IEEE Transactions on Software Engineering 4, SE-10 (1984), 352-357.

2.

© POSTER TEMPLATE BY GENIGRAPHICS® 1.800.790.4001 WWW.GENIGRAPHICS.COM

School of
Engineering

