
Garrison Johnston1, Andrew Orekhov2, Colette, Abah1,

Ramkumar Natarajan2, Howie Choset2, Nabil Simaan1

1 ARMA Lab, Dept. of Mech. Engineering, Vanderbilt University, Nashville, TN 37235 – CMMI #1734461
2 Biorobotics Lab, Carnegie Mellon University, Pittsburgh, PA 15213 – CMMI #1734360

In-Situ Collaborative Robotics in Confined Spaces

Continuum Segment Compliance Modeling [9]

Sensory Disk Mapping and HRI Capabilities [1,2]

Design Optimization for Wire-Wrapped Cam Mechanisms [7]
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Design Features 

• Passive and active safety 

• Proximity and contact sensing

• Combined continuum and rigid link structure

Manipulator Specifications

• 11 DOF

• Approx. 2 m reach

• 1.8 Kg payload at full reach 

Evaluation tasks

• Sanding, caulking, and pipe assembly.
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Publications

Illustrative example of a cooperative robot 

assisting a human user in a manufacturing 

operation in a confined space.

• Industrial workers often perform manufacturing 

or service tasks in tight spaces. 

• Cooperative manufacturing in confined spaces 

demands cooperation modes and levels of 

dexterity, sensing, and safety that exceed 

capabilities of existing robotic systems.

• Goal: Develop and validate new technologies 

including associated control, sensing and 

planning to enable cooperative manipulation in 

confined spaces.

Scientific Merit:

• Introduce a new architecture of In-Situ Collaborative Robots (ISCR) in confined spaces.

• Facilitate physical interaction between the user and the robot using the robot’s flexibility, 

contact sensing and localization, and proximity measurements along body.

• Modeling, compliant motion control, and planning with contact for ISCRs.

• Development of an approach for multi-point interaction between the user and the robot.

Manipulator Design

Motivation

• The Lie group formulation we use for modeling the 

robot kinematics/statics [3] enables computing the 

continuum segment compliance matrix in closed 

form from the principle of virtual work.

• Changing the modal function order allows for 

trade-off between computation time and model 

accuracy to be made.

Compliance definition:
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Change in pose

• Used proximity sensors to map a mock confined space 

• 9.83 mm RMSE in mapping

• Used touch and proximity sensors to demonstrate HRI 

with the continuum segments
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Sensor Disk Design

Proximity Sensor Mapping ResultsProximity Sensor Mapping 

Experimental Setup

Mock Confined Space

Sensory disk
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Shape Sensing with General String Encoder Routing [4,5]
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• We present a kinematic model to solve for the 

deflected continuum segment shape using general 

string encoder routing and show how optimize 

string routings to reduce sensing error.

• Experimental validation shows mean and max end 

disk position error of 2.0% and 4.8% of arc length.

Weight (3 lbs)
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Experimental SetupExperimental Results

• Optimization-based, 2 DOF cam design procedure that minimizes effect of spring parameter uncertainty, 

ensures the cam stays convex, ensures the spring extension limits are not violated, and includes the effect 

of wire-cam friction  

• Experimental validation shows 353.0 Nmm of RMS error for cam 1 and 166.3 Nmm for cam 2. 

Planning by Bracing using INSAT [8]

Experimental RMS torques [Nm] during (i) the braced 
trajectory shown below and (ii) the same trajectory 

running in free-space (i.e. without the cabinets) 
producing net savings of 12.24Nm.

Low dimensional graph search 
Quasi-statically feasible trajectory in 

manipulator configuration space

Full dimensional trajectory optimization
Dynamically feasible trajectory in state space (joint 

angles, joint velocity & contact model parameters)

Interleaved

Cost of 
trajectory 

optimization 
solution drives 

the graph 
search
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Full dimensional trajectory optimization
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Low-Dimensional 
Graph

Full-dimensional trajectories 
from optimization (blue) and 

warm-starting (red) Contact-model parameters of tunable soft 
contact model used in Contact Implicit 
Trajectory Optimization. Details in [8]

Cost to reach low-D node 
from graph search

Minimize torque 
and momentum
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