

In-Situ Collaborative Robotics in Confined Spaces

Andrew Orekhov¹, Colette, Abah¹, Garrison Johnston¹, Saumya Saxena², Julian Whitman², Peng Yin, Howie Choset², Nabil Simaan¹

¹ ARMA Lab, Dept. of Mech. Engineering, Vanderbilt University, Nashville, TN 37235 – **CMMI #1734461**² Biorobotics Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213 – **CMMI #1734360**

Motivation

- Industrial workers often have to perform manufacturing or service tasks in close quarters.
- Cooperative
 manufacturing in confined
 spaces demands
 cooperation modes and
 levels of dexterity,
 sensing, and safety that
 exceed capabilities of
 existing robotic systems.

Illustrative example of a cooperative robot assisting a human user in a service/manufacture operation in confined space

2 DoF modular

1) soft silicone skin

3) QWIIC I2C

4) Outer disk

5) 8 time-of-flight

6) custom PCB

8) core disk 8

7) I2C multiplexers

connectors

sensors

2) 8 magnetic sensors

Goal: Develop and validate new technologies including associated control, sensing and planning to enable cooperative manipulation in confined spaces.

Scientific Merit:

- The proposed work introduces a new architecture of In-Situ Collaborative Robotics (ISCR) in Confined Spaces.
- Use the robot's flexibility to facilitate physical interaction between the user and the robot. These capabilities include contact sensing and localization, and proximity measurements along the robot.
- Modeling and planning with contact for such robots.
- A new approach for compliant motion control of robots
- Development of an approach for multi-point interaction between the user and the robot.

Manipulator Design

110 mm

Sensory Skin – Preliminary Experiments

The proximity sensing error of a single time-of-flight sensor was characterized for a 2 inch diameter rod with matte black and glossy black surface finish (shown above). A sensing disk prototype was mounted on a PUMA-560 industrial manipulator to test its feasibility for bracing, feature mapping and identification, and human contact detection.

Result of feature mapping experiment

Demonstration of using multi-modal sensing to brace against the environment

Demonstration of using sensing disk to stop robot motion after detecting human contact

Planning

Contact detection and localization

- Contact detection and localization on rigid links with no sensor skin (contact sensors)
- A particle filter runs online and takes 'measurements' (joint positions and torques) from each of the joints and estimates the contact location and force.
- Particle sets (blue stars on the links) represent estimates of contact location from the particle filter, mean of particle sets (red star) is taken as best estimate.
- In 0.3s the estimated contact location and contact force converges to within 10% of the actual values and this estimate improves over time.